1
|
Kumar MS, Varma P, Kandasubramanian B. From lab to life: advances in in-situbioprinting and bioink technology. Biomed Mater 2024; 20:012004. [PMID: 39704234 DOI: 10.1088/1748-605x/ad9dd0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Bioprinting has the potential to revolutionize tissue engineering and regenerative medicine, offering innovative solutions for complex medical challenges and addressing unmet clinical needs. However, traditionalin vitrobioprinting techniques face significant limitations, including difficulties in fabricating and implanting scaffolds with irregular shapes, as well as limited accessibility for rapid clinical application. To overcome these challenges,in-situbioprinting has emerged as a groundbreaking approach that enables the direct deposition of cells, biomaterials, and bioactive factors onto damaged organs or tissues, eliminating the need for pre-fabricated 3D constructs. This method promises a personalized, patient-specific approach to treatment, aligning well with the principles of precision medicine. The success ofin-situbioprinting largely depends on the advancement of bioinks, which are essential for maintaining cell viability and supporting tissue development. Recent innovations in hand-held bioprinting devices and robotic arms have further enhanced the flexibility ofin-situbioprinting, making it applicable to various tissue types, such as skin, hair, muscle, bone, cartilage, and composite tissues. This review examinesin-situbioprinting techniques, the development of smart, multifunctional bioinks, and their essential properties for promoting cell viability and tissue growth. It highlights the versatility and recent advancements inin-situbioprinting methods and their applications in regenerating a wide range of tissues and organs. Furthermore, it addresses the key challenges that must be overcome for broader clinical adoption and propose strategies to advance these technologies toward mainstream medical practice.
Collapse
Affiliation(s)
- Manav Sree Kumar
- Dr D. Y. Patil Biotechnology and Bioinformatics Institute, Tathawade Pune-411033 Maharashtra, India
| | - Payal Varma
- Additive Manufacturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Girinagar Pune-411025 Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Additive Manufacturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Girinagar Pune-411025 Maharashtra, India
| |
Collapse
|
2
|
Jain P, Kathuria H, Ramakrishna S, Parab S, Pandey MM, Dubey N. In Situ Bioprinting: Process, Bioinks, and Applications. ACS APPLIED BIO MATERIALS 2024; 7:7987-8007. [PMID: 38598256 DOI: 10.1021/acsabm.3c01303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Traditional tissue engineering methods face challenges, such as fabrication, implantation of irregularly shaped scaffolds, and limited accessibility for immediate healthcare providers. In situ bioprinting, an alternate strategy, involves direct deposition of biomaterials, cells, and bioactive factors at the site, facilitating on-site fabrication of intricate tissue, which can offer a patient-specific personalized approach and align with the principles of precision medicine. It can be applied using a handled device and robotic arms to various tissues, including skin, bone, cartilage, muscle, and composite tissues. Bioinks, the critical components of bioprinting that support cell viability and tissue development, play a crucial role in the success of in situ bioprinting. This review discusses in situ bioprinting techniques, the materials used for bioinks, and their critical properties for successful applications. Finally, we discuss the challenges and future trends in accelerating in situ printing to translate this technology in a clinical settings for personalized regenerative medicine.
