1
|
Cui JQ, Tian Y, Wu Z, Zhang L, Cho WC, Yao S, Lin Y. Concurrently Probing the Mechanical and Electrical Characteristics of Living Cells via an Integrated Microdevice. NANO LETTERS 2024; 24:14522-14530. [PMID: 39495891 DOI: 10.1021/acs.nanolett.4c05005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
The mechanical and electrical properties of cells serve as critical indicators of their physiological and pathological state. Currently, distinct setups are required to measure the electrical and mechanical responses of cells. In addition, most existing methods such as optical trapping (OT) and atomic force microscopy (AFM) are labor-intensive, expensive, and low-throughput. Here, we developed a microdevice that integrates automated cell trapping, deformation, and electric impedance spectroscopy to overcome these limitations. Our device enables parallel aspiration of tens of trapped cells in a highly scalable manner by simply adjusting the applied pressures, allowing for rapid probing of the dynamic viscoelastic properties of cells. Furthermore, embedded microelectrodes enable concurrent investigations of the electrical impedance of the cells. Through testing on different cell types, our platform demonstrated superior capabilities in comprehensive cell characterization and phenotyping, highlighting its great potential as a versatile tool for single cell analysis, drug screening, and disease detection.
Collapse
Affiliation(s)
- Johnson Q Cui
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam 999077, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories 999077, Hong Kong, China
| | - Ye Tian
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam 999077, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories 999077, Hong Kong, China
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong 518000, China
| | - Zhihao Wu
- The Hong Kong University of Science and Technology (Guangzhou), Function Hub Nansha, Guangzhou, Guangdong 511400, China
- Individualized Interdisciplinary Program, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Lu Zhang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon 999077, Hong Kong, China
| | - Shuhuai Yao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam 999077, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories 999077, Hong Kong, China
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong 518000, China
| |
Collapse
|
2
|
Visockis M, Ruzgys P, Gelažunaitė S, Vykertas S, Šatkauskas S. Detection of Gram-positive and Gram-negative bacteria membrane permeabilization induced by pulsed electric field using electrochemical admittance spectroscopy. Bioelectrochemistry 2024; 161:108835. [PMID: 39442497 DOI: 10.1016/j.bioelechem.2024.108835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Electrochemical impedance or admittance spectroscopy (EIS or EAS) has been widely used for decades, offering a label-free, rapid, real-time, and non-destructive assay for optically opaque and turbid bacterial solutions. However, PEF-induced changes in the bacterial envelope can present challenges in detecting the extent of membrane permeabilization in both Gram-positive and Gram-negative bacteria due to their distinct morphological properties. Here, we used a new approach for detecting bacterial membrane permeabilization induced by PEF using electrochemical admittance spectroscopy (EAS). The metabolic activity results have shown that the larger L. d. bulgaricus bacteria was found to be significantly more resistant to PEF strengths ranging from 4 to 16 kV/cm than the smaller E. coli bacteria at shorter PEF treatment durations (10 × 10 µs pulses). Interestingly, the difference in the increase of the admittance magnitude and a decrease in phase angle between the PEF treatment times of 10 × 10 µs and 10 × 100 µs pulses at different PEF strengths was more pronounced for E. coli bacteria samples. Our results demonstrate that EAS is more effective in comparing the degree of membrane permeabilization of Gram-positive and Gram-negative bacteria when longer PEF treatment durations are applied.
Collapse
Affiliation(s)
- Mindaugas Visockis
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas District LT-53361, Lithuania
| | - Paulius Ruzgys
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas District LT-53361, Lithuania
| | - Simona Gelažunaitė
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas District LT-53361, Lithuania
| | - Salvijus Vykertas
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas District LT-53361, Lithuania
| | - Saulius Šatkauskas
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas District LT-53361, Lithuania.
| |
Collapse
|
3
|
Mansor MA, Ahmad MR, Petrů M, Rahimian Koloor SS. An impedance flow cytometry with integrated dual microneedle for electrical properties characterization of single cell. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:371-383. [PMID: 37548425 DOI: 10.1080/21691401.2023.2239274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
Electrical characteristics of living cells have been proven to reveal important details about their internal structure, charge distribution and composition changes in the cell membrane, as well as the extracellular context. An impedance flow cytometry is a common approach to determine the electrical properties of a cell, having the advantage of label-free and high throughput. However, the current techniques are complex and costly for the fabrication process. For that reason, we introduce an integrated dual microneedle-microchannel for single-cell detection and electrical properties extraction. The dual microneedles utilized a commercially available tungsten needle coated with parylene. When a single cell flows through the parallel-facing electrode configuration of the dual microneedle, the electrical impedance at multiple frequencies is measured. The impedance measurement demonstrated the differential of normal red blood cells (RBCs) with three different sizes of microbeads at low and high frequencies, 100 kHz and 2 MHz, respectively. An electrical equivalent circuit model (ECM) was used to determine the unique membrane capacitance of individual cells. The proposed technique demonstrated that the specific membrane capacitance of an RBC is 9.42 mF/m-2, with the regression coefficients, ρ at 0.9895. As a result, this device may potentially be used in developing countries for low-cost single-cell screening and detection.
