1
|
Maghraby Y, Ibrahim AH, El-Shabasy RM, Azzazy HMES. Overview of Nanocosmetics with Emphasis on those Incorporating Natural Extracts. ACS OMEGA 2024; 9:36001-36022. [PMID: 39220491 PMCID: PMC11360025 DOI: 10.1021/acsomega.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/30/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
The cosmetic industry is rapidly rising worldwide. To overcome certain deficiencies of conventional cosmetics, nanomaterials have been introduced to formulations of nails, lips, hair, and skin for treating/alleviating hyperpigmentation, hair loss, acne, dandruff, wrinkles, photoaging, etc. Innovative nanocarrier materials applied in the cosmetic sector for carrying the active ingredients include niosomes, fullerenes, liposomes, carbon nanotubes, and nanoemulsions. These exhibit several advantages, such as elevated stability, augmented skin penetration, specific site targeting, and sustained release of active contents. Nevertheless, continuous exposure to nanomaterials in cosmetics may pose some health hazards. This review features the different new nanocarriers applied for delivering cosmetics, their positive impacts and shortcomings, currently marketed nanocosmetic formulations, and their possible toxic effects. The role of natural ingredients, including vegetable oils, seed oils, essential oils, fats, and plant extracts, in the formulation of nanocosmetics is also reviewed. This review also discusses the current trend of green cosmetics and cosmetic regulations in selected countries.
Collapse
Affiliation(s)
- Yasmin
R. Maghraby
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Ahmed H. Ibrahim
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Center
for Materials Science, Zewail City of Science
and Technology, Sixth
of October,12578 Giza, Egypt
| | - Rehan M. El-Shabasy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Chemistry
Department, Faculty of Science, Menoufia
University, 32512 Shebin El-Kom, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Department
of Nanobiophotonics, Leibniz Institute of
Photonic Technology, Jena 07745, Germany
| |
Collapse
|
2
|
Ashfaq R, Kovács A, Berkó S, Budai-Szűcs M. Developments in Alloplastic Bone Grafts and Barrier Membrane Biomaterials for Periodontal Guided Tissue and Bone Regeneration Therapy. Int J Mol Sci 2024; 25:7746. [PMID: 39062989 PMCID: PMC11277074 DOI: 10.3390/ijms25147746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Periodontitis is a serious form of oral gum inflammation with recession of gingival soft tissue, destruction of the periodontal ligament, and absorption of alveolar bone. Management of periodontal tissue and bone destruction, along with the restoration of functionality and structural integrity, is not possible with conventional clinical therapy alone. Guided bone and tissue regeneration therapy employs an occlusive biodegradable barrier membrane and graft biomaterials to guide the formation of alveolar bone and tissues for periodontal restoration and regeneration. Amongst several grafting approaches, alloplastic grafts/biomaterials, either derived from natural sources, synthesization, or a combination of both, offer a wide variety of resources tailored to multiple needs. Examining several pertinent scientific databases (Web of Science, Scopus, PubMed, MEDLINE, and Cochrane Library) provided the foundation to cover the literature on synthetic graft materials and membranes, devoted to achieving periodontal tissue and bone regeneration. This discussion proceeds by highlighting potential grafting and barrier biomaterials, their characteristics, efficiency, regenerative ability, therapy outcomes, and advancements in periodontal guided regeneration therapy. Marketed and standardized quality products made of grafts and membrane biomaterials have been documented in this work. Conclusively, this paper illustrates the challenges, risk factors, and combination of biomaterials and drug delivery systems with which to reconstruct the hierarchical periodontium.
Collapse
Affiliation(s)
| | | | | | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.); (A.K.); (S.B.)