Collapse
Affiliation(s)
- Pooja Jain
- Faculty of Dentistry, National University of Singapore, Singapore 119805, Singapore
| | - Himanshu Kathuria
- Nusmetics Pte Ltd, E-Centre@Redhill, 3791 Jalan Bukit Merah, Singapore 159471, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanotechnology and Sustainability, National University of Singapore, Singapore 117581, Singapore
| | - Shraddha Parab
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan India, 333031
| | - Murali M Pandey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan India, 333031
| | - Nileshkumar Dubey
- Faculty of Dentistry, National University of Singapore, Singapore 119805, Singapore
- ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore 119805, Singapore
| |
Collapse
|
3
|
Fortunato G, Batoni E, Pasqua I, Nicoletta M, Vozzi G, De Maria C. Automatic Photo-Cross-Linking System for Robotic-Based In Situ Bioprinting. ACS Biomater Sci Eng 2023; 9:6926-6934. [PMID: 37824106 PMCID: PMC10716819 DOI: 10.1021/acsbiomaterials.3c00898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
This work reports the design and validation of an innovative automatic photo-cross-linking device for robotic-based in situ bioprinting. Photo-cross-linking is the most promising polymerization technique when considering biomaterial deposition directly inside a physiological environment, typical of the in situ bioprinting approach. The photo-cross-linking device was designed for the IMAGObot platform, a 5-degree-of-freedom robot re-engineered for in situ bioprinting applications. The system consists of a syringe pump extrusion module equipped with eight light-emitting diodes (LEDs) with a 405 nm wavelength. The hardware and software of the robot were purposely designed to manage the LEDs switching on and off during printing. To minimize the light exposure of the needle, thus avoiding its clogging, only the LEDs opposite the printing direction are switched on to irradiate the newly deposited filament. Moreover, the LED system can be adjusted in height to modulate substrate exposure. Different scaffolds were bioprinted using a GelMA-based hydrogel, varying the printing speed and light distance from the bed, and were characterized in terms of swelling and mechanical properties, proving the robustness of the photo-cross-linking system in various configurations. The system was finally validated onto anthropomorphic phantoms (i.e., a human humerus head and a human hand with defects) featuring complex nonplanar surfaces. The designed system was successfully used to fill these anatomical defects, thus resulting in a promising solution for in situ bioprinting applications.
Collapse
Affiliation(s)
- Gabriele
Maria Fortunato
- Department of Information
Engineering and Research Centre “E. Piaggio”, University of Pisa, 56122 Pisa, Italy
| | - Elisa Batoni
- Department of Information
Engineering and Research Centre “E. Piaggio”, University of Pisa, 56122 Pisa, Italy
| | - Ilenia Pasqua
- Department of Information
Engineering and Research Centre “E. Piaggio”, University of Pisa, 56122 Pisa, Italy
| | - Matteo Nicoletta
- Department of Information
Engineering and Research Centre “E. Piaggio”, University of Pisa, 56122 Pisa, Italy
| | - Giovanni Vozzi
- Department of Information
Engineering and Research Centre “E. Piaggio”, University of Pisa, 56122 Pisa, Italy
| | - Carmelo De Maria
- Department of Information
Engineering and Research Centre “E. Piaggio”, University of Pisa, 56122 Pisa, Italy
| |
Collapse
|
4
|
Abstract
Bioprinting, as a groundbreaking technology, enables the fabrication of biomimetic tissues and organs with highly complex structures, multiple cell types, mechanical heterogeneity, and diverse functional gradients. With the growing demand for organ transplantation and the limited number of organ donors, bioprinting holds great promise for addressing the organ shortage by manufacturing completely functional organs. While the bioprinting of complete organs remains a distant goal, there has been considerable progress in the development of bioprinted transplantable tissues and organs for regenerative medicine. This review article recapitulates the current achievements of organ 3D bioprinting, primarily encompassing five important organs in the human body (i.e., the heart, kidneys, liver, pancreas, and lungs). Challenges from cellular techniques, biomanufacturing technologies, and organ maturation techniques are also deliberated for the broad application of organ bioprinting. In addition, the integration of bioprinting with other cutting-edge technologies including machine learning, organoids, and microfluidics is envisioned, which strives to offer the reader the prospect of bioprinting in constructing functional organs.
Collapse
Affiliation(s)
- Yang Wu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Minghao Qin
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Xue Yang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
5
|
Han S, Cruz SH, Park S, Shin SR. Nano-biomaterials and advanced fabrication techniques for engineering skeletal muscle tissue constructs in regenerative medicine. NANO CONVERGENCE 2023; 10:48. [PMID: 37864632 PMCID: PMC10590364 DOI: 10.1186/s40580-023-00398-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
Engineered three-dimensional (3D) tissue constructs have emerged as a promising solution for regenerating damaged muscle tissue resulting from traumatic or surgical events. 3D architecture and function of the muscle tissue constructs can be customized by selecting types of biomaterials and cells that can be engineered with desired shapes and sizes through various nano- and micro-fabrication techniques. Despite significant progress in this field, further research is needed to improve, in terms of biomaterials properties and fabrication techniques, the resemblance of function and complex architecture of engineered constructs to native muscle tissues, potentially enhancing muscle tissue regeneration and restoring muscle function. In this review, we discuss the latest trends in using nano-biomaterials and advanced nano-/micro-fabrication techniques for creating 3D muscle tissue constructs and their regeneration ability. Current challenges and potential solutions are highlighted, and we discuss the implications and opportunities of a future perspective in the field, including the possibility for creating personalized and biomanufacturable platforms.