Collapse
Affiliation(s)
- Muhammad Asraf Mansor
- Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Mohd Ridzuan Ahmad
- Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Michal Petrů
- Faculty of Mechanical Engineering, Technical University of Liberec, Liberec, Czech Republic
| | - Seyed Saeid Rahimian Koloor
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Liberec, Czech Republic
| |
Collapse
|
4
|
Saitta L, Cutuli E, Celano G, Tosto C, Sanalitro D, Guarino F, Cicala G, Bucolo M. Projection Micro-Stereolithography to Manufacture a Biocompatible Micro-Optofluidic Device for Cell Concentration Monitoring. Polymers (Basel) 2023; 15:4461. [PMID: 38006185 PMCID: PMC10675802 DOI: 10.3390/polym15224461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
In this work, a 3D printed biocompatible micro-optofluidic (MoF) device for two-phase flow monitoring is presented. Both an air-water bi-phase flow and a two-phase mixture composed of micrometric cells suspended on a liquid solution were successfully controlled and monitored through its use. To manufacture the MoF device, a highly innovative microprecision 3D printing technique was used named Projection Microstereolithography (PμSL) in combination with the use of a novel 3D printable photocurable resin suitable for biological and biomedical applications. The concentration monitoring of biological fluids relies on the absorption phenomenon. More precisely, the nature of the transmission of the light strictly depends on the cell concentration: the higher the cell concentration, the lower the optical acquired signal. To achieve this, the microfluidic T-junction device was designed with two micrometric slots for the optical fibers' insertion, needed to acquire the light signal. In fact, both the micro-optical and the microfluidic components were integrated within the developed device. To assess the suitability of the selected biocompatible transparent resin for optical detection relying on the selected working principle (absorption phenomenon), a comparison between a two-phase flow process detected inside a previously fully characterized micro-optofluidic device made of a nonbiocompatible high-performance resin (HTL resin) and the same made of the biocompatible one (BIO resin) was carried out. In this way, it was possible to highlight the main differences between the two different resin grades, which were further justified with proper chemical analysis of the used resins and their hydrophilic/hydrophobic nature via static water contact angle measurements. A wide experimental campaign was performed for the biocompatible device manufactured through the PμSL technique in different operative conditions, i.e., different concentrations of eukaryotic yeast cells of Saccharomyces cerevisiae (with a diameter of 5 μm) suspended on a PBS (phosphate-buffered saline) solution. The performed analyses revealed that the selected photocurable transparent biocompatible resin for the manufactured device can be used for cell concentration monitoring by using ad hoc 3D printed micro-optofluidic devices. In fact, by means of an optical detection system and using the optimized operating conditions, i.e., the optimal values of the flow rate FR=0.1 mL/min and laser input power P∈{1,3} mW, we were able to discriminate between biological fluids with different concentrations of suspended cells with a robust working ability R2=0.9874 and Radj2=0.9811.
Collapse
Affiliation(s)
- Lorena Saitta
- Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (G.C.); (C.T.); (G.C.)
| | - Emanuela Cutuli
- Department of Electrical Electronic and Computer Science Engineering, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (D.S.); (M.B.)
| | - Giovanni Celano
- Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (G.C.); (C.T.); (G.C.)
| | - Claudio Tosto
- Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (G.C.); (C.T.); (G.C.)
| | - Dario Sanalitro
- Department of Electrical Electronic and Computer Science Engineering, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (D.S.); (M.B.)
| | - Francesca Guarino
- Department of Biomedical and Biotechnological Science, University of Catania, Via Santa Sofia 89, 95123 Catania, Italy;
| | - Gianluca Cicala
- Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (G.C.); (C.T.); (G.C.)
- INSTM-UDR CT, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Maide Bucolo
- Department of Electrical Electronic and Computer Science Engineering, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (D.S.); (M.B.)
| |
Collapse
|
5
|
Nguyen TH, Nguyen HA, Tran Thi YV, Hoang Tran D, Cao H, Chu Duc T, Bui TT, Do Quang L. Concepts, electrode configuration, characterization, and data analytics of electric and electrochemical microfluidic platforms: a review. Analyst 2023; 148:1912-1929. [PMID: 36928639 DOI: 10.1039/d2an02027k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Microfluidic cytometry (MC) and electrical impedance spectroscopy (EIS) are two important techniques in biomedical engineering. Microfluidic cytometry has been utilized in various fields such as stem cell differentiation and cancer metastasis studies, and provides a simple, label-free, real-time method for characterizing and monitoring cellular fates. The impedance microdevice, including impedance flow cytometry (IFC) and electrical impedance spectroscopy (EIS), is integrated into MC systems. IFC measures the impedance of individual cells as they flow through a microfluidic device, while EIS measures impedance changes during binding events on electrode regions. There have been significant efforts to improve and optimize these devices for both basic research and clinical applications, based on the concepts, electrode configurations, and cell fates. This review outlines the theoretical concepts, electrode engineering, and data analytics of these devices, and highlights future directions for development.