| |
Collapse
|
3
|
Lei M, Wan H, Song J, Lu Y, Chang R, Wang H, Zhou H, Zhang X, Liu C, Qu X. Programmable Electro-Assembly of Collagen: Constructing Porous Janus Films with Customized Dual Signals for Immunomodulation and Tissue Regeneration in Periodontitis Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305756. [PMID: 38189598 PMCID: PMC10987108 DOI: 10.1002/advs.202305756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/22/2023] [Indexed: 01/09/2024]
Abstract
Currently available guided bone regeneration (GBR) films lack active immunomodulation and sufficient osteogenic ability- in the treatment of periodontitis, leading to unsatisfactory treatment outcomes. Challenges remain in developing simple, rapid, and programmable manufacturing methods for constructing bioactive GBR films with tailored biofunctional compositions and microstructures. Herein, the controlled electroassembly of collagen under the salt effect is reported, which enables the construction of porous films with precisely tunable porous structures (i.e., porosity and pore size). In particular, bioactive salt species such as the anti-inflammatory drug diclofenac sodium (DS) can induce and customize porous structures while enabling the loading of bioactive salts and their gradual release. Sequential electro-assembly under pre-programmed salt conditions enables the manufacture of a Janus composite film with a dense and DS-containing porous layer capable of multiple functions in periodontitis treatment, which provides mechanical support, guides fibrous tissue growth, and acts as a barrier preventing its penetration into bone defects. The DS-containing porous layer delivers dual bio-signals through its morphology and the released DS, inhibiting inflammation and promoting osteogenesis. Overall, this study demonstrates the potential of electrofabrication as a customized manufacturing platform for the programmable assembly of collagen for tailored functions to adapt to specific needs in regenerative medicine.
Collapse
Affiliation(s)
- Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Haoran Wan
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Jia Song
- Department of Dental Materials & Dental Medical Devices Testing CenterNMPA Key Laboratory for Dental MaterialsPeking University School and Hospital of StomatologyBeijing100081China
| | - Yanhui Lu
- Department of Dental Materials & Dental Medical Devices Testing CenterNMPA Key Laboratory for Dental MaterialsPeking University School and Hospital of StomatologyBeijing100081China
| | - Ronghang Chang
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Honglei Wang
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Hang Zhou
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing CenterNMPA Key Laboratory for Dental MaterialsPeking University School and Hospital of StomatologyBeijing100081China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell MetabolismEast China University of Science and TechnologyShanghai200237China
- Wenzhou Institute of Shanghai UniversityWenzhou325000China
| |
Collapse
|
4
|
Viglianisi G, Santonocito S, Lupi SM, Amato M, Spagnuolo G, Pesce P, Isola G. Impact of local drug delivery and natural agents as new target strategies against periodontitis: new challenges for personalized therapeutic approach. Ther Adv Chronic Dis 2023; 14:20406223231191043. [PMID: 37720593 PMCID: PMC10501082 DOI: 10.1177/20406223231191043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/07/2023] [Indexed: 09/19/2023] Open
Abstract
Periodontitis is a persistent inflammation of the soft tissue around the teeth that affects 60% of the population in the globe. The self-maintenance of the inflammatory process can cause periodontal damage from the alveolar bone resorption to tooth loss in order to contrast the effects of periodontitis, the main therapy used is scaling and root planing (SRP). At the same time, studying the physiopathology of periodontitis has shown the possibility of using a local drug delivery system as an adjunctive therapy. Using local drug delivery devices in conjunction with SRP therapy for periodontitis is a potential tool since it increases drug efficacy and minimizes negative effects by managing drug release. This review emphasized how the use of local drug delivery agents and natural agents could be promising adjuvants for the treatment of periodontitis patients affected or not by cardiovascular disease, diabetes, and other system problems. Moreover, the review evidences the current issues and new ideas that can inspire potential later study for both basic research and clinical practice for a tailored approach.