Collapse
Affiliation(s)
- Seokgyu Han
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Sebastián Herrera Cruz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
- Department of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.
| |
Collapse
|
6
|
Zhao W, Hu C, Xu T. In vivo bioprinting: Broadening the therapeutic horizon for tissue injuries. Bioact Mater 2023; 25:201-222. [PMID: 36817820 PMCID: PMC9932583 DOI: 10.1016/j.bioactmat.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/06/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Tissue injury is a collective term for various disorders associated with organs and tissues induced by extrinsic or intrinsic factors, which significantly concerns human health. In vivo bioprinting, an emerging tissue engineering approach, allows for the direct deposition of bioink into the defect sites inside the patient's body, effectively addressing the challenges associated with the fabrication and implantation of irregularly shaped scaffolds and enabling the rapid on-site management of tissue injuries. This strategy complements operative therapy as well as pharmacotherapy, and broadens the therapeutic horizon for tissue injuries. The implementation of in vivo bioprinting requires targeted investigations in printing modalities, bioinks, and devices to accommodate the unique intracorporal microenvironment, as well as effective integrations with intraoperative procedures to facilitate its clinical application. In this review, we summarize the developments of in vivo bioprinting from three perspectives: modalities and bioinks, devices, and clinical integrations, and further discuss the current challenges and potential improvements in the future.
Collapse
Affiliation(s)
- Wenxiang Zhao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control, Tsinghua University, Beijing, 100084, China
| | - Chuxiong Hu
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control, Tsinghua University, Beijing, 100084, China
| | - Tao Xu
- Center for Bio-intelligent Manufacturing and Living Matter Bioprinting, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, 518057, China
| |
Collapse
|
7
|
Zhou F, Xin L, Wang S, Chen K, Li D, Wang S, Huang Y, Xu C, Zhou M, Zhong W, Wang H, Chen T, Song J. Portable Handheld "SkinPen" Loaded with Biomaterial Ink for In Situ Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37262337 DOI: 10.1021/acsami.3c02825] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In situ bioprinting has emerged as an attractive tool for directly depositing therapy ink at the defective area to adapt to the irregular wound shape. However, traditional bioprinting exhibits an obvious limitation in terms of an unsatisfactory bioadhesive effect. Here, a portable handheld bioprinter loaded with biomaterial ink is designed and named "SkinPen". Gelatin methacrylate (GelMA) and Cu-containing bioactive glass nanoparticles (Cu-BGn) serve as the main components to form the hydrogel ink, which displays excellent biocompatibility and antibacterial and angiogenic properties. More importantly, by introducing ultrasound and ultraviolet in a sequential programmed manner, the SkinPen achieves in situ instant gelation and amplified (more than threefold) bioadhesive shear strength. It is suggested that ultrasound-induced cavitation and the resulting topological entanglement contribute to the enhanced bioadhesive performance together. Combining the ultrasound-enhanced bioadhesion with the curative role of the hydrogel, the SkinPen shows a satisfactory wound-healing effect in diabetic rats. Given the detachable property of the SkinPen, the whole device can be put in a first-aid kit. Therefore, the application scenarios can be expanded to many kinds of accidents. Overall, this work presents a portable handheld SkinPen that might provide a facile but effective approach for clinical wound management.