Collapse
Affiliation(s)
- Thu Hang Nguyen
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam.
| | | | - Y-Van Tran Thi
- University of Science, Vietnam National University, Hanoi, Vietnam.
| | | | - Hung Cao
- University of California, Irvine, USA
| | - Trinh Chu Duc
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam.
| | - Tung Thanh Bui
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam.
| | - Loc Do Quang
- University of Science, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
6
|
Recent advances in non-optical microfluidic platforms for bioparticle detection. Biosens Bioelectron 2023; 222:114944. [PMID: 36470061 DOI: 10.1016/j.bios.2022.114944] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
The effective analysis of the basic structure and functional information of bioparticles are of great significance for the early diagnosis of diseases. The synergism between microfluidics and particle manipulation/detection technologies offers enhanced system integration capability and test accuracy for the detection of various bioparticles. Most microfluidic detection platforms are based on optical strategies such as fluorescence, absorbance, and image recognition. Although optical microfluidic platforms have proven their capabilities in the practical clinical detection of bioparticles, shortcomings such as expensive components and whole bulky devices have limited their practicality in the development of point-of-care testing (POCT) systems to be used in remote and underdeveloped areas. Therefore, there is an urgent need to develop cost-effective non-optical microfluidic platforms for bioparticle detection that can act as alternatives to optical counterparts. In this review, we first briefly summarise passive and active methods for bioparticle manipulation in microfluidics. Then, we survey the latest progress in non-optical microfluidic strategies based on electrical, magnetic, and acoustic techniques for bioparticle detection. Finally, a perspective is offered, clarifying challenges faced by current non-optical platforms in developing practical POCT devices and clinical applications.
Collapse
|
7
|
Chen YS, Huang CH, Pai PC, Seo J, Lei KF. A Review on Microfluidics-Based Impedance Biosensors. BIOSENSORS 2023; 13:bios13010083. [PMID: 36671918 PMCID: PMC9855525 DOI: 10.3390/bios13010083] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 05/30/2023]
Abstract
Electrical impedance biosensors are powerful and continuously being developed for various biological sensing applications. In this line, the sensitivity of impedance biosensors embedded with microfluidic technologies, such as sheath flow focusing, dielectrophoretic focusing, and interdigitated electrode arrays, can still be greatly improved. In particular, reagent consumption reduction and analysis time-shortening features can highly increase the analytical capabilities of such biosensors. Moreover, the reliability and efficiency of analyses are benefited by microfluidics-enabled automation. Through the use of mature microfluidic technology, complicated biological processes can be shrunk and integrated into a single microfluidic system (e.g., lab-on-a-chip or micro-total analysis systems). By incorporating electrical impedance biosensors, hand-held and bench-top microfluidic systems can be easily developed and operated by personnel without professional training. Furthermore, the impedance spectrum provides broad information regarding cell size, membrane capacitance, cytoplasmic conductivity, and cytoplasmic permittivity without the need for fluorescent labeling, magnetic modifications, or other cellular treatments. In this review article, a comprehensive summary of microfluidics-based impedance biosensors is presented. The structure of this article is based on the different substrate material categorizations. Moreover, the development trend of microfluidics-based impedance biosensors is discussed, along with difficulties and challenges that may be encountered in the future.
Collapse
Affiliation(s)
- Yu-Shih Chen
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chun-Hao Huang
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ping-Ching Pai
- Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Jungmok Seo
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Electrical & Electronic Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Kin Fong Lei
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Electrical & Electronic Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|
8
|
Zhang X, Zhang Z, Diao W, Zhou C, Song Y, Wang R, Luo X, Liu G. Early-diagnosis of major depressive disorder: From biomarkers to point-of-care testing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Kim S, Song H, Ahn H, Kim T, Jung J, Cho SK, Shin DM, Choi JR, Hwang YH, Kim K. A Review of Advanced Impedance Biosensors with Microfluidic Chips for Single-Cell Analysis. BIOSENSORS 2021; 11:412. [PMID: 34821628 PMCID: PMC8615569 DOI: 10.3390/bios11110412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 05/25/2023]
Abstract
Electrical impedance biosensors combined with microfluidic devices can be used to analyze fundamental biological processes for high-throughput analysis at the single-cell scale. These specialized analytical tools can determine the effectiveness and toxicity of drugs with high sensitivity and demonstrate biological functions on a single-cell scale. Because the various parameters of the cells can be measured depending on methods of single-cell trapping, technological development ultimately determine the efficiency and performance of the sensors. Identifying the latest trends in single-cell trapping technologies afford opportunities such as new structural design and combination with other technologies. This will lead to more advanced applications towards improving measurement sensitivity to the desired target. In this review, we examined the basic principles of impedance sensors and their applications in various biological fields. In the next step, we introduced the latest trend of microfluidic chip technology for trapping single cells and summarized the important findings on the characteristics of single cells in impedance biosensor systems that successfully trapped single cells. This is expected to be used as a leading technology in cell biology, pathology, and pharmacological fields, promoting the further understanding of complex functions and mechanisms within individual cells with numerous data sampling and accurate analysis capabilities.
