1
|
Ng RC, El Sachat A, Jaramillo-Fernandez J, Sotomayor-Torres CM, Chavez-Angel E. Far-Field Radiative Thermal Rectification Based on Asymmetric Emissivity. ACS APPLIED OPTICAL MATERIALS 2024; 2:973-979. [PMID: 38962567 PMCID: PMC11217939 DOI: 10.1021/acsaom.3c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 07/05/2024]
Abstract
This experimental study investigates thermal rectification via asymmetric far-field thermal radiation on a fused silica slab. An asymmetrical distribution of surface emissivity is created over the device by partially covering the fused silica with a 100 nm thick aluminum film. The slab is subjected to a thermal bias, and when this bias is reversed, a small temperature difference is observed between the different configurations. This temperature difference arises from the difference in emissivity between the aluminum layer and fused silica, resulting in the transfer of thermal energy to the surrounding environment through radiation. Experimental findings are supported by finite element simulations, which not only confirm the measured values but also provide valuable insights into the rectification efficiency of the system. The rectification efficiency is found to be approximately 50% at room temperature for a thermal bias of 140 K. Simulations, which are performed by considering different environmental conditions experienced by the radiation and free convection processes, provide further insight into the underlying thermal rectification mechanism. These simulations consider an environmental temperature of 4 K for thermal radiation and an ambient temperature of 294 K for free convection and reveal an enhanced rectification effect with a rectification efficiency up to 600% when a thermal bias of 195 K is applied. This result emphasizes the significance of considering both convection and radiation in the thermal management and rectification of asymmetric systems. The outcomes of this study further our understanding of the thermal rectification phenomenon. They also show the importance of system asymmetry, emissivity disparities, environmental conditions, and the interplay between convection and radiation. Furthermore, the findings have implications for heat transfer and rectification in asymmetric systems, offering potential applications in areas such as energy harvesting, thermal management, and heat transfer optimization in electronic devices.
Collapse
Affiliation(s)
- Ryan C. Ng
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Alexandros El Sachat
- Institute
of Nanoscience and Nanotechnology, National
Center for Scientific Research “Demokritos”, Agia Paraskevi, 15341 Athens, Greece
| | - Julianna Jaramillo-Fernandez
- MIND-IN2UB,
Departament d’Enginyeria Electrònica i Biomèdica,
Facultat de Física, Universitat de
Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Clivia M. Sotomayor-Torres
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- ICREA, Passeig Lluis Companys 23, 08010 Barcelona, Spain
| | - Emigdio Chavez-Angel
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
2
|
Dmitriev SV, Kuzkin VA, Krivtsov AM. Nonequilibrium thermal rectification at the junction of harmonic chains. Phys Rev E 2023; 108:054221. [PMID: 38115418 DOI: 10.1103/physreve.108.054221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/03/2023] [Indexed: 12/21/2023]
Abstract
A thermal diode or rectifier is a system that transmits heat or energy in one direction better than in the opposite direction. We investigate the influence of the distribution of energy among wave numbers on the diode effect for the junction of two dissimilar harmonic chains. An analytical expression for the diode coefficient, characterizing the difference between heat fluxes through the junction in two directions, is derived. It is shown that the diode coefficient depends on the distribution of energy among wave numbers. For an equilibrium energy distribution, the diode effect is absent, while for non-equilibrium energy distributions the diode effect is observed even though the system is harmonic. We show that the diode effect can be maximized by varying the energy distribution and relative position of spectra of the two harmonic chains. Conditions are formulated under which the system acts as an ideal thermal rectifier, i.e., transmits heat only in one direction. The results obtained are important for understanding the heat transfer in heterogeneous low-dimensional nanomaterials.
Collapse
Affiliation(s)
- Sergey V Dmitriev
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of RAS, Ufa 450054, Russia
- Ufa State Petroleum Technological University, Ufa 450062, Russia
| | - Vitaly A Kuzkin
- Institute for Problems in Mechanical Engineering RAS, Saint Petersburg 199178, Russia
- Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg 195251, Russia
| | - Anton M Krivtsov
- Institute for Problems in Mechanical Engineering RAS, Saint Petersburg 199178, Russia
- Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg 195251, Russia
| |
Collapse
|
3
|
Li X, Chen W, Nagayama G. Interfacial thermal resonance in an SiC-SiC nanogap with various atomic surface terminations. NANOSCALE 2023; 15:8603-8610. [PMID: 37099403 DOI: 10.1039/d3nr00533j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Quasi-Casimir coupling can induce phonon heat transfer across a sub-nanometer vacuum gap between monoatomic solid walls without electromagnetic fields. However, it remains unclear how the atomic surface terminations in diatomic molecules contribute to phonon transmission across a nanogap. Herein, we study the thermal energy transport across an SiC-SiC nanogap with four pairs of atomic surface terminations using classical nonequilibrium molecular dynamics simulations. In the case of identical atomic surface terminations, the net heat flux and thermal gap conductance are much greater than those in the nonidentical cases. Thermal resonance occurs between identical atomic terminated layers, whereas it vanishes between nonidentical ones. A notable heat transfer enhancement in the identical case of C-C is due to optical phonon transmission, with thermal resonance between the C-terminated layers. Our findings deepen the understanding of phonon heat transfer across a nanogap and provide insights into thermal management in nanoscale SiC power devices.
Collapse
Affiliation(s)
- Xiangrui Li
- Graduate School of Engineering, Kyushu Institute of Technology, Sensui 1-1, Tobata, Kitakyushu, Fukuoka 804-8550, Japan
| | - Wentao Chen
- Department of Mechanical Engineering, Kyushu Institute of Technology, Sensui 1-1, Tobata, Kitakyushu, Fukuoka 804-8550, Japan.
| | - Gyoko Nagayama
- Department of Mechanical Engineering, Kyushu Institute of Technology, Sensui 1-1, Tobata, Kitakyushu, Fukuoka 804-8550, Japan.
| |
Collapse
|
4
|
Experimental evaluation of thermal rectification in a ballistic nanobeam with asymmetric mass gradient. Sci Rep 2022; 12:7788. [PMID: 35552495 PMCID: PMC9098508 DOI: 10.1038/s41598-022-11878-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/25/2022] [Indexed: 11/09/2022] Open
Abstract
Practical applications of heat transport control with artificial metamaterials will heavily depend on the realization of thermal diodes/rectifiers, in which thermal conductivity depends on the heat flux direction. Whereas various macroscale implementations have been made experimentally, nanoscales realizations remain challenging and efficient rectification still requires a better fundamental understanding of heat carriers’ transport and nonlinear mechanisms. Here, we propose an experimental realization of a thermal rectifier based on two leads with asymmetric mass gradients separated by a ballistic spacer, as proposed in a recent numerical investigation, and measure its thermal properties electrically with the microbridge technique. We use a Si\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{3}$$\end{document}3N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{4}$$\end{document}4 nanobeam on which an asymmetric mass gradient has been engineered and demonstrate that in its current form, this structure does not allow for thermal rectification. We explain this by a combination of too weak asymmetry and non-linearities. Our experimental observations provide important information towards fabricating rigorous thermal rectifiers in the ballistic phonon transport regime, which are expected to open new possibilities for applications in thermal management and quantum thermal devices.
Collapse
|
5
|
Thermal rectification in multilayer phase change material structures for energy storage applications. iScience 2021; 24:102843. [PMID: 34401658 PMCID: PMC8353506 DOI: 10.1016/j.isci.2021.102843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 07/08/2021] [Indexed: 11/21/2022] Open
Abstract
Solid-state thermal control devices that present an asymmetric heat flow depending on thermal bias directionality, referred to as thermal diodes, have recently received increased attention for energy management. The use of materials that can change phase is a common approach to design thermal diodes, but typical sizes, moderate rectification ratios, and narrow thermal tunability limit their potential applications. In this work, we propose a multilayer thermal diode made of a combination of phase change and invariant materials. This device presents state-of-the-art thermal rectification ratios up to 136% for a temperature range between 300 K and 500 K. Importantly, this design allows to switch between distinct rectification states that can be modulated with temperature, achieving an additional degree of thermal control compared with single-rectification-state devices. We analyze the relevance of our thermal diodes for retaining heat more efficiently in thermal storage elements. Unique thermal diode design based on multilayer phase change material structures Thermal rectification ratios up to 136 % were observed The thermal rectification ratio can be modulated with temperature Thermal diodes can be integrated in energy storage elements for efficient heat retention
Collapse
|
6
|
Wide range continuously tunable and fast thermal switching based on compressible graphene composite foams. Nat Commun 2021; 12:4915. [PMID: 34389704 PMCID: PMC8363619 DOI: 10.1038/s41467-021-25083-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 07/19/2021] [Indexed: 12/04/2022] Open
Abstract
Thermal switches have gained intense interest recently for enabling dynamic thermal management of electronic devices and batteries that need to function at dramatically varied ambient or operating conditions. However, current approaches have limitations such as the lack of continuous tunability, low switching ratio, low speed, and not being scalable. Here, a continuously tunable, wide-range, and fast thermal switching approach is proposed and demonstrated using compressible graphene composite foams. Large (~8x) continuous tuning of the thermal resistance is achieved from the uncompressed to the fully compressed state. Environmental chamber experiments show that our variable thermal resistor can precisely stabilize the operating temperature of a heat generating device while the ambient temperature varies continuously by ~10 °C or the heat generation rate varies by a factor of 2.7. This thermal device is promising for dynamic control of operating temperatures in battery thermal management, space conditioning, vehicle thermal comfort, and thermal energy storage. Current designs of thermal switches are limited by a lack of continuous tunability, low switching ratio, low speed, and not being scalable. Here the authors report a continuously tunable, wide-range, fast, and cost effective thermal switching approach that is demonstrated using compressible graphene composite foams.
Collapse
|
7
|
Carpio-Martínez P, Hanna G. Quantum bath effects on nonequilibrium heat transport in model molecular junctions. J Chem Phys 2021; 154:094108. [PMID: 33685175 DOI: 10.1063/5.0040752] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Quantum-classical dynamics simulations enable the study of nonequilibrium heat transport in realistic models of molecules coupled to thermal baths. In these simulations, the initial conditions of the bath degrees of freedom are typically sampled from classical distributions. Herein, we investigate the effects of sampling the initial conditions of the thermal baths from quantum and classical distributions on the steady-state heat current in the nonequilibrium spin-boson model-a prototypical model of a single-molecule junction-in different parameter regimes. For a broad range of parameter regimes considered, we find that the steady-state heat currents are ∼1.3-4.5 times larger with the classical bath sampling than with the quantum bath sampling. Using both types of sampling, the steady-state heat currents exhibit turnovers as a function of the bath reorganization energy, with sharper turnovers in the classical case than in the quantum case and different temperature dependencies of the turnover maxima. As the temperature gap between the hot and cold baths increases, we observe an increasing difference in the steady-state heat currents obtained with the classical and quantum bath sampling. In general, as the bath temperatures are increased, the differences between the results of the classical and quantum bath sampling decrease but remain non-negligible at the high bath temperatures. The differences are attributed to the more pronounced temperature dependence of the classical distribution compared to the quantum one. Moreover, we find that the steady-state fluctuation theorem only holds for this model in the Markovian regime when quantum bath sampling is used. Altogether, our results highlight the importance of quantum bath sampling in quantum-classical dynamics simulations of quantum heat transport.
Collapse
Affiliation(s)
| | - Gabriel Hanna
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
8
|
Zhang C, An M, Guo Z, Chen S. Perturbation theory of thermal rectification. Phys Rev E 2020; 102:042106. [PMID: 33212722 DOI: 10.1103/physreve.102.042106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
In this paper, a perturbation theory of thermal rectification is developed for a thermal system where an effective thermal conductivity throughout the system can be identified and changes smoothly and slightly. This theory provides an analytical formula of the thermal rectification ratio with rigorous mathematical derivations and physical assumptions. The physical meanings and limitations of the present theory are discussed in detail. Furthermore, a physical relationship among the thermal rectification, system length, temperature difference, and thermal conductivity is built. It reveals the linear relationship between the thermal rectification ratio and temperature difference. Also, the size dependence of the thermal rectification relies on the specific form of the thermal conductivity. In addition, several previous experimental and numerical observations are well explained by this theory.
Collapse
Affiliation(s)
- Chuang Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Meng An
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, 6 Xuefuzhong Road, Weiyangdaxueyuan, Xi'an 710021, China
| | - Zhaoli Guo
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Songze Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
9
|
Carpio-Martínez P, Hanna G. Nonequilibrium heat transport in a molecular junction: A mixed quantum-classical approach. J Chem Phys 2019; 151:074112. [PMID: 31438711 DOI: 10.1063/1.5113599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In a recent study [J. Liu et al., J. Chem. Phys. 149, 224104 (2018)], we developed a general mixed quantum-classical framework for studying heat transport through molecular junctions, in which the junction molecule is treated quantum mechanically and the thermal reservoirs to which the molecule is coupled are treated classically. This framework yields expressions for the transferred heat and steady-state heat current, which could be calculated using a variety of mixed quantum-classical dynamics methods. In this work, we use the recently developed "Deterministic Evolution of Coordinates with Initial Decoupled Equations" (DECIDE) method for calculating the steady-state heat current in the nonequilibrium spin-boson model in a variety of parameter regimes. Our results are compared and contrasted with those obtained using the numerically exact multilayer multiconfiguration time-dependent Hartree approach, and using approximate methods, including mean field theory, Redfield theory, and adiabatic mixed quantum-classical dynamics. Despite some quantitative differences, the DECIDE method performs quite well, is capable of capturing the expected trends in the steady-state heat current, and, overall, outperforms the approximate methods. These results hold promise for DECIDE simulations of nonequilibrium heat transport in realistic models of nanoscale systems.
Collapse
Affiliation(s)
| | - Gabriel Hanna
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|