1
|
Aziz DM, Mohammed SJ, Mohammed PA, Al-Zangana S, Aziz SB, Muhammad DS, Abdulwahid RT, Darwesh AHA, Hussein SA. Spectroscopic study of wemple-didomenico empirical formula and taucs model to determine the optical band gap of dye-doped polymer based on chitosan: Common poppy dye as a novel approach to reduce the optical band gap of biopolymer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125142. [PMID: 39299078 DOI: 10.1016/j.saa.2024.125142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/03/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
This study investigates the effect of a natural dye extracted from common poppy (Papaver rhoeas) waste flowers on the optical properties of chitosan (CS) films. The extraction of natural dyes from waste flowers can be considered a new field for research in green chemistry. CS films are flexible and biodegradable but have low optical activity and band gap, limiting their applications in optical devices. The doped CS polymer with different concentrations of Papaver rhoeas dye exhibited enhanced optical properties. Also, 30 % glycerol was added as a plasticizer to omit film brittleness. The FTIR examinations is helpful to propose a mechanism that explains the interaction of the dye with the host polymer. The UV-vis spectroscopic examination establish that the optical characteristics of the films can be modified by adjusting the dye concentration. Furthermore, optical absorption properties are described using the Tauc non-direct transition model, revealing an approximate optical band gap of 1.64 eV. This band gap defines the energy required for electron transitions, elucidating the material's electronic characteristics. The extinction coefficient (k) and refractive index (n) of the CS-doped films' shows a dispersion behavior at visible regions of EM radiation. The Wemple-DiDomenico single oscillator model was used to investigate the n dispersion and determine the oscillator energy equivalent to the optical band gap. Additionally, calculations have been performed on optical dielectric properties and optical conductivity. The Urbach energy was measured and used to detect the structure of the films. The findings underscore the potential applications of these natural dye-doped CS films in eco-friendly materials and optical devices.
Collapse
Affiliation(s)
- Dara M Aziz
- Department of Chemistry, College of Science, University of Raparin, Ranya 46012, Kurdistan Region, Iraq
| | - Sewara J Mohammed
- Anesthesia Department, College of Health Sciences, Cihan University Sulaimaniya, Sulaimaniya 46001, Kurdistan Region, Iraq; Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani, 46002, Kurdistan Regional Government, Iraq
| | - Pshko A Mohammed
- Department of Physics, College of Science, Charmo University, 46023, Chamchamal, Sulaymaniyah, Iraq
| | - Shakhawan Al-Zangana
- Department of Physics, College of Education, University of Garmian, Kalar 46021, Kurdistan Regional Government, Iraq
| | - Shujahadeen B Aziz
- Research and Development Center, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaymaniyah, 46001, Iraq.
| | - Dana S Muhammad
- Department of Physics, College of Education, University of Sulaimani, Sulaymaniyah, 46001, Kurdistan Region, Iraq
| | - Rebar T Abdulwahid
- Department of Physics, College of Education, University of Sulaimani, Sulaymaniyah, 46001, Kurdistan Region, Iraq
| | - Ari H A Darwesh
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq
| | - Sarkawt A Hussein
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq
| |
Collapse
|
2
|
Ran M, Lu Y, Ren Y, He L, Li J. Efficient reduction of Cr(VI) by guava (Psidium guajava) leaf extract and its mitigation effect on Cr toxicity in rice seedlings. J Environ Sci (China) 2024; 141:1-15. [PMID: 38408812 DOI: 10.1016/j.jes.2023.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 02/28/2024]
Abstract
Hexavalent chromium (Cr(VI)) is a toxic element that has negative impacts on crop growth and yield. Using plant extracts to convert toxic Cr(VI) into less toxic Cr(III) may be a more favorable option compared to chemical reducing agents. In this study, the potential effects and mechanisms of using an aqueous extract of Psidium guajava L. leaves (AEP) in reducing Cr(VI) toxicity in rice were comprehensively studied. Firstly, the reducing power of AEP for Cr(VI) was confirmed by the cyclic voltammetry combined with X-ray photoelectron spectroscopy (XPS) assays. The highest Cr(VI) reduction efficiency reached approximately 78% under 1.5 mg gallic acid equivalent (GAE)/mL of AEP and 10 mg/L Cr(VI) condition. Additionally, Cr(VI) stress had a significant inhibitory effect on rice growth. However, the exogenous application of AEP alleviated the growth inhibition and oxidative damage of rice under Cr(VI) stress by increasing the activity and level of enzymatic and non-enzymatic antioxidants. Furthermore, the addition of AEP restored the ultrastructure of root cells, promoted Cr adsorption onto root cell walls, and limited the translocation Cr to shoots. In shoots, AEP application also triggered the expression of specific genes involved in Cr defense and detoxification response, including photosynthesis pathways, antioxidant systems, flavonoids biosynthesis, and plant hormone signal transduction. These results suggest that AEP is an efficient reduction agent for Cr(VI), and exogenous application of AEP may be a promising strategy to mitigate the harm of Cr(VI) on rice, ultimately contributing to improved crop yield in Cr-contaminated environments.
Collapse
Affiliation(s)
- Maodi Ran
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yongqing Lu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yanzhen Ren
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Li He
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| |
Collapse
|
3
|
Upadhyay DD, Goyal AK, Maji S, Dwivedi A, Pandey G. Biosynthesis of ZnO and TiO 2 nanoparticles using Ipomoea carnea leaf extract and its effect on black carrot (Daucus carota L.) cv. Pusa Asita. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107908. [PMID: 37549572 DOI: 10.1016/j.plaphy.2023.107908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/24/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023]
Abstract
Nano fertilizers (NFs) are now becoming an important tool for plant nutrient management having capabilities to improve soil fertility, crop productivity and quality of agricultural products. Since, they are needed in very small amount, thus, reduces cost of crop production. Among different essential or beneficial plant nutrients, Zn and Ti are important micro nutrients having number of beneficial effect on crop growth, yield, quality and post harvest life. Present experiment was carried out to prepare ZnO and TiO2 nanoparticles (NPs) through green technology by using aqueous extract of Ipomoea carnea (morning glory) leaves. In order to investigate size, morphology, composition, and stability of selected NPs, the detailed characterization was carried out using UV-visible spectroscopy, FTIR, HRTEM, EDX, BET, X-ray diffraction, XPS and particle size distribution studies. Subsequently, the effect of foliar spray of ZnO and TiO2 NPs was evaluated in respect of vegetative growth, yield and quality of black carrot (Daucus carota L.) cv. Pusa Asita in presence of 50% Recommended dose of fertilizer (RDF) to assess their effect on fertilizer use efficiency also. There were 8 treatments viz. Control (no fertilizer), recommended dose of fertilizer (RDF), TiO2 (5, 10 and 15 ppm along with 50% RDF), ZnO (50, 75 and 100 ppm along with 50% RDF)] with 3 replications following Randomised Block Design having 24 plots (1 m × 1 m). The observations were taken for vegetative growth, edible root yield and root quality parameters. Although, the growth, yield and quality parameters were found superior (root yield 43.84 g/plant) under conventional system of recommended dose of fertilizers (RDF) of NPK, however, TiO2 NPs also showed very promising result close to RDF as compared to ZnO NPs. Among them, 5 ppm TiO2 foliar application along with 50% NPK was found to be the best in terms of vegetative growth, root yield (38.73 g/plant) and quality of black carrot. It was also found that higher concentration of TiO2 and ZnO NPs had adverse effect on the plant performance. Therefore, it can be concluded that 5 ppm TiO2 NPs along with 50% RDF was good for black carrot production.
Collapse
Affiliation(s)
- Deen Dayal Upadhyay
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, U.P, 226 025, India
| | - Ankit Kumar Goyal
- Department of Horticulture, Babasaheb Bhimrao Ambedkar University, Lucknow, U.P, 226 025, India
| | - Sutanu Maji
- Department of Horticulture, Babasaheb Bhimrao Ambedkar University, Lucknow, U.P, 226 025, India
| | - Arpita Dwivedi
- Department of Physics, Institute of Science, Banaras Hindu University, U.P, 221005, India
| | - Gajanan Pandey
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, U.P, 226 025, India.
| |
Collapse
|
4
|
Variation in the Optical Properties of PEO-Based Composites via a Green Metal Complex: Macroscopic Measurements to Explain Microscopic Quantum Transport from the Valence Band to the Conduction Band. Polymers (Basel) 2023; 15:polym15030771. [PMID: 36772071 PMCID: PMC9920557 DOI: 10.3390/polym15030771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/07/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
In this study, a green chemistry method was used to synthesize polymer composites based on polyethylene oxide (PEO). The method of the remediation of metal complexes used in this study is an environmentally friendly procedure with a low cost. Zinc metal ion (Zn2+)-polyphenol (PPHNL) complexes were synthesized for two minutes via the combination of a black tea leaf (BTL) extract solution with dissolved Zn-acetate. Then, UV-Vis and FTIR were carried out for the Zn-PPHNL complexes in a liquid and solid. The FTIR spectra show that BTLs contain sufficient functional groups (O-H, C-H, C=O, C=C, C-O, C-N, and N-H), PPHNL, and conjugated double bonds to produce metal complexes by capturing the cations of Zn-acetate salt. Moreover, FTIR of the BTL and Zn-PPHNL complexes approves the formation of the Zn-PPHNL complex over the wide variation in the intensity of bands. The UV absorption spectra of BTL and Zn-PPHNL indicate complex formation among tea PPHNL and Zn cations, which enhances the absorption spectra of the Zn-PPHNL to 0.1 compared to the figure of 0.01 associated with the extracted tea solution. According to an XRD analysis, an amorphous Zn-PPHNL complex was created when Zn2+ ions and PPHNL interacted. Additionally, XRD shows that the structure of the PEO composite becomes a more amorphous structure as the concentration of Zn-PPHNL increases. Furthermore, morphological study via an optical microscope (OM) shows that by increasing the concentration of Zn-PPHNL in a PEO polymer composite the size of the spherulites ascribed to the crystalline phase dramatically decreases. The optical properties of PEO: Zn-PPHNL films, via UV-Vis spectroscopy, were rigorously studied. The Eg is calculated by examining the dielectric loss, which is reduced from 5.5 eV to 0.6 eV by increasing the concentration of Zn-PPHNL in the PEO samples. In addition, Tauc's form was used to specify the category of electronic transitions in the PEO: Zn-PPHNL films. The impact of crystalline structure and morphology on electronic transition types was discussed. Macroscopic measurable parameters, such as the refractive index and extinction coefficient, were used to determine optical dielectric loss. Fundamental optical dielectric functions were used to determine some key parameters. From the viewpoint of quantum transport, electron transitions were discussed. The merit of this work is that microscopic processes related to electron transition from the VB to the CB can be interpreted interms of measurable macroscopic quantities.
Collapse
|
5
|
Katsayal BS, Sallau AB, Muhammad A. Kinetics and thermodynamics of Cr (VI) reduction by Tamarindus indica methanol leaves extract under optimized reaction conditions. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00233-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractEnvironmental contamination with Cr (VI) has recently attracted public attention because of its high concentration in soil and wastewater originating majorly from anthropogenic activities and natural processes. Reduction of Cr (VI) to Cr (III) is a feasible method for minimizing chromium pollution. This work aimed at characterizing the effects of Cr (VI) reduction conditions in a batch experiment such as temperature, hydrogen ion concentration, time, and reactant concentrations, as well as kinetics and thermodynamics of the reaction using Tamarindus indica methanol leaves extract as a reductant. Cr (VI) reduction was meaningfully affected by temperature, hydrogen ion concentration, reaction time, and reactant concentrations. The reaction followed the pseudo-second-order kinetic model (R2 = 0.997) at pH of 2; at the neutral and alkaline pH (7 and 9), the reaction predominantly obeyed first order (R2 = 0.988) and pseudo-first order (R2 = 0.758), respectively. Under various hydrogen ion concentrations, the reaction retains negative free energies, enthalpy change, and a positive entropy. The findings from this study suggested the reaction to be spontaneous, exothermic, and orderly unstable. We concluded that phytocompounds present in tamarind methanol leaves extract demonstrated a strong potentials for converting Cr (VI) to Cr (III) and, thus, could be applicable in Cr (VI) contaminated wastewater treatment.
Collapse
|
6
|
Chocobar-Ponce S, Prado C, Tabernero R, Ilina N, Pagano E, Ramallo López JM, Mizrahi MD, Rosa M. The reduction of Cr(VI) in Salvinia minima, possible involvement of an h-type thioredoxin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3958-3966. [PMID: 34613547 DOI: 10.1007/s11356-021-15967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Hexavalent chromium [Cr(VI)] is extremely toxic to plant cells and has been recognized to possess a high redox potential. Tolerant plant species have shown the ability to reduce Cr(VI), but the operating mechanism involved in this process is not elucidated. Thus, the aim of this study was to investigate the possible involvement of thiolic and phenolic compounds and thioredoxin expression during Cr(VI) reduction in S. minima. In addition, a probable enzymatic reduction of Cr(VI) was investigated. Plants were exposed to 20 mg L-1 Cr(VI) concentration during 7 days under controlled conditions. The amount of metal accumulated in lacinias (root-like submerged leaves) and fronds (floating leaves) indicated that a low percentage of absorbed Cr(VI) was mobilized from lacinias to fronds. X-ray absorption near-edge structure (XANES) analysis revealed that Cr(III) was the only chromium species occurring in S. minima plants. Thiols and phenolics of lacinias and fronds were increased significantly by Cr(VI) treatment, but accumulation patterns were different. The expression of an h-type thioredoxin (Trx h) was demonstrated for the first time in Cr-exposed lacinias. Enzymatic reduction showed a low contribution to the Cr(VI) reduction. Data of this study provide evidences on the involvement of thiols, thioredoxin, and phenolics in the reduction of Cr(VI) to Cr(III) in S. minima tissues.
Collapse
Affiliation(s)
- Silvana Chocobar-Ponce
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-UNT. Cátedra de Fisiología Vegetal, Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Carolina Prado
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-UNT. Cátedra de Fisiología Vegetal, Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Romina Tabernero
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-UNT. Cátedra de Fisiología Vegetal, Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Natalia Ilina
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Eduardo Pagano
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José M Ramallo López
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET-Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Martín D Mizrahi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET-Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Mariana Rosa
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-UNT. Cátedra de Fisiología Vegetal, Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Tucumán, Argentina.
| |
Collapse
|
7
|
Nofal MM, Aziz SB, Hadi JM, Karim WO, Dannoun EMA, Hussein AM, Hussen SA. Polymer Composites with 0.98 Transparencies and Small Optical Energy Band Gap Using a Promising Green Methodology: Structural and Optical Properties. Polymers (Basel) 2021; 13:1648. [PMID: 34069445 PMCID: PMC8159149 DOI: 10.3390/polym13101648] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/23/2022] Open
Abstract
In this work, a green approach was implemented to prepare polymer composites using polyvinyl alcohol polymer and the extract of black tea leaves (polyphenols) in a complex form with Co2+ ions. A range of techniques was used to characterize the Co2+ complex and polymer composite, such as Ultraviolet-visible (UV-Visible) spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The optical parameters of absorption edge, refractive index (n), dielectric properties including real and imaginary parts (εr, and εi) were also investigated. The FRIR and XRD spectra were used to examine the compatibility between the PVA polymer and Co2+-polyphenol complex. The extent of interaction was evidenced from the shifts and change in the intensity of the peaks. The relatively wide amorphous phase in PVA polymer increased upon insertion of the Co2+-polyphenol complex. The amorphous character of the Co2+ complex was emphasized with the appearance of a hump in the XRD pattern. From UV-Visible spectroscopy, the optical properties, such as absorption edge, refractive index (n), (εr), (εi), and bandgap energy (Eg) of parent PVA and composite films were specified. The Eg of PVA was lowered from 5.8 to 1.82 eV upon addition of 45 mL of Co2+-polyphenol complex. The N/m* was calculated from the optical dielectric function. Ultimately, various types of electronic transitions within the polymer composites were specified using Tauc's method. The direct bandgap (DBG) treatment of polymer composites with a developed amorphous phase is fundamental for commercialization in optoelectronic devices.
Collapse
Affiliation(s)
- Muaffaq M. Nofal
- Department of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (A.M.H.); (S.A.H.)
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Kurdistan Regional Government, Iraq
| | - Jihad M. Hadi
- Department of Medical Laboratory of Science, College of Health Sciences, University of Human Development, Sulaimani 46001, Kurdistan Regional Government, Iraq;
| | - Wrya O. Karim
- Chemistry Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq;
| | - Elham M. A. Dannoun
- Associate Director of General Science Department, Woman Campus, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Ahang M. Hussein
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (A.M.H.); (S.A.H.)
| | - Sarkawt A. Hussen
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (A.M.H.); (S.A.H.)
| |
Collapse
|
8
|
Aziz SB, Nofal MM, Ghareeb HO, Dannoun EMA, Hussen SA, Hadi JM, Ahmed KK, Hussein AM. Characteristics of Poly(vinyl Alcohol) (PVA) Based Composites Integrated with Green Synthesized Al 3+-Metal Complex: Structural, Optical, and Localized Density of State Analysis. Polymers (Basel) 2021; 13:polym13081316. [PMID: 33923856 PMCID: PMC8073073 DOI: 10.3390/polym13081316] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/18/2022] Open
Abstract
The influence of dispersing Al-metal complex on the optical properties of PVA was investigated using UV–visible spectroscopy. Polymer composite films with various Al3+-complex amounts in the PVA matrix were arranged by solution casting technique by means of distilled water as a widespread solvent. The formation of Al3+-metal complex was verified through Ultraviolet–visible (UV-Vis) and Fourier-transform infrared spectroscopy (FTIR) examinations. The addition of Al-complex into the polymer matrix led to the recovery of the optical parameters such as dielectric constant (εr and εi) and refractive index (n). The variations of real and imaginary parts of complex dielectric constant as a function of photon wavelength were studied to calculate localized charge density values (N/m*), high-frequency dielectric constant, relaxation time, optical mobility, optical resistivity, and plasma angular frequency (ωp) of electrons. In proportion with Al3+-complex content, the N/m* values were amplified from 3.68 × 1055 kg−1 m−3 to 109 × 1055 kg−1 m−3. The study of optical parameters may find applications within optical instrument manufacturing. The optical band gap was determined from Tauc’s equation, and the type of electronic transition was specified. A remarkable drop in the optical band gap was observed. The dispersion of static refractive index (no) of the prepared composites was analyzed using the theoretical Wemple–DiDomenico single oscillator model. The average oscillator energy (Eo) and oscillator dispersion energy (Ed) parameters were estimated.
Collapse
Affiliation(s)
- Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (S.A.H.); (K.K.A.); (A.M.H.)
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Iraq
- Correspondence:
| | - Muaffaq M. Nofal
- Department of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Hewa O. Ghareeb
- Chemistry Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq;
| | - Elham M. A. Dannoun
- Associate Director of General Science Department, Woman Campus, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Sarkawt A. Hussen
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (S.A.H.); (K.K.A.); (A.M.H.)
| | - Jihad M. Hadi
- Department of Medical Laboratory of Science, College of Health Sciences, University of Human Development, Sulaimani 46001, Iraq;
| | - Khayal K. Ahmed
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (S.A.H.); (K.K.A.); (A.M.H.)
| | - Ahang M. Hussein
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (S.A.H.); (K.K.A.); (A.M.H.)
| |
Collapse
|
9
|
Hexavalent chromium bioremediation using Hibiscus Sabdariffa calyces extract: Process parameters, kinetics and thermodynamics. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Brza MA, Aziz SB, Anuar H, Ali F, Dannoun EMA, Mohammed SJ, Abdulwahid RT, Al-Zangana S. Tea from the drinking to the synthesis of metal complexes and fabrication of PVA based polymer composites with controlled optical band gap. Sci Rep 2020; 10:18108. [PMID: 33093604 PMCID: PMC7581529 DOI: 10.1038/s41598-020-75138-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
In the present study black tea extract (BTE) solution which is familiar for drinking was used to prepare cerium metal-complexes (Ce(III)-complex). The prepared Ce(III)-complex was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and UV–Vis spectroscopy. The results indicate that BTE solution is a novel green coordination chemistry approach for the synthesis of metal complexes. The outcomes signify that coordination occurs between cerium cations and polyphenols. The synthesis of metal-complexes with superior absorption performance in the visible region is a challenge for optoelectronic device applications. The suspended Ce(III)-complex in distilled water was mixed with poly (vinyl alcohol) (PVA) polymer to fabricate PVA/ Ce(III)-complex composites with controlled optical properties. The PVA/Ce(III)-complexes composite films were characterized by FTIR, XRD, and UV–Vis spectroscopy. The XRD findings confirms the amorphous structure for the synthesized Ce(III)-complexes. The addition of Ce(III)-complex into the PVA host polymer led to the growth of polymer composites with controllable small optical band gaps. It is shown by the FTIR spectra of the composite films that the functional groups of the host PVA have a vigorous interaction with the Ce(III)-complex. The XRD deconvolution on PVA composites reveals the amorphous phase enlargement with increasing Ce(III)-complex concentration. It is indicated in the atomic force microscopy (AFM) that the surface roughness in the doped PVA films increases with the increase of the Ce(III)-complex. There is a decrease in absorption edge from 5.7 to 1.7 eV. It becomes possible to recognize the type of electron transition by studying both the Tauc's model and optical dielectric loss (ɛi) parameter.
Collapse
Affiliation(s)
- M A Brza
- Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur, Gombak, Malaysia
| | - Shujahadeen B Aziz
- Prof. Hameeds Advanced Polymeric Materials Research Lab, Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani, Kurdistan Regional Government, Iraq. .,Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Sulaimani, 46001, Kurdistan Regional Government, Iraq.
| | - H Anuar
- Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur, Gombak, Malaysia
| | - Fathilah Ali
- Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University of Malaysia, 53100, Kuala Lumpur, Gombak, Malaysia
| | - Elham M A Dannoun
- General Science Department, Woman Campus, Prince Sultan University, P. O. Box 66833, Riyadh, 11586, Saudi Arabia
| | - Sewara J Mohammed
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani, Kurdistan Regional Government, Iraq
| | - Rebar T Abdulwahid
- Prof. Hameeds Advanced Polymeric Materials Research Lab, Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani, Kurdistan Regional Government, Iraq.,Department of Physics, College of Education, University of Sulaimani, Old Campus, Sulaimani, 46001, Kurdistan Regional Government, Iraq
| | - Shakhawan Al-Zangana
- Department of Physics, College of Education, University of Garmian, Kalar, 46021, Kurdistan Regional Government, Iraq
| |
Collapse
|
11
|
Combined Effect of Spirulina Platensis and Punica Granatum Peel Extacts: Phytochemical Content and Antiphytophatogenic Activity. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9245475] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Biological control is one of the effective methods for managing plant diseases in food production and quality. In fact, there is a growing trend to find new bio-sources, such as marine algae and vegetal by-products. In this study, pomegranate (Punica granatum) peel (S1) and Spirulina platensis (S2) alone and in combinations, pomegranate peel/Spirulina: 25%/75% (S3) and 50%/50% (S4) were evaluated for antimycotoxigenic and antiphytopathogenic fungal properties. The chemical composition (moisture, dry matter, protein, lipid and ash) as well as total polyphenols, flavonoids and anthocyanins content were evaluated in the four extracts. Using agar diffusion and broth microdilution methods, the anti Fusarium oxysporum, Fusarium culmorum, Fusarium graminearum, Aspergillus niger and Alternaria alternata activities were measured and their correlations with phytochemical content were evaluated. Interestingly, combinations between Spirulina at 75% and pomegranate peel at 25% (S3) have a significant impact (p < 0.05) on the antifungal activity compared to S1, S2 and S4. These findings underlie the effectiveness of biocontrols over standard fungicides and imply that existing methods can be further improved by synergistic effects while maintaining food safety in an eco-friendly manner.
Collapse
|
12
|
B Aziz S, Hussein G, Brza MA, J Mohammed S, T Abdulwahid R, Raza Saeed S, Hassanzadeh A. Fabrication of Interconnected Plasmonic Spherical Silver Nanoparticles with Enhanced Localized Surface Plasmon Resonance (LSPR) Peaks Using Quince Leaf Extract Solution. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1557. [PMID: 31684041 PMCID: PMC6915396 DOI: 10.3390/nano9111557] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/21/2019] [Accepted: 10/31/2019] [Indexed: 12/04/2022]
Abstract
Interconnected spherical metallic silver nanoparticles (Ag NPs) were synthesized in the current study using a green chemistry method. The reduction of silver ions to Ag NPs was carried out with low-cost and eco-friendly quince leaves. For the first time, it was confirmed that the extract solution of quince leaves could be used to perform green production of Ag NPs. Fourier transform infrared spectroscopy (FTIR) was conducted to identify the potential biomolecules that were involved in the Ag NPs. The results depicted that the biosynthesis of Ag NPs through the extract solution of quince leaf was a low-cost, clean, and safe method, which did not make use of any contaminated element and hence, had no undesirable effects. The majority of the peaks in the FTIR spectrum of quince leaf extracts also emerged in the FTIR spectrum of Ag NPs but they were found to be of less severe intensity. The silver ion reduction was elaborated in detail on the basis of the FTIR outcomes. In addition, through X-ray diffraction (XRD) analysis, the Ag NPs were also confirmed to be crystalline in type, owing to the appearance of distinct peaks related to the Ag NPs. The creation of Ag NPs was furthermore confirmed by using absorption spectrum, in which a localized surface plasmon resonance (LSPR) peak at 480 nm was observed. The LSPR peak achieved in the present work was found to be of great interest compared to those reported in literature. Field emission scanning electron microscopy (FESEM) images were used to provide the morphology and grain size of Ag NPs. It was shown from the FESEM images that the Ag NPs had interconnected spherical morphology.
Collapse
Affiliation(s)
- Shujahadeen B Aziz
- Prof. Hameeds Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq.
- Komar Research Center (KRC), Komar University of Science and Technology, Sulaimani 46001, Iraq.
| | - Govar Hussein
- Department of Physics, University of Kurdistan, Sanandaj, Kurdistan, Iran.
| | - M A Brza
- Prof. Hameeds Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq.
- Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur, Gombak 53100, Malaysia.
| | - Sewara J Mohammed
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq.
| | - R T Abdulwahid
- Prof. Hameeds Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq.
| | - Salah Raza Saeed
- Charmo Research Center, Charmo University, Peshawa Street, Chamchamal, Sulaimani 46001, Iraq.
| | | |
Collapse
|
13
|
Antony Samy AJR, Vellaichamy P, Sehar M, Kuo‐Lun T, Ramasamy A. Synthesis, characterization, and catalytic application of ecofriendly Ca‐bridged aminoclay. INT J CHEM KINET 2019. [DOI: 10.1002/kin.21317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Parthasarathy Vellaichamy
- Department of PhysicsHindustan Institute of Technology and Science (Deemed to be University) Padur Chennai India
| | - Mahalakshmi Sehar
- Department of PhysicsAnnad Institute of Higher Technology Kazhipattur Chennai India
| | - Tung Kuo‐Lun
- Department of Chemical EngineeringNational Taiwan University Taipei Taiwan
| | - Anbarasan Ramasamy
- Department of Chemical EngineeringNational Taiwan University Taipei Taiwan
| |
Collapse
|
14
|
Brza MA, Aziz SB, Anuar H, Al Hazza MHF. From Green Remediation to Polymer Hybrid Fabrication with Improved Optical Band Gaps. Int J Mol Sci 2019; 20:E3910. [PMID: 31405255 PMCID: PMC6721056 DOI: 10.3390/ijms20163910] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/04/2019] [Accepted: 08/08/2019] [Indexed: 11/17/2022] Open
Abstract
The present work proposed a novel approach for transferring high-risk heavy metals tometal complexes via green chemistry remediation. The method of remediation of heavy metals developed in the present work is a great challenge for global environmental sciences and engineering because it is a totally environmentally friendly procedure in which black tea extract solution is used. The FTIR study indicates that black tea contains enough functional groups (OH and NH), polyphenols and conjugated double bonds. The synthesis of copper complex was confirmed by the UV-vis, XRD and FTIR spectroscopic studies. The XRD and FTIR analysis reveals the formation of complexation between Cu metal complexes and Poly (Vinyl Alcohol) (PVA) host matrix. The study of optical parameters indicates that PVA-based hybrids exhibit a small optical band gap, which is close to inorganic-based materials. It was noted that the absorption edge shifted to lower photon energy. When Cu metal complexes were added to PVA polymer, the refractive index was significantly tuned. The band gap shifts from 6.2 eV to 1.4 eV for PVA incorporated with 45 mL of Cu metal complexes. The nature of the electronic transition in hybrid materials was examined based on the Taucs model, while a close inspection of the optical dielectric loss was also performed in order to estimate the optical band gap. The obtained band gaps of the present work reveal that polymer hybrids with sufficient film-forming capability could be useful to overcome the drawbacks associated with conjugated polymers. Based on the XRD results and band gap values, the structure-property relationships were discussed in detail.
Collapse
Affiliation(s)
- M A Brza
- Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur, Gombak 53100, Malaysia
- Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq
| | - Shujahadeen B Aziz
- Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq.
- Komar Research Center (KRC), Komar University of Science and Technology, Sulaimani 46001, Iraq.
| | - H Anuar
- Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur, Gombak 53100, Malaysia
| | - Muataz Hazza F Al Hazza
- Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur, Gombak 53100, Malaysia
| |
Collapse
|
15
|
Farooq S, Sehgal A. Scrutinizing antioxidant interactions between green tea and some medicinal plants commonly used as herbal teas. J Food Biochem 2019; 43:e12984. [PMID: 31489661 DOI: 10.1111/jfbc.12984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/18/2019] [Accepted: 06/30/2019] [Indexed: 01/11/2023]
Abstract
Meta-analysis reports suggested that green tea (GT) consumption is associated with mild to moderate effects on major global killers. To enhance the health promoting potential of GT, one of the strategies is to combine it with traditionally used medicinal plants (Ocimum gratissimum, Cymbopogon citratus, Cymbopogon flexuosus, and Hibiscus rosa-sinensis). The aim of this investigation was to evaluate and compare the possible synergistic antioxidant interaction of binary combinations of GT with medicinal plants. Overall, GT and O. gratissimum combination showed the highest antioxidant potential and strongest synergistic interaction at EC50 . A strong correlation was found between antioxidant capacity (DPPH, ABTS, NO, and hemolysis) and total phenolic content (TPC) (except lipid peroxidation) for individual infusions, but very weak correlation was observed for GT combinations. Whereas, for both individual and binary aqueous infusions, moderate to strong correlation was observed between antioxidant parameters and FTIR-selected peak (3250-3290 cm-1 ) omitting lipid peroxidation for single infusions. PRACTICAL APPLICATIONS: The combination of GT with certain medicinal plants used as herbal teas can demonstrate synergistic interactions that may boost the health promoting potential of GT. This study provides basis for future designing and formulation of beverages containing GT combinations based on their antioxidant interactions that can potentially enhance the efficacy of GT as a chemopreventive agent. It may also promote the consumption of GT combinations that may help in realizing untapped potential of underutilized plants.
Collapse
Affiliation(s)
- Sumaya Farooq
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Amit Sehgal
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
16
|
H3PO4-Activated Cattail Carbon Production and Application in Chromium Removal from Aqueous Solution: Process Optimization and Removal Mechanism. WATER 2018. [DOI: 10.3390/w10060754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Aziz SB, Abdullah OG, Hussein AM, Ahmed HM. From Insulating PMMA Polymer to Conjugated Double Bond Behavior: Green Chemistry as a Novel Approach to Fabricate Small Band Gap Polymers. Polymers (Basel) 2017; 9:E626. [PMID: 30965928 PMCID: PMC6418793 DOI: 10.3390/polym9110626] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/05/2017] [Accepted: 11/14/2017] [Indexed: 11/29/2022] Open
Abstract
Dye-doped polymer films of Poly(methyl methacrylate) PMMA have been prepared with the use of the conventional solution cast technique. Natural dye has been extracted from environmentally friendly material of green tea (GT) leaves. Obvious Fourier transform infrared (FTIR) spectra for the GT extract were observed, showing absorption bands at 3401 cm-1, 1628 cm-1, and 1029 cm-1, corresponding to O⁻H/N⁻H, C=O, and C⁻O groups, respectively. The shift and decrease in the intensity of the FTIR bands in the doped PMMA sample have been investigated to confirm the complex formation between the GT dye and PMMA polymer. Different types of electronic transition could be seen in the absorption spectra of the dye-doped samples. For the PMMA sample incorporated with 28 mL of GT dye, distinguishable intense peak around 670 nm appeared, which opens new frontiers in the green chemistry field that are particularly suitable for laser technology and optoelectronic applications. The main result of this study showed that the doping of the PMMA polymer with green tea dye exhibited a strong absorption peak around 670 nm in the visible range. The absorption edge was found to be shifted towards the lower photon energy for the doped samples. Optical dielectric loss and Tauc's model were used to estimate the optical band gaps of the samples and to specify the transition types between the valence band (VB) and conduction band (CB), respectively. A small band gap of around 2.6 eV for the dye-doped PMMA films was observed. From the scientific and engineering viewpoints, this topic has been found to be very important and relevant. The amorphous nature of the doped samples was found and ascribed to the increase of Urbach energy. The Urbach energy has been correlated to the analysis of X-ray diffraction (XRD) to display the structure-properties relationships.
Collapse
Affiliation(s)
- Shujahadeen B Aziz
- Advanced Polymeric Materials Research Laboratory, Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaymaniyah 46001, Kurdistan Regional Government, Iraq.
- Development Center for Research and Training (DCRT), University of Human Development, Qrga Street, Sulaymaniyah 46001, Kurdistan Regional Government, Iraq.
| | - Omed Gh Abdullah
- Advanced Polymeric Materials Research Laboratory, Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaymaniyah 46001, Kurdistan Regional Government, Iraq.
- Development Center for Research and Training (DCRT), University of Human Development, Qrga Street, Sulaymaniyah 46001, Kurdistan Regional Government, Iraq.
| | - Ahang M Hussein
- Advanced Polymeric Materials Research Laboratory, Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaymaniyah 46001, Kurdistan Regional Government, Iraq.
| | - Hameed M Ahmed
- Advanced Polymeric Materials Research Laboratory, Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaymaniyah 46001, Kurdistan Regional Government, Iraq.
| |
Collapse
|