Collapse
Affiliation(s)
- Soojung Kim
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.K.); (H.S.); (H.A.); (T.K.); (J.J.)
| | - Hyerin Song
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.K.); (H.S.); (H.A.); (T.K.); (J.J.)
| | - Heesang Ahn
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.K.); (H.S.); (H.A.); (T.K.); (J.J.)
| | - Taeyeon Kim
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.K.); (H.S.); (H.A.); (T.K.); (J.J.)
| | - Jihyun Jung
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.K.); (H.S.); (H.A.); (T.K.); (J.J.)
| | - Soo Kyung Cho
- Division of Nano Convergence Technology, Pusan National University (PNU), Miryang 50463, Korea;
| | - Dong-Myeong Shin
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, China;
| | - Jong-ryul Choi
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea;
| | - Yoon-Hwae Hwang
- Department of Nano Energy Engineering, Pusan National University (PNU), Busan 46241, Korea
| | - Kyujung Kim
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.K.); (H.S.); (H.A.); (T.K.); (J.J.)
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| |
Collapse
|
10
|
Anand S, Swami P, Goel G, Gupta S. Zwitterions for impedance spectroscopy: The new buffers in town. Anal Chim Acta 2021; 1166:338547. [PMID: 34022999 DOI: 10.1016/j.aca.2021.338547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 11/29/2022]
Abstract
Studying the role of buffers in impedance spectroscopy is a relatively unexplored area. We demonstrate a special class of biologically relevant buffers known as Good's zwitterionic buffers that show improved performance over standard electrolyte buffers (e.g. PBS) currently widely used in impedance spectroscopy measurements of bacterial suspensions. Our theoretical and experimental comparisons of conductivity of classical and zwitterionic buffers at various different concentrations show that ion-ion interaction effects are significantly higher in zwitterionic buffers as compared to classical buffers at the concentrations at which they are used. This and the fact that zwitterions have larger sizes leads to the lowering of their conductivity which significantly improves their impedance sensing ability. We illustrate through an example of heat-induced ionic release in model S. typhi and S. aureus bacteria that having a low conductivity buffer is indeed beneficial for biological impedance measurements. In fact, the best buffer for impedance studies can be chosen solely based on their electrical properties as long as they are also biologically compatible. This gives Good's zwitterionic buffers an edge over conventional media as they satisfy both these criteria.
Collapse
Affiliation(s)
- Satyam Anand
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Pragya Swami
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Gaurav Goel
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - Shalini Gupta
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
11
|
Zhu S, Zhang X, Zhou Z, Han Y, Xiang N, Ni Z. Microfluidic impedance cytometry for single-cell sensing: Review on electrode configurations. Talanta 2021; 233:122571. [PMID: 34215067 DOI: 10.1016/j.talanta.2021.122571] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Single-cell analysis has gained considerable attention for disease diagnosis, drug screening, and differentiation monitoring. Compared to the well-established flow cytometry, which uses fluorescent-labeled antibodies, microfluidic impedance cytometry (MIC) offers a simple, label-free, and noninvasive method for counting, classifying, and monitoring cells. Superior features including a small footprint, low reagent consumption, and ease of use have also been reported. The MIC device detects changes in the impedance signal caused by cells passing through the sensing/electric field zone, which can extract information regarding the size, shape, and dielectric properties of these cells. According to recent studies, electrode configuration has a remarkable effect on detection accuracy, sensitivity, and throughput. With the improvement in microfabrication technology, various electrode configurations have been reported for improving detection accuracy and throughput. However, the various electrode configurations of MIC devices have not been reviewed. In this review, the theoretical background of the impedance technique for single-cell analysis is introduced. Then, two-dimensional, three-dimensional, and liquid electrode configurations are discussed separately; their sensing mechanisms, fabrication processes, advantages, disadvantages, and applications are also described in detail. Finally, the current limitations and future perspectives of these electrode configurations are summarized. The main aim of this review is to offer a guide for researchers on the ongoing advancement in electrode configuration designs.