Collapse
Affiliation(s)
- Fuyuan Zhou
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P. R. China
| | - Liangjing Xin
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P. R. China
| | - Shuya Wang
- Key State Laboratory of Fine Chemicals, Dalian 116024, P. R. China
- School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Kaiwen Chen
- Key State Laboratory of Fine Chemicals, Dalian 116024, P. R. China
- School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Dize Li
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P. R. China
| | - Si Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P. R. China
| | - Yuanding Huang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P. R. China
| | - Chuanhang Xu
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P. R. China
| | - Mengjiao Zhou
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P. R. China
| | - Wenjie Zhong
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P. R. China
| | - Huanan Wang
- Key State Laboratory of Fine Chemicals, Dalian 116024, P. R. China
- School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P. R. China
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, P. R. China
| |
Collapse
|
8
|
Samandari M, Mostafavi A, Quint J, Memić A, Tamayol A. In situ bioprinting: intraoperative implementation of regenerative medicine. Trends Biotechnol 2022; 40:1229-1247. [PMID: 35483990 PMCID: PMC9481658 DOI: 10.1016/j.tibtech.2022.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/31/2022]
Abstract
Bioprinting has emerged as a strong tool for devising regenerative therapies to address unmet medical needs. However, the translation of conventional in vitro bioprinting approaches is partially hindered due to challenges associated with the fabrication and implantation of irregularly shaped scaffolds and their limited accessibility for immediate treatment by healthcare providers. An alternative strategy that has recently drawn significant attention is to directly print the bioink into the patient's body, so-called 'in situ bioprinting'. The bioprinting strategy and the associated bioink need to be specifically designed for in situ bioprinting to meet the particular requirements of direct deposition in vivo. In this review, we discuss the developed in situ bioprinting strategies, their advantages, challenges, and possible future improvements.
Collapse
Affiliation(s)
| | - Azadeh Mostafavi
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, USA
| | - Jacob Quint
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, USA
| | - Adnan Memić
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, USA; Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, USA.
| |
Collapse
|
9
|
Herzog T, Schnell G, Tille C, Seitz H. Comparison of Conventional and Robotic Fused Filament Fabrication on Silicone Build Plates. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6352. [PMID: 36143670 PMCID: PMC9506498 DOI: 10.3390/ma15186352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The objective of this study is the investigation of the transferability of the material extrusion process from conventional to robotic fabrication on silicone build plates for use in Enhanced Multipoint Moulding with Additive Attachments. Therefore, the study is based on two series of experiments. The first series of tests used a conventional plant extended by a silicone construction platform. In comparison, a six-axis industrial robot was chosen to produce the test specimens in the second series of tests. The comparisons of adhesion strengths and relative shape deviations are used to validate the transferability. The results of the tests show a very good transferability of the process from conventional to robotic production. Whilst angular specimen geometries can be transferred directly, for round specimen geometries, the results show a need for further adaptation to the robot kinematics. The round specimen geometries showed deviations in the surface quality caused by an over-extrusion in the robotic manufacturing. This over-extrusion results from the slicing process in combination with the robot control and may be avoided through further optimisation of the process parameters. Overall, to the best of our knowledge, this study is the first that successfully demonstrates the transfer of Fused Filament Fabrication (FFF) from a conventional system to manufacturing using robots on silicone build plates for the use in Enhanced Multipoint Moulding with Additive Attachments.
Collapse
Affiliation(s)
- Thomas Herzog
- Department of Mechanical, Automotive and Aeronautical Engineering, Munich University of Applied Sciences, 80335 Munich, Germany
| | - Georg Schnell
- Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock, Germany
| | - Carsten Tille
- Department of Mechanical, Automotive and Aeronautical Engineering, Munich University of Applied Sciences, 80335 Munich, Germany
| | - Hermann Seitz
- Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock, Germany
- Department Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
10
|
Prabhakaran P, Palaniyandi T, Kanagavalli B, Ram Kumar V, Hari R, Sandhiya V, Baskar G, Rajendran BK, Sivaji A. Prospect and retrospect of 3D bio-printing. Acta Histochem 2022; 124:151932. [PMID: 36027838 DOI: 10.1016/j.acthis.2022.151932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 11/01/2022]
Abstract
3D bioprinting has become a popular medical technique in recent years. The most compelling rationale for the development of 3D bioprinting is the paucity of biological structures required for the rehabilitation of missing organs and tissues. They're useful in a multitude of domains, including disease modelling, regenerative medicine, tissue engineering, drug discovery with testing, personalised medicine, organ development, toxicity studies, and implants. Bioprinting requires a range of bioprinting technologies and bioinks to finish their procedure, that Inkjet-based bioprinting, extrusion-based bioprinting, laser-assisted bioprinting, stereolithography-based bioprinting, and in situ bioprinting are some of the technologies listed here. Bioink is a 3D printing material that is used to construct engineered artificial living tissue. It can be constructed solely for cells, but it usually includes a carrier substance that envelops the cells, then there's Agarose-based bioinks, alginate-based bioinks, collagen-based bioinks, and hyaluronic acid-based bioinks, to name a few. Here we presented about the different bioprinting methods with the use of bioinks in it and then Prospected over various applications in different fields.
