1
|
Diana R, Caruso U, Gentile FS, Di Costanzo L, Musto P, Panunzi B. Thermo-Induced Fluorochromism in Two AIE Zinc Complexes: A Deep Insight into the Structure-Property Relationship. Molecules 2022; 27:molecules27082551. [PMID: 35458748 PMCID: PMC9025698 DOI: 10.3390/molecules27082551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Solid-state emitters exhibiting mechano-fluorochromic or thermo-fluorochromic responses represent the foundation of smart tools for novel technological applications. Among fluorochromic (FC) materials, solid-state emissive coordination complexes offer a variety of fluorescence responses related to the dynamic of noncovalent metal-ligand coordination bonds. Relevant FC behaviour can result from the targeted choice of metal cation and ligands. Herein, we report the synthesis and characterization of two different colour emitters consisting of zinc complexes obtained from N,O bidentate ligands with different electron-withdrawing substituents. The two complexes are blue and orange solid-state fluorophores, respectively, highly responsive to thermal and mechanical stress. These emitters show a very different photoluminescent (PL) pattern as recorded before and after the annealing treatment. Through X-ray structural analysis combined with thermal analysis, infrared (IR) spectroscopy, PL, and DFT simulation we provide a comprehensive analysis of the structural feature involved in the fluorochromic response. Notably, we were able to correlate the on-off thermo-fluorochromism of the complexes with the structural rearrangement at the zinc coordination core.
Collapse
Affiliation(s)
- Rosita Diana
- Department of Agriculture, University of Napoli Federico II, Via Università, 100, 80055 Portici, NA, Italy; (R.D.); (L.D.C.)
| | - Ugo Caruso
- Department of Chemical Sciences, University of Napoli Federico II, Strada Comunale Cinthia, 26, 80126 Napoli, Italy; (U.C.); (F.S.G.)
| | - Francesco Silvio Gentile
- Department of Chemical Sciences, University of Napoli Federico II, Strada Comunale Cinthia, 26, 80126 Napoli, Italy; (U.C.); (F.S.G.)
| | - Luigi Di Costanzo
- Department of Agriculture, University of Napoli Federico II, Via Università, 100, 80055 Portici, NA, Italy; (R.D.); (L.D.C.)
| | - Pellegrino Musto
- Institute on Polymers Composites and Biomaterials, National Research Council, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy;
| | - Barbara Panunzi
- Department of Agriculture, University of Napoli Federico II, Via Università, 100, 80055 Portici, NA, Italy; (R.D.); (L.D.C.)
- Correspondence:
| |
Collapse
|
2
|
Yin Y, Ding A, He F, Wang C, Kong L, Yang J. Alkyl-Engineered Dual-State Luminogens with Pronounced Odd-Even Effects: Quantum Yields with up to 48% Difference and Crystallochromy with up to 22 nm Difference. J Phys Chem B 2022; 126:2921-2929. [PMID: 35394770 DOI: 10.1021/acs.jpcb.2c01387] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alkyl chain-resulted odd-even effects in fluorescence quantum yield (FLQY) have also been reported in organic luminescent materials (OLMs). However, the odd-even effects in FLQY caused by the alkyl substitutes in OLMs are generally very weak, with only single-digit differences. Here, we report a series of alkyl-substituted dual-state luminogens (DSEgens) showing extremely high solid-state FLQY in even-numbered analogues (>90% FLQY) and a dramatically pronounced odd-even effect in FLQY. The odd-even effect in FLQY is over 26% alternation, and a maximum of 48% difference in FLQY was observed between the compounds C1 and C2 with a methyl and ethyl substitution, respectively. C1 and C2 also displayed a crystallochromy with a 22 nm difference in emission wavelength. In addition, odd-even effects in the melting point and decomposition temperature were also observed. With these bright DSEgens, applications such as specific recognition of picric acid and ultrasensitive trace water detection have been demonstrated.
Collapse
Affiliation(s)
- Yuanye Yin
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University, Hefei 230061, PR China
| | - Aixiang Ding
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, PR China
| | - Felicia He
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Chengyuan Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University, Hefei 230061, PR China
| | - Lin Kong
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University, Hefei 230061, PR China
| | - Jiaxiang Yang
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University, Hefei 230061, PR China
| |
Collapse
|
3
|
Arumugaperumal R, Shellaiah M, Srinivasadesikan V, Awasthi K, Sun KW, Lin MC, Ohta N, Chung WS. Diversiform Nanostructures Constructed from Tetraphenylethene and Pyrene-Based Acid/Base Controllable Molecular Switching Amphiphilic [2]Rotaxanes with Tunable Aggregation-Induced Static Excimers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45222-45234. [PMID: 32985177 DOI: 10.1021/acsami.0c14107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Dual-emissive tetraphenylethene (TPE) and pyrene-containing amphiphilic molecules are of great interest because they can be integrated to form stimuli responsive materials with various biological applications. Herein, we report the study of mechanically interlocked molecules (MIMs) with aggregation-induced static excimer emission (AISEE) property through a series of TPE and pyrene-based amphiphilic [2]rotaxanes, where t-butylcalix[4]arene with hydrophobic nature was used as the macrocycle. Evidently, by adorning TPE and pyrene units in [2]rotaxanes P1, P2, P1-b, and P2-b, they display remarkable emission bands in 70% of water fraction (fw) in tetrahydrofuran (THF)/water mixture, which could be attributed to the restricted intramolecular rotation of phenyl groups, whereas prominent blue-shifted excimer emission of pyrene started to appear as fw reached 80% for P1 and 90% for P1-b, P2, and P2-b, which was ascribed to the favorable π-π stacking and hydrophobic interactions of the pyrene rings that enabled their static excimer formation. The well-defined distinct amphiphilic nanostructures of [2]rotaxanes including hollowspheres, mesoporous nanostructures, spheres, and network linkages can be driven smoothly depending on the molecular structures and their aggregated states in THF/water mixture. These fascinating diversiform nanostructures were mainly controlled by the skillful manner of reversible molecular shuttling of t-butylcalix[4]arene macrocycle and also the interplay of multinoncovalent interactions. To further understand the aggregation capabilities of [2]rotaxanes, the human lung fibroblasts (MRC-5) living cell incubated with either P1, P2, P1-b, or P2-b was studied and monitored by confocal laser scanning microscopy. The AISEE property was achieved at an astonishing level by integrating TPE and pyrene to MIM-based reversible molecular switching [2]rotaxanes; furthermore, distinct nanostructures, especially hollowspheres and mesoporous nanostructures, were observed, which are rarely reported in the literature but are highly desirable for future applications.
Collapse
Affiliation(s)
- Reguram Arumugaperumal
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Muthaiah Shellaiah
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Venkatesan Srinivasadesikan
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
- Division Chemistry, Department of Sciences and Humanities, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur 522 213, Andhra Pradesh, India
| | - Kamlesh Awasthi
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Kien Wen Sun
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Ming-Chang Lin
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Nobuhiro Ohta
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Wen-Sheng Chung
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| |
Collapse
|
4
|
Abstract
We developed a new benzodifuran derivative as the condensation product between 2,6-diamino-4-(4-nitrophenyl)benzo[1,2-b:4,5-b’]difuran-3,7-dicarboxylate and 3-hydroxy-2-naphthaldehyde. The intramolecular hydrogen-bond interactions in the terminal half-salen moieties produce a sterically encumbered highly conjugated main plane and a D-A-D (donor-acceptor-donor) T-shaped structure. The novel AIEgen (aggregation-induced enhanced emission generator) fulfils the requirement of RIR (restriction of intramolecular rotation) molecules. DR/NIR (deep red/near infrared) emission was recorded in solution and in the solid state, with a noteworthy photoluminescence quantum yield recorded on the neat crystals which undergo some mechanochromism. The crystal structure study of the probe from data collected at a synchrotron X-ray source shows a main aromatic plane π-stacked in a columnar arrangement.
Collapse
|
5
|
Goskulwad SP, Kobaisi MA, La DD, Bhosale RS, Ratanlal M, Bhosale SV, Bhosale SV. Supramolecular Chiral Helical Ribbons of Tetraphenylethylene-Appended Naphthalenediimide Controlled by Solvent and Induced by l
- and d
-Alanine Spacers. Chem Asian J 2018; 13:3947-3953. [DOI: 10.1002/asia.201801421] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/01/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Santosh P. Goskulwad
- Polymers and Functional Materials Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research (AcSIR); Ghaziabad- 201002 India
| | - Mohammad Al Kobaisi
- School of Science; Faculty of Science, Engineering and Technology; Swinburne University of Technology; Hawthorn Australia
| | - Duong Duc La
- Institute of Chemistry and Materials, Hoang Sam; Hanoi Vietnam
| | - Rajesh S. Bhosale
- Polymers and Functional Materials Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
- Present Address: Department of Chemistry; Indrashil University, Kadi; Mehsana 382740 India
| | - Malavath Ratanlal
- Organic Synthesis and Process Chemistry Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
| | - Sidhanath V. Bhosale
- Polymers and Functional Materials Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research (AcSIR); Ghaziabad- 201002 India
| | | |
Collapse
|
6
|
La DD, Malegaonkar JN, Kobaisi MA, Bhosale RS, Bhosale SV, Bhosale SV. Spermine-directed supramolecular self-assembly of water-soluble AIE-active tetraphenylethylene: nanobelt, nanosheet, globular and nanotubular structures. NEW J CHEM 2018. [DOI: 10.1039/c8nj02636j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tetrasulfonate-tetraphenylethylene (Su-TPE) is non-emissive in water and upon addition of a good solvent such as THF (fTHF = 95%) it displays strong fluorescence emission with a quantum yield of 6.33%.
Collapse
Affiliation(s)
- Duong Duc La
- Institute of Chemistry and Materials
- Hanoi
- Vietnam
| | - Jotiram N. Malegaonkar
- Polymers and Functional Material Division and Academy of Scientific and Innovative Research (AcSIR)
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
| | - Mohammad Al Kobaisi
- Department of Chemistry and Biotechnology
- FSET
- Swinburne University of Technology
- Hawthorn
- Australia
| | - Rajesh S. Bhosale
- Polymers and Functional Material Division and Academy of Scientific and Innovative Research (AcSIR)
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
| | - Sidhanath V. Bhosale
- Polymers and Functional Material Division and Academy of Scientific and Innovative Research (AcSIR)
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
| | | |
Collapse
|