Collapse
Affiliation(s)
- Shu Zhu
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Xiaozhe Zhang
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Zheng Zhou
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yu Han
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Nan Xiang
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
12
|
Honrado C, Bisegna P, Swami NS, Caselli F. Single-cell microfluidic impedance cytometry: from raw signals to cell phenotypes using data analytics. LAB ON A CHIP 2021; 21:22-54. [PMID: 33331376 PMCID: PMC7909465 DOI: 10.1039/d0lc00840k] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The biophysical analysis of single-cells by microfluidic impedance cytometry is emerging as a label-free and high-throughput means to stratify the heterogeneity of cellular systems based on their electrophysiology. Emerging applications range from fundamental life-science and drug assessment research to point-of-care diagnostics and precision medicine. Recently, novel chip designs and data analytic strategies are laying the foundation for multiparametric cell characterization and subpopulation distinction, which are essential to understand biological function, follow disease progression and monitor cell behaviour in microsystems. In this tutorial review, we present a comparative survey of the approaches to elucidate cellular and subcellular features from impedance cytometry data, covering the related subjects of device design, data analytics (i.e., signal processing, dielectric modelling, population clustering), and phenotyping applications. We give special emphasis to the exciting recent developments of the technique (timeframe 2017-2020) and provide our perspective on future challenges and directions. Its synergistic application with microfluidic separation, sensor science and machine learning can form an essential toolkit for label-free quantification and isolation of subpopulations to stratify heterogeneous biosystems.
Collapse
Affiliation(s)
- Carlos Honrado
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| | | | | | | |
Collapse
|
13
|
Giduthuri AT, Adekanmbi EO, Srivastava SK, Moberly JG. Dielectrophoretic ultra-high-frequency characterization and in silico sorting on uptake of rare earth elements by Cupriavidus necator. Electrophoresis 2020; 42:656-666. [PMID: 33215725 DOI: 10.1002/elps.202000095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/30/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
Rare earth elements (REEs) are widely used across different industries due to their exceptional magnetic and electrical properties. In this work, Cupriavidus necator is characterized using dielectrophoretic ultra-high-frequency measurements, typically in MHz range to quantify the properties of cytoplasm in C. necator for its metal uptake/bioaccumulation capacity. Cupriavidus necator, a Gram-negative bacteria strain is exposed to REEs like europium, samarium, and neodymium in this study. Dielectrophoretic crossover frequency experiments were performed on the native C. necator species pre- and post-exposure to the REEs at MHz frequency range. The net conductivity of native C. necator, Cupriavidus europium, Cupriavidus samarium, and Cupriavidus neodymium are 15.95 ± 0.029 μS/cm, 16.15 ± 0.028 μS/cm, 16.05 ± 0.029 μS/cm, 15.61 ± 0.005 μS/cm respectively. The estimated properties of the membrane published by our group are used to develop a microfluidic sorter by modeling and simulation to separate REE absorbed C. necator from the unabsorbed native C. necator species using COMSOL Multiphysics commercial software package v5.5.
Collapse
Affiliation(s)
- Anthony T Giduthuri
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, USA
| | - Ezekiel O Adekanmbi
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, USA
| | - Soumya K Srivastava
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, USA
| | - James G Moberly
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, USA
| |
Collapse
|
14
|
Ghita M, Neckebroek M, Juchem J, Copot D, Muresan CI, Ionescu CM. Bioimpedance Sensor and Methodology for Acute Pain Monitoring. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6765. [PMID: 33256120 PMCID: PMC7729453 DOI: 10.3390/s20236765] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
The paper aims to revive the interest in bioimpedance analysis for pain studies in communicating and non-communicating (anesthetized) individuals for monitoring purpose. The plea for exploitation of full potential offered by the complex (bio)impedance measurement is emphasized through theoretical and experimental analysis. A non-invasive, low-cost reliable sensor to measure skin impedance is designed with off-the-shelf components. This is a second generation prototype for pain detection, quantification, and modeling, with the objective to be used in fully anesthetized patients undergoing surgery. The 2D and 3D time-frequency, multi-frequency evaluation of impedance data is based on broadly available signal processing tools. Furthermore, fractional-order impedance models are implied to provide an indication of change in tissue dynamics correlated with absence/presence of nociceptor stimulation. The unique features of the proposed sensor enhancements are described and illustrated here based on mechanical and thermal tests and further reinforced with previous studies from our first generation prototype.
Collapse
Affiliation(s)
- Mihaela Ghita
- Research Group of Dynamical Systems and Control, Ghent University, Tech Lane Science Park 125, 9052 Ghent, Belgium; (J.J.); (D.C.); (C.M.I.)
- EEDT—Core Lab on Decision and Control, Flanders Make Consortium, Tech Lane Science Park 131, 9052 Ghent, Belgium
| | - Martine Neckebroek
- Department of Anesthesia, Ghent University Hospital, C. Heymanslaan 10, 9000 Gent, Belgium;
| | - Jasper Juchem
- Research Group of Dynamical Systems and Control, Ghent University, Tech Lane Science Park 125, 9052 Ghent, Belgium; (J.J.); (D.C.); (C.M.I.)