Collapse
Affiliation(s)
- Gaia Viglianisi
- Department of General Surgery and Surgical-Medical Specialities, School of Dentistry, University of Catania, Catania, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialities, School of Dentistry, University of Catania, Catania, Italy
| | - Saturnino Marco Lupi
- Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Mariacristina Amato
- Department of General Surgery and Surgical-Medical Specialities, School of Dentistry, University of Catania, Catania, Italy
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, Naples, Italy
| | - Paolo Pesce
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialities, School of Dentistry, University of Catania, Via Santa Sofia 78, Catania 95123, Italy
| |
Collapse
|
5
|
Abtahi S, Chen X, Shahabi S, Nasiri N. Resorbable Membranes for Guided Bone Regeneration: Critical Features, Potentials, and Limitations. ACS MATERIALS AU 2023; 3:394-417. [PMID: 38089090 PMCID: PMC10510521 DOI: 10.1021/acsmaterialsau.3c00013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 03/22/2024]
Abstract
Lack of horizontal and vertical bone at the site of an implant can lead to significant clinical problems that need to be addressed before implant treatment can take place. Guided bone regeneration (GBR) is a commonly used surgical procedure that employs a barrier membrane to encourage the growth of new bone tissue in areas where bone has been lost due to injury or disease. It is a promising approach to achieve desired repair in bone tissue and is widely accepted and used in approximately 40% of patients with bone defects. In this Review, we provide a comprehensive examination of recent advances in resorbable membranes for GBR including natural materials such as chitosan, collagen, silk fibroin, along with synthetic materials such as polyglycolic acid (PGA), polycaprolactone (PCL), polyethylene glycol (PEG), and their copolymers. In addition, the properties of these materials including foreign body reaction, mechanical stability, antibacterial property, and growth factor delivery performance will be compared and discussed. Finally, future directions for resorbable membrane development and potential clinical applications will be highlighted.
Collapse
Affiliation(s)
- Sara Abtahi
- NanoTech
Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
- Department
of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Xiaohu Chen
- NanoTech
Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
| | - Sima Shahabi
- Department
of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Noushin Nasiri
- NanoTech
Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
| |
Collapse
|
6
|
Alqahtani AM. Guided Tissue and Bone Regeneration Membranes: A Review of Biomaterials and Techniques for Periodontal Treatments. Polymers (Basel) 2023; 15:3355. [PMID: 37631412 PMCID: PMC10457807 DOI: 10.3390/polym15163355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
This comprehensive review provides an in-depth analysis of the use of biomaterials in the processes of guided tissue and bone regeneration, and their indispensable role in dental therapeutic interventions. These interventions serve the critical function of restoring both structural integrity and functionality to the dentition that has been lost or damaged. The basis for this review is laid through the exploration of various relevant scientific databases such as Scopus, PubMed, Web of science and MEDLINE. From a meticulous selection, relevant literature was chosen. This review commences by examining the different types of membranes used in guided bone regeneration procedures and the spectrum of biomaterials employed in these operations. It then explores the manufacturing technologies for the scaffold, delving into their significant impact on tissue and bone regenerations. At the core of this review is the method of guided bone regeneration, which is a crucial technique for counteracting bone loss induced by tooth extraction or periodontal disease. The discussion advances by underscoring the latest innovations and strategies in the field of tissue regeneration. One key observation is the critical role that membranes play in guided reconstruction; they serve as a barrier, preventing the entry of non-ossifying cells, thereby promoting the successful growth and regeneration of bone and tissue. By reviewing the existing literature on biomaterials, membranes, and scaffold manufacturing technologies, this paper illustrates the vast potential for innovation and growth within the field of dental therapeutic interventions, particularly in guided tissue and bone regeneration.
Collapse
Affiliation(s)
- Ali M Alqahtani
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Al Fara, Abha 62223, Saudi Arabia
| |
Collapse
|
7
|
Vahdatinia F, Hooshyarfard A, Jamshidi S, Shojaei S, Patel K, Moeinifard E, Haddadi R, Farhadian M, Gholami L, Tayebi L. 3D-Printed Soft Membrane for Periodontal Guided Tissue Regeneration. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1364. [PMID: 36836994 PMCID: PMC9967512 DOI: 10.3390/ma16041364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES The current study aimed to perform an in vivo examination using a critical-size periodontal canine model to investigate the capability of a 3D-printed soft membrane for guided tissue regeneration (GTR). This membrane is made of a specific composition of gelatin, elastin, and sodium hyaluronate that was fine-tuned and fully characterized in vitro in our previous study. The value of this composition is its potential to be employed as a suitable replacement for collagen, which is the main component of conventional GTR membranes, to overcome the cost issue with collagen. METHODS Critical-size dehiscence defects were surgically created on the buccal surface of the roots of canine bilateral mandibular teeth. GTR treatment was performed with the 3D-printed membrane and two commercially available collagen membranes (Botiss Jason® and Smartbrane-Regedent membranes) and a group without any membrane placement was considered as the control group. The defects were submerged with tension-free closure of the gingival flaps. Histologic and histometric analyses were employed to assess the periodontal healing over an 8-week experimental period. RESULTS Histometric evaluations confirmed higher levels of new bone formation in the 3D-printed membrane group. Moreover, in all defects treated with the membranes, the formation of periodontal tissues, bone, periodontal ligaments, and cementum was observed after 8 weeks, while in the control group, only connective tissue was found in the defect sites. There was no clinical sign of inflammation or recession of gingiva in any of the groups. SIGNIFICANCE The 3D-printed gelatin/elastin/sodium hyaluronate membrane can be safe and effective for use in GTR for periodontal tissue regeneration therapies, with better or comparable results to the commercial collagen membranes.