Collapse
Affiliation(s)
- Pranav Prabhakaran
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | - Thirunavukkarsu Palaniyandi
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India; Department of Anatomy, Biomedical Reseach Unit and Laboratory Animal Centre, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - B Kanagavalli
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | - V Ram Kumar
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | - Rajeswari Hari
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | - V Sandhiya
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | | | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| |
Collapse
|
11
|
Tafti MF, Aghamollaei H, Moghaddam MM, Jadidi K, Alio JL, Faghihi S. Emerging tissue engineering strategies for the corneal regeneration. J Tissue Eng Regen Med 2022; 16:683-706. [PMID: 35585479 DOI: 10.1002/term.3309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022]
Abstract
Cornea as the outermost layer of the eye is at risk of various genetic and environmental diseases that can damage the cornea and impair vision. Corneal transplantation is among the most applicable surgical procedures for repairing the defected tissue. However, the scarcity of healthy tissue donations as well as transplantation failure has remained as the biggest challenges in confront of corneal grafting. Therefore, alternative approaches based on stem-cell transplantation and classic regenerative medicine have been developed for corneal regeneration. In this review, the application and limitation of the recently-used advanced approaches for regeneration of cornea are discussed. Additionally, other emerging powerful techniques such as 5D printing as a new branch of scaffold-based technologies for construction of tissues other than the cornea are highlighted and suggested as alternatives for corneal reconstruction. The introduced novel techniques may have great potential for clinical applications in corneal repair including disease modeling, 3D pattern scheming, and personalized medicine.
Collapse
Affiliation(s)
- Mahsa Fallah Tafti
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Khosrow Jadidi
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Jorge L Alio
- Department of Research and Development, VISSUM, Alicante, Spain.,Cornea, Cataract and Refractive Surgery Department, VISSUM, Alicante, Spain.,Department of Pathology and Surgery, Division of Ophthalmology, Faculty of Medicine, Miguel Hernández University, Alicante, Spain
| | - Shahab Faghihi
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
12
|
Nuutila K, Samandari M, Endo Y, Zhang Y, Quint J, Schmidt TA, Tamayol A, Sinha I. In vivo printing of growth factor-eluting adhesive scaffolds improves wound healing. Bioact Mater 2022; 8:296-308. [PMID: 34541402 PMCID: PMC8427093 DOI: 10.1016/j.bioactmat.2021.06.030] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022] Open
Abstract
Acute and chronic wounds affect millions of people around the world, imposing a growing financial burden on patients and hospitals. Despite the application of current wound management strategies, the physiological healing process is disrupted in many cases, resulting in impaired wound healing. Therefore, more efficient and easy-to-use treatment modalities are needed. In this study, we demonstrate the benefit of in vivo printed, growth factor-eluting adhesive scaffolds for the treatment of full-thickness wounds in a porcine model. A custom-made handheld printer is implemented to finely print gelatin-methacryloyl (GelMA) hydrogel containing vascular endothelial growth factor (VEGF) into the wounds. In vitro and in vivo results show that the in situ GelMA crosslinking induces a strong scaffold adhesion and enables printing on curved surfaces of wet tissues, without the need for any sutures. The scaffold is further shown to offer a sustained release of VEGF, enhancing the migration of endothelial cells in vitro. Histological analyses demonstrate that the administration of the VEGF-eluting GelMA scaffolds that remain adherent to the wound bed significantly improves the quality of healing in porcine wounds. The introduced in vivo printing strategy for wound healing applications is translational and convenient to use in any place, such as an operating room, and does not require expensive bioprinters or imaging modalities.