- EEDT—Core Lab on Decision and Control, Flanders Make Consortium, Tech Lane Science Park 131, 9052 Ghent, Belgium
| | - Dana Copot
- Research Group of Dynamical Systems and Control, Ghent University, Tech Lane Science Park 125, 9052 Ghent, Belgium; (J.J.); (D.C.); (C.M.I.)
- EEDT—Core Lab on Decision and Control, Flanders Make Consortium, Tech Lane Science Park 131, 9052 Ghent, Belgium
| | - Cristina I. Muresan
- Department of Automation, Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania;
| | - Clara M. Ionescu
- Research Group of Dynamical Systems and Control, Ghent University, Tech Lane Science Park 125, 9052 Ghent, Belgium; (J.J.); (D.C.); (C.M.I.)
- EEDT—Core Lab on Decision and Control, Flanders Make Consortium, Tech Lane Science Park 131, 9052 Ghent, Belgium
- Department of Automation, Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania;
| |
Collapse
|
15
|
Galpayage Dona KNU, Du E, Wei J. An impedimetric assay for the identification of abnormal mitochondrial dynamics in living cells. Electrophoresis 2020; 42:163-170. [PMID: 33169407 DOI: 10.1002/elps.202000125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 01/16/2023]
Abstract
Mitochondrial dynamics (fission and fusion) plays an important role in cell functions. Disruption in mitochondrial dynamics has been associated with diseases such as neurobiological disorders and cardiovascular diseases. Analysis of mitochondrial fission/fusion has been mostly achieved through direct visualization of the fission/fusion events in live-cell imaging of fluorescently labeled mitochondria. In this study, we demonstrated a label-free, non-invasive Electrical Impedance Spectroscopy (EIS) approach to analyze mitochondrial dynamics in a genetically modified human neuroblastoma SH-SY5Y cell line with no huntingtin protein expression. Huntingtin protein has been shown to regulate mitochondria dynamics. We performed EIS studies on normal SH-SY5Y cells and two independent clones of huntingtin-null cells. The impedance data was used to determine the suspension conductivity and further cytoplasmic conductivity and relate to the abnormal mitochondrial dynamics. For instance, the cytoplasm conductivity value was increased by 11% from huntingtin-null cells to normal cells. Results of this study demonstrated that EIS is sensitive to characterize the abnormal mitochondrial dynamics that can be difficult to quantify by the conventional microscopic method.
Collapse
Affiliation(s)
| | - E Du
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida, USA
| | - Jianning Wei
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
16
|
A Comparative Study of Two Fractional-Order Equivalent Electrical Circuits for Modeling the Electrical Impedance of Dental Tissues. ENTROPY 2020; 22:e22101117. [PMID: 33286886 PMCID: PMC7597244 DOI: 10.3390/e22101117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/03/2022]
Abstract
Background: Electrical impedance spectroscopy (EIS) is a fast, non-invasive, and safe approach for electrical impedance measurement of biomedical tissues. Applied to dental research, EIS has been used to detect tooth cracks and caries with higher accuracy than visual or radiographic methods. Recent studies have reported age-related differences in human dental tissue impedance and utilized fractional-order equivalent circuit model parameters to represent these measurements. Objective: We aimed to highlight that fractional-order equivalent circuit models with different topologies (but same number of components) can equally well model the electrical impedance of dental tissues. Additionally, this work presents an equivalent circuit network that can be realized using Electronic Industries Alliance (EIA) standard compliant RC component values to emulate the electrical impedance characteristics of dental tissues. Results: To validate the results, the goodness of fits of electrical impedance models were evaluated visually and statistically in terms of relative error, mean absolute error (MAE), root mean squared error (RMSE), coefficient of determination (R2), Nash–Sutcliffe’s efficiency (NSE), Willmott’s index of agreement (WIA), or Legates’s coefficient of efficiency (LCE). The fit accuracy of proposed recurrent electrical impedance models for data representative of different age groups teeth dentin supports that both models can represent the same impedance data near perfectly. Significance: With the continued exploration of fractional-order equivalent circuit models to represent biological tissue data, it is important to investigate which models and model parameters are most closely associated with clinically relevant markers and physiological structures of the tissues/materials being measured and not just “fit” with experimental data. This exploration highlights that two different fractional-order models can fit experimental dental tissue data equally well, which should be considered during studies aimed at investigating different topologies to represent biological tissue impedance and their interpretation.
Collapse
|
17
|
Gnaim R, Golberg A, Sheviryov J, Rubinsky B, González CA. Detection and differentiation of bacteria by electrical bioimpedance spectroscopy. Biotechniques 2020; 69:384-394. [PMID: 32486835 DOI: 10.2144/btn-2019-0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Detecting bacteria in samples and differentiating between Gram-negative and Gram-positive species is an important challenge, and the most common method, Gram staining, is very time consuming. The aim of this study was to evaluate the electrical bioimpedance spectroscopy (EBIS) technique as an inexpensive and practical tool for real-time detection of bacteria and differentiation between Gram-positive and Gram-negative species. The relevant sensitivity for differentiating between species was found in the magnitude and phase at frequencies of 158,489 and 5248 Hz, respectively, at a bacterial concentration of 1 μg/μl. Subsequently, the sensitivity was estimated as a function of bacterial concentration. Our results demonstrated that EBIS can potentially distinguish between presence and absence of bacteria as well as between different types of bacteria.
Collapse
Affiliation(s)
- Rima Gnaim
- Porter School of Environment & Earth Sciences, Tel Aviv University. Tel Aviv-Yafo, Israel.,The Triangle Regional Research & Development Center, Kfar Qari' 30075, Israel
| | - Alexander Golberg
- Porter School of Environment & Earth Sciences, Tel Aviv University. Tel Aviv-Yafo, Israel
| | - Julia Sheviryov
- Porter School of Environment & Earth Sciences, Tel Aviv University. Tel Aviv-Yafo, Israel
| | - Boris Rubinsky
- Mechanical Engineering Department, University of California-Berkeley, CA, USA
| | - César A González
- Porter School of Environment & Earth Sciences, Tel Aviv University. Tel Aviv-Yafo, Israel.,Escuela Superior de Medicina-Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
18
|
Low-Cost, Compact, and Rapid Bio-Impedance Spectrometer with Real-Time Bode and Nyquist Plots. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bioelectric impedance spectroscopy (BIS) has been widely used to study the electrical properties of biological tissue based on the characteristics of the complex electrical impedance dispersions. One of the problems in using the BIS method is the length of time required for the data acquisition process and possibly data analysis as well. In this research, a compact and work rapidly BIS instrumentation system has been developed at a low cost. It is designed to work in the frequency range of 100 Hz to 100 kHz, which is generally used in the fields of biophysics and medical physics. The BIS instrumentation system is built using several integrated modules. The modules are an AC current source to produce a selectable injection current; a data acquisition system to measure voltage, current, and phase difference rapidly and simultaneously; and software to calculate and display measurement results in the form of Bode and Nyquist plots in real time. The developed BIS system has been validated using a simple RC circuit as the sample being tested. The average time needed in the process of data acquisition and analysis until the formation of impedance dispersion curves in the form of Bode and Nyquist plots, for 54 sample frequencies, is less than one minute. The system is able to identify R and C values of the sample with a maximum error of 1.5%. In addition, some simple application examples are also presented in this paper.
Collapse
|
19
|
Vembadi A, Menachery A, Qasaimeh MA. Cell Cytometry: Review and Perspective on Biotechnological Advances. Front Bioeng Biotechnol 2019; 7:147. [PMID: 31275933 PMCID: PMC6591278 DOI: 10.3389/fbioe.2019.00147] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022] Open
Abstract
Cell identification and enumeration are essential procedures within clinical and research laboratories. For over 150 years, quantitative investigation of body fluids such as counts of various blood cells has been an important tool for diagnostic analysis. With the current evolution of point-of-care diagnostics and precision medicine, cheap and precise cell counting technologies are in demand. This article reviews the timeline and recent notable advancements in cell counting that have occurred as a result of improvements in sensing including optical and electrical technology, enhancements in image processing capabilities, and contributions of micro and nanotechnologies. Cell enumeration methods have evolved from the use of manual counting using a hemocytometer to automated cell counters capable of providing reliable counts with high precision and throughput. These developments have been enabled by the use of precision engineering, micro and nanotechnology approaches, automation and multivariate data analysis. Commercially available automated cell counters can be broadly classified into three categories based on the principle of detection namely, electrical impedance, optical analysis and image analysis. These technologies have many common scientific uses, such as hematological analysis, urine analysis and bacterial enumeration. In addition to commercially available technologies, future technological trends using lab-on-a-chip devices have been discussed in detail. Lab-on-a-chip platforms utilize the existing three detection technologies with innovative design changes utilizing advanced nano/microfabrication to produce customized devices suited to specific applications.
Collapse
Affiliation(s)
- Abhishek Vembadi
- Division of Engineering, New York University, Abu Dhabi, United Arab Emirates
| | - Anoop Menachery
- Division of Engineering, New York University, Abu Dhabi, United Arab Emirates
| | - Mohammad A. Qasaimeh
- Division of Engineering, New York University, Abu Dhabi, United Arab Emirates
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States
| |
Collapse
|
20
|
Ojarand J, Min M, Koel A. Multichannel Electrical Impedance Spectroscopy Analyzer with Microfluidic Sensors. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1891. [PMID: 31010061 PMCID: PMC6514709 DOI: 10.3390/s19081891] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/25/2022]
Abstract
Impedance spectroscopy is a common approach in assessing passive electrical properties of biological matter. However, several problems appear in microfluidic devices in connection with the requirement for high sensitivity of signal acquisition from small volume sensors. The developed compact and inexpensive analyzer provides impedance spectroscopy measurement from three sensors, both connected in direct and differential modes. Measurement deficiencies are reduced with a novel design of sensors, measurement method, optimized electronics, signal processing, and mechanical design of the analyzer. Proposed solutions are targeted to the creation of reliable point-of-care (POC) diagnostic and monitoring appliances, including lab-on-a-chip type devices in the next steps of development. The test results show the good working ability of the developed analyzer; however, also limitations and problems that require attention and further improvement are appointed.
Collapse
Affiliation(s)
- Jaan Ojarand
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia.
| | - Mart Min
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia.
| | - Ants Koel
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia.
| |
Collapse
|
21
|
Carey TR, Cotner KL, Li B, Sohn LL. Developments in label-free microfluidic methods for single-cell analysis and sorting. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1529. [PMID: 29687965 PMCID: PMC6200655 DOI: 10.1002/wnan.1529] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/06/2018] [Accepted: 03/23/2018] [Indexed: 11/08/2022]
Abstract
Advancements in microfluidic technologies have led to the development of many new tools for both the characterization and sorting of single cells without the need for exogenous labels. Label-free microfluidics reduce the preparation time, reagents needed, and cost of conventional methods based on fluorescent or magnetic labels. Furthermore, these devices enable analysis of cell properties such as mechanical phenotype and dielectric parameters that cannot be characterized with traditional labels. Some of the most promising technologies for current and future development toward label-free, single-cell analysis and sorting include electronic sensors such as Coulter counters and electrical impedance cytometry; deformation analysis using optical traps and deformation cytometry; hydrodynamic sorting such as deterministic lateral displacement, inertial focusing, and microvortex trapping; and acoustic sorting using traveling or standing surface acoustic waves. These label-free microfluidic methods have been used to screen, sort, and analyze cells for a wide range of biomedical and clinical applications, including cell cycle monitoring, rapid complete blood counts, cancer diagnosis, metastatic progression monitoring, HIV and parasite detection, circulating tumor cell isolation, and point-of-care diagnostics. Because of the versatility of label-free methods for characterization and sorting, the low-cost nature of microfluidics, and the rapid prototyping capabilities of modern microfabrication, we expect this class of technology to continue to be an area of high research interest going forward. New developments in this field will contribute to the ongoing paradigm shift in cell analysis and sorting technologies toward label-free microfluidic devices, enabling new capabilities in biomedical research tools as well as clinical diagnostics. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Thomas R Carey
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley Graduate Division, Berkeley, California
| | - Kristen L Cotner
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley Graduate Division, Berkeley, California
| | - Brian Li
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley Graduate Division, Berkeley, California
| | - Lydia L Sohn
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley Graduate Division, Berkeley, California
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, California
| |
Collapse
|
22
|
Zhang H, Chuai R, Li X, Zhang B. Design, Preparation and Performance Study of On-Chip Flow-Through Amperometric Sensors with an Integrated Ag/AgCl Reference Electrode. MICROMACHINES 2018; 9:mi9030114. [PMID: 30424048 PMCID: PMC6187539 DOI: 10.3390/mi9030114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 11/16/2022]
Abstract
To improve the reference potential stability of on-chip amperometric sensors, we propose a novel integrated Ag/AgCl reference electrode structure. This structure can refresh the saturated potassium chloride filling solution surrounding the Ag/AgCl electrode. We then designed a flow-through amperometric sensor and a multilayer microfluidic chip based on the integrated reference electrode. In order to improve the detection signal strength of the flow-through sensor, a numerical simulation model was established. The simulation results showed that a combination of (1) using a step-type detection cell structure that maintains micro-channel width while reducing micro-channel height, and (2) controlling the sample flow rate to limit the mass transfer of the sensor surface effectively, improves the detection signal strength. The step-type detection cell structure had dimensions of 200 μm × 200 μm × 100 μm (length × width × height), and the electroosmotic flow driving voltage was 120 V/cm. Finally, successful trace detection of Mg2+ and Pb2+ in the water was achieved using the amperometric sensor and microfluidic chip: detection limits were 5 μmol/L and 84 μmol/L. The preparation of an on-chip flow-through amperometric sensor with an integrated Ag/AgCl reference electrode will facilitate improved portability of microfluidic detection technology.
Collapse
Affiliation(s)
- He Zhang
- School of Information Engineering and Science, Shenyang University of Technology, Shenyang 110870, China.
| | - Rongyan Chuai
- School of Information Engineering and Science, Shenyang University of Technology, Shenyang 110870, China.
| | - Xin Li
- School of Information Engineering and Science, Shenyang University of Technology, Shenyang 110870, China.
| | - Bing Zhang
- School of Information Engineering and Science, Shenyang University of Technology, Shenyang 110870, China.
| |
Collapse
|