Collapse
Affiliation(s)
- Farshid Vahdatinia
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Amirarsalan Hooshyarfard
- Department of Periodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran 1946853314, Iran
| | - Shokoofeh Jamshidi
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Dental Research Center, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Setareh Shojaei
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Kishan Patel
- School of Dentistry, Marquette University, Milwaukee, WI 53233, USA
| | | | - Rasool Haddadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Maryam Farhadian
- Department of Biostatistics, School of Public Health, Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Leila Gholami
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
8
|
Fabrication and Characterization Techniques of In Vitro 3D Tissue Models. Int J Mol Sci 2023; 24:ijms24031912. [PMID: 36768239 PMCID: PMC9915354 DOI: 10.3390/ijms24031912] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/21/2023] Open
Abstract
The culturing of cells in the laboratory under controlled conditions has always been crucial for the advancement of scientific research. Cell-based assays have played an important role in providing simple, fast, accurate, and cost-effective methods in drug discovery, disease modeling, and tissue engineering while mitigating reliance on cost-intensive and ethically challenging animal studies. The techniques involved in culturing cells are critical as results are based on cellular response to drugs, cellular cues, external stimuli, and human physiology. In order to establish in vitro cultures, cells are either isolated from normal or diseased tissue and allowed to grow in two or three dimensions. Two-dimensional (2D) cell culture methods involve the proliferation of cells on flat rigid surfaces resulting in a monolayer culture, while in three-dimensional (3D) cell cultures, the additional dimension provides a more accurate representation of the tissue milieu. In this review, we discuss the various methods involved in the development of 3D cell culture systems emphasizing the differences between 2D and 3D systems and methods involved in the recapitulation of the organ-specific 3D microenvironment. In addition, we discuss the latest developments in 3D tissue model fabrication techniques, microfluidics-based organ-on-a-chip, and imaging as a characterization technique for 3D tissue models.
Collapse
|
9
|
Sufaru IG, Macovei G, Stoleriu S, Martu MA, Luchian I, Kappenberg-Nitescu DC, Solomon SM. 3D Printed and Bioprinted Membranes and Scaffolds for the Periodontal Tissue Regeneration: A Narrative Review. MEMBRANES 2022; 12:membranes12090902. [PMID: 36135920 PMCID: PMC9505571 DOI: 10.3390/membranes12090902] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 05/31/2023]
Abstract
Numerous technologies and materials were developed with the aim of repairing and reconstructing the tissue loss in patients with periodontitis. Periodontal guided bone regeneration (GBR) and guided tissue regeneration (GTR) involves the use of a membrane which prevents epithelial cell migration, and helps to maintain the space, creating a protected area in which tissue regeneration is favored. Over the time, manufacturing procedures of such barrier membranes followed important improvements. Three-dimensional (3D) printing technology has led to major innovations in periodontal regeneration methods, using technologies such as inkjet printing, light-assisted 3D printing or micro-extrusion. Besides the 3D printing of monophasic and multi-phasic scaffolds, bioprinting and tissue engineering have emerged as innovative technologies which can change the way we see GTR and GBR.
Collapse
Affiliation(s)
- Irina-Georgeta Sufaru
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Georgiana Macovei
- Department of Oral and Dental Diagnostics, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Simona Stoleriu
- Department of Cariology and Restorative Dental Therapy, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Maria-Alexandra Martu
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Ionut Luchian
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | | | - Sorina Mihaela Solomon
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| |
Collapse
|
10
|
Guo H, Bai X, Wang X, Qiang J, Sha T, Shi Y, Zheng K, Yang Z, Shi C. Development and regeneration of periodontal supporting tissues. Genesis 2022; 60:e23491. [PMID: 35785409 DOI: 10.1002/dvg.23491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 11/08/2022]
Abstract
Periodontal tissues, including gingiva, cementum, periodontal ligament, and alveolar bone, play important roles in oral health. Under physiological conditions, periodontal tissues surround and support the teeth, maintaining the stability of the teeth and distributing the chewing forces. However, under pathological conditions, with the actions of various pathogenic factors, the periodontal tissues gradually undergo some irreversible changes, that is, gingival recession, periodontal ligament rupture, periodontal pocket formation, alveolar bone resorption, eventually leading to the loosening and even loss of the teeth. Currently, the regenerations of the periodontal tissues are still challenging. Therefore, it is necessary to study the development of the periodontal tissues, the principles and processes of which can be used to develop new strategies for the regeneration of periodontal tissues. This review summarizes the development of periodontal tissues and current strategies for periodontal healing and regeneration.
Collapse
Affiliation(s)
- Hao Guo
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Xueying Bai
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Xiaoling Wang
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Jinbiao Qiang
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Tong Sha
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Yan Shi
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Kaijuan Zheng
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Zhenming Yang
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Ce Shi
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
11
|
Electrospun Polysaccharides for Periodontal Tissue Engineering: A Review of Recent Advances and Future Perspectives. Ann Biomed Eng 2022; 50:769-793. [DOI: 10.1007/s10439-022-02952-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/16/2022] [Indexed: 12/18/2022]
|
12
|
Natural Scaffolds Used for Liver Regeneration: A Narrative Update. Stem Cell Rev Rep 2022; 18:2262-2278. [PMID: 35320512 DOI: 10.1007/s12015-022-10362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2022] [Indexed: 10/18/2022]
Abstract
Annually chronic liver diseases cause two million death worldwide. Although liver transplantation (LT) is still considered the best therapeutic option, the limited number of donated livers and lifelong side effects of LT has led researchers to seek alternative therapies. Tissue engineering (TE) as a promising method is considered for liver repair and regeneration. TE uses natural or synthetic scaffolds, functional somatic cells, multipotent stem cells, and growth factors to develop new organs. Biological scaffolds are notable in TE because of their capacity to mimic extracellular matrices, biodegradability, and biocompatibility. Moreover, natural scaffolds are classified based on their source and function in three separate groups. Hemostat-based scaffolds as the first group were reviewed for their application in coagulation in liver injury or surgery. Furthermore, recent studies showed improvement in the function of biological hydrogels in liver regeneration and vascularity. In addition, different applications of natural scaffolds were discussed and compared with synthetic scaffolds. Finally, we focused on the efforts to improve the performance of decellularized extracellular matrixes for liver implantation.
Collapse
|
13
|
Gupta V, Mohapatra S, Mishra H, Farooq U, Kumar K, Ansari MJ, Aldawsari MF, Alalaiwe AS, Mirza MA, Iqbal Z. Nanotechnology in Cosmetics and Cosmeceuticals-A Review of Latest Advancements. Gels 2022; 8:173. [PMID: 35323286 PMCID: PMC8951203 DOI: 10.3390/gels8030173] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Nanotechnology has the potential to generate advancements and innovations in formulations and delivery systems. This fast-developing technology has been widely exploited for diagnostic and therapeutic purposes. Today, cosmetic formulations incorporating nanotechnology are a relatively new yet very promising and highly researched area. The application of nanotechnology in cosmetics has been shown to overcome the drawbacks associated with traditional cosmetics and also to add more useful features to a formulation. Nanocosmetics and nanocosmeceuticals have been extensively explored for skin, hair, nails, lips, and teeth, and the inclusion of nanomaterials has been found to improve product efficacy and consumer satisfaction. This is leading to the replacement of many traditional cosmeceuticals with nanocosmeceuticals. However, nanotoxicological studies on nanocosmeceuticals have raised concerns in terms of health hazards due to their potential skin penetration, resulting in toxic effects. This review summarizes various nanotechnology-based approaches being utilized in the delivery of cosmetics as well as cosmeceutical products, along with relevant patents. It outlines their benefits, as well as potential health and environmental risks. Further, it highlights the regulatory status of cosmeceuticals and analyzes the different regulatory guidelines in India, Europe, and the USA and discusses the different guidelines and recommendations issued by various regulatory authorities. Finally, this article seeks to provide an overview of nanocosmetics and nanocosmeceuticals and their applications in cosmetic industries, which may help consumers and regulators to gain awareness about the benefits as well as the toxicity related to the continuous and long-term uses of these products, thus encouraging their judicious use.
Collapse
Affiliation(s)
- Vaibhav Gupta
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, Delhi, India; (V.G.); (S.M.); (U.F.); (K.K.)
| | - Sradhanjali Mohapatra
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, Delhi, India; (V.G.); (S.M.); (U.F.); (K.K.)
| | - Harshita Mishra
- Smart Society Research Team, Faculty of Business and Economics, Mendel University, 61300 Brno, Czech Republic;
| | - Uzma Farooq
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, Delhi, India; (V.G.); (S.M.); (U.F.); (K.K.)
| | - Keshav Kumar
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, Delhi, India; (V.G.); (S.M.); (U.F.); (K.K.)
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 16278, Saudi Arabia or (M.J.A.); (M.F.A.); (A.S.A.)
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 16278, Saudi Arabia or (M.J.A.); (M.F.A.); (A.S.A.)
| | - Ahmed S. Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 16278, Saudi Arabia or (M.J.A.); (M.F.A.); (A.S.A.)
| | - Mohd Aamir Mirza
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, Delhi, India; (V.G.); (S.M.); (U.F.); (K.K.)
| | - Zeenat Iqbal
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, Delhi, India; (V.G.); (S.M.); (U.F.); (K.K.)
| |
Collapse
|
14
|
L Abe G, Tsuboi R, Kitagawa H, Sasaki JI, Li A, Kohno T, Imazato S. Poly(lactic acid/caprolactone) bilayer membrane blocks bacterial penetration. J Periodontal Res 2022; 57:510-518. [PMID: 35212414 DOI: 10.1111/jre.12980] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVE The clinical outcomes of guided tissue regeneration (GTR) or guided bone regeneration (GBR) procedures can be impaired if a bacterial infection develops at the surgical site. Membrane exposure is one of the causes of the onset of bacterial infection. Previously, we have fabricated a poly(lactic acid/caprolactone) (PLCL) bilayer membrane composed of a porous layer and a compact layer. The compact layer acts as a barrier against connective tissue and epithelial cells, and we hypothesized that it could also be an effective barrier against bacterial cells. The objective of this study was to evaluate the ability of the PLCL bilayer membrane to block bacterial cell penetration, which would be useful for preventing postoperative infections. METHODS Porphyromonas gingivalis, Streptococcus mutans, and multispecies bacteria collected from human saliva were used in this study. Bacteria were seeded directly on the compact layer of a PLCL bilayer membrane, and bacterial adhesion to the membrane, as well as penetration into the membrane's structure, were assessed. Bacterial adhesion was evaluated by the number of colonies formed at 6, 24, and 72 h, and penetration was observed using a scanning electron microscope at 24 and 72 h. Commercially available membranes, composed of poly(lactic-co-glycolic acid) or type I collagen, were used as controls. RESULTS P. gingivalis, S. mutans, and the multispecies bacteria obtained from human saliva adhered onto all the membranes after only 6 h of incubation. However, fewer adherent cells were observed for the PLCL bilayer membrane compared with the controls for all experimental periods. The PLCL membrane was capable of blocking bacterial penetration, and no bacterial cells were observed in the structure. In contrast, bacteria penetrated both the control membranes and were observed at depths of up to 80 µm after 72 h of incubation. CONCLUSION Membrane characteristics may influence how bacterial colonization occurs. The PLCL membrane had reduced bacterial adhesion and blocked bacterial penetration, and these characteristics could contribute to a favorable outcome for regenerative treatments. In the event of membrane exposure at GTR/GBR surgical sites, membranes with an efficient barrier function, such as the PLCL bilayer membrane, could simplify the management of GTR/GBR complications.
Collapse
Affiliation(s)
- Gabriela L Abe
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Ririko Tsuboi
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Haruaki Kitagawa
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Jun-Ichi Sasaki
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Aonan Li
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