Collapse
Affiliation(s)
- Kristo Nuutila
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| | - Yori Endo
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yuteng Zhang
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jacob Quint
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Tannin A. Schmidt
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Indranil Sinha
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
13
|
Agostinacchio F, Mu X, Dirè S, Motta A, Kaplan DL. In Situ 3D Printing: Opportunities with Silk Inks. Trends Biotechnol 2021; 39:719-730. [PMID: 33279280 PMCID: PMC8169713 DOI: 10.1016/j.tibtech.2020.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/17/2020] [Accepted: 11/05/2020] [Indexed: 12/27/2022]
Abstract
In situ 3D printing is an emerging technique designed for patient-specific needs and performed directly in the patient's tissues in the operating room. While this technology has progressed rapidly, several improvements are needed to push it forward for widespread utility, including ink formulations and optimization for in situ context. Silk fibroin inks emerge as a viable option due to the diverse range of formulations, aqueous processability, robust and tunable mechanical properties, and self-assembly via biophysical adsorption to avoid exogenous chemical or photochemical sensitizer additives, among other features. In this review, we focus on this new frontier of 3D in situ printing for tissue regeneration, where silk is proposed as candidate biomaterial ink due to the unique and useful properties of this protein polymer.
Collapse
Affiliation(s)
- Francesca Agostinacchio
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; BIOTech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Trento, via Delle Regole 101, Trento 38123, Italy
| | - Xuan Mu
- Department of Biomedical Engineering Tufts University Medford, MA 02155, USA
| | - Sandra Dirè
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; 'Klaus Muller' Magnetic Resonance Laboratory, Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; BIOTech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Trento, via Delle Regole 101, Trento 38123, Italy
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University Medford, MA 02155, USA.
| |
Collapse
|
14
|
Agarwal T, Fortunato GM, Hann SY, Ayan B, Vajanthri KY, Presutti D, Cui H, Chan AHP, Costantini M, Onesto V, Di Natale C, Huang NF, Makvandi P, Shabani M, Maiti TK, Zhang LG, De Maria C. Recent advances in bioprinting technologies for engineering cardiac tissue. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112057. [PMID: 33947551 DOI: 10.1016/j.msec.2021.112057] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022]
Abstract
Annually increasing incidence of cardiac-related disorders and cardiac tissue's minimal regenerative capacity have motivated the researchers to explore effective therapeutic strategies. In the recent years, bioprinting technologies have witnessed a great wave of enthusiasm and have undergone steady advancements over a short period, opening the possibilities for recreating engineered functional cardiac tissue models for regenerative and diagnostic applications. With this perspective, the current review delineates recent developments in the sphere of engineered cardiac tissue fabrication, using traditional and advanced bioprinting strategies. The review also highlights different printing ink formulations, available cellular opportunities, and aspects of personalized medicines in the context of cardiac tissue engineering and bioprinting. On a concluding note, current challenges and prospects for further advancements are also discussed.
Collapse
Affiliation(s)
- Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Gabriele Maria Fortunato
- Research Center "E. Piaggio" and Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Sung Yun Hann
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Bugra Ayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Kiran Yellappa Vajanthri
- School of Biomedical Engineering, Indian Institute of Technology Banaras Hindu University Varanasi, Uttar Pradesh 221005, India
| | - Dario Presutti
- Institute of Physical Chemistry - Polish Academy of Sciences, Warsaw, Poland
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Alex H P Chan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Marco Costantini
- Institute of Physical Chemistry - Polish Academy of Sciences, Warsaw, Poland
| | - Valentina Onesto
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Campus Ecotekne, via Monteroni, Lecce 73100, Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.leTecchio 80, Naples 80125, Italy
| | - Ngan F Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Pooyan Makvandi
- Center for Materials Interface, Istituto Italiano di Tecnologia, Pontedera 56025, Pisa, Italy
| | - Majid Shabani
- Center for Materials Interface, Istituto Italiano di Tecnologia, Pontedera 56025, Pisa, Italy
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA; Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA; Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA; Department of Medicine, The George Washington University, Washington, DC 20052, USA.
| | - Carmelo De Maria
- Research Center "E. Piaggio" and Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.
| |
Collapse
|
15
|
Recent advances in bioprinting technologies for engineering different cartilage-based tissues. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112005. [PMID: 33812625 DOI: 10.1016/j.msec.2021.112005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Inadequate self-repair and regenerative efficiency of the cartilage tissues has motivated the researchers to devise advanced and effective strategies to resolve this issue. Introduction of bioprinting to tissue engineering has paved the way for fabricating complex biomimetic engineered constructs. In this context, the current review gears off with the discussion of standard and advanced 3D/4D printing technologies and their implications for the repair of different cartilage tissues, namely, articular, meniscal, nasoseptal, auricular, costal, and tracheal cartilage. The review is then directed towards highlighting the current stem cell opportunities. On a concluding note, associated critical issues and prospects for future developments, particularly in this sphere of personalized medicines have been discussed.
Collapse
|
16
|
Torre M, Giannitelli SM, Mauri E, Trombetta M, Rainer A. Additive manufacturing of biomaterials. Soft Robot 2021. [DOI: 10.1016/bs.ache.2021.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
17
|
Ertas YN, Vaziri AS, Abedi-Dorcheh K, Kazemi-Aghdam F, Sohrabinejad M, Tutar R, Rastegar-Adib F, Ashammakhi N. Ian Situ Tissue Engineering: A New Dimension. ENGINEERING MATERIALS FOR STEM CELL REGENERATION 2021:325-350. [DOI: 10.1007/978-981-16-4420-7_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Wu Y, Ravnic DJ, Ozbolat IT. Intraoperative Bioprinting: Repairing Tissues and Organs in a Surgical Setting. Trends Biotechnol 2020; 38:594-605. [PMID: 32407688 PMCID: PMC7666846 DOI: 10.1016/j.tibtech.2020.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/29/2022]
Abstract
3D bioprinting directly into injured sites in a surgical setting, intraoperative bioprinting (IOB), is an effective process, in which the defect information can be rapidly acquired and then repaired via bioprinting on a live subject. In patients needing tissue resection, debridement, traumatic reconstruction, or fracture repair, the ability to scan and bioprint immediately following surgical preparation of the defect site has great potential to improve the precision and efficiency of these procedures. In this opinion article, we provide the reader with current major limitations of IOB from engineering and clinical points of view, as well as possibilities of future translation of bioprinting technologies from bench to bedside, and expound our perspectives in the context of IOB of composite and vascularized tissues.
Collapse
Affiliation(s)
- Yang Wu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China; Engineering Science and Mechanics Department, The Pennsylvania State University, State College, PA 16801, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA 16801, USA
| | - Dino J Ravnic
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics Department, The Pennsylvania State University, State College, PA 16801, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA 16801, USA; Department of Biomedical Engineering, Penn State University, University Park, PA 16801, USA; Materials Research Institute, Penn State University, University Park, PA 16801, USA.
| |
Collapse
|
19
|
Prendergast ME, Burdick JA. Recent Advances in Enabling Technologies in 3D Printing for Precision Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902516. [PMID: 31512289 DOI: 10.1002/adma.201902516] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Advances in areas such as data analytics, genomics, and imaging have revealed individual patient complexities and exposed the inherent limitations of generic therapies for patient treatment. These observations have also fueled the development of precision medicine approaches, where therapies are tailored for the individual rather than the broad patient population. 3D printing is a field that intersects with precision medicine through the design of precision implants with patient-directed shapes, structures, and materials or for the development of patient-specific in vitro models that can be used for screening precision therapeutics. Toward their success, advances in 3D printing and biofabrication technologies are needed with enhanced resolution, complexity, reproducibility, and speed and that encompass a broad range of cells and materials. The overall goal of this progress report is to highlight recent advances in 3D printing technologies that are helping to enable advances important in precision medicine.
Collapse
Affiliation(s)
- Margaret E Prendergast
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, 19104, PA, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, 19104, PA, USA
| |
Collapse
|
20
|
Singh S, Choudhury D, Yu F, Mironov V, Naing MW. In situ bioprinting - Bioprinting from benchside to bedside? Acta Biomater 2020; 101:14-25. [PMID: 31476384 DOI: 10.1016/j.actbio.2019.08.045] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/14/2019] [Accepted: 08/28/2019] [Indexed: 01/17/2023]
Abstract
Bioprinting technologies have been advancing at the convergence of automation, digitalization, and new tissue engineering (TE) approaches. In situ bioprinting may be favored during certain situations when compared with the conventional in vitro bioprinting when de novo tissues are to be printed directly on the intended anatomical location in the living body. To date, few attempts have been made to fabricate in situ tissues, which can be safely arrested and immobilized while printing in preclinical living models. In this review, we have explained the need and utility for in situ bioprinting with regard to the conventional bioprinting approach. The two main in situ bioprinting approaches, namely, robotic arm and handheld approaches, have been defined and differentiated. The various studies involving in situ fabrication of skin, bone, and cartilage tissues have been elucidated. Finally, we have also discussed the advantages, challenges, and the prospects in the field of in situ bioprinting modalities in line with parallel technological advancements. STATEMENT OF SIGNIFICANCE: In situ bioprinting may be favored during certain situations when compared with the conventional in vitro bioprinting when tissues are to be fabricated or repaired directly on the intended anatomical location in the living body, using the body as a bioreactor. However, the technology requires a lot more improvement to fabricate complex tissues in situ, which could eventually be possible through the multi-disciplinary innovations in tissue engineering. This review explains the need and utility and current approaches by handheld and robotic modes for in situ bioprinting. The latest studies involving in situ fabrication of skin, bone, and cartilage tissues have been elucidated. The review also covers the background studies, advantages, technical and ethical challenges, and possible suggestions for future improvements.
Collapse
|
21
|
Ding H, Illsley NP, Chang RC. 3D Bioprinted GelMA Based Models for the Study of Trophoblast Cell Invasion. Sci Rep 2019; 9:18854. [PMID: 31827129 PMCID: PMC6906490 DOI: 10.1038/s41598-019-55052-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Bioprinting is an emerging and promising technique for fabricating 3D cell-laden constructs for various biomedical applications. In this paper, we employed 3D bioprinted GelMA-based models to investigate the trophoblast cell invasion phenomenon, enabling studies of key placental functions. Initially, a set of optimized material and process parameters including GelMA concentration, UV crosslinking time and printing configuration were identified by systematic, parametric study. Following this, a multiple-ring model (2D multi-ring model) was tested with the HTR-8/SVneo trophoblast cell line to measure cell movement under the influence of EGF (chemoattractant) gradients. In the multi-ring model, the cell front used as a cell invasion indicator moves at a rate of 85 ± 33 µm/day with an EGF gradient of 16 µM. However, the rate was dramatically reduced to 13 ± 5 µm/day, when the multi-ring model was covered with a GelMA layer to constrain cells within the 3D environment (3D multi-ring model). Due to the geometric and the functional limitations of multi-ring model, a multi-strip model (2D multi-strip model) was developed to investigate cell movement in the presence and absence of the EGF chemoattractant. The results show that in the absence of an overlying cell-free layer of GelMA, movement of the cell front shows no significant differences between control and EGF-stimulated rates, due to the combination of migration and proliferation at high cell density (6 × 106 cells/ml) near the GelMA surface. When the model was covered by a layer of GelMA (3D multi-strip model) and migration was excluded, EGF-stimulated cells showed an invasion rate of 21 ± 3 µm/day compared to the rate for unstimulated cells, of 5 ± 4 µm/day. The novel features described in this report advance the use of the 3D bioprinted placental model as a practical tool for not only measurement of trophoblast invasion but also the interaction of invading cells with other tissue elements.
Collapse
Affiliation(s)
- Houzhu Ding
- Stevens Institute of Technology, Department of Mechanical Engineering, Hoboken, NJ, 07030, USA
| | - Nicholas P Illsley
- Hackensack University Medical Center, Department of Obstetrics and Gynecology, Hackensack, NJ, 07601, USA
| | - Robert C Chang
- Stevens Institute of Technology, Department of Mechanical Engineering, Hoboken, NJ, 07030, USA.
| |
Collapse
|
22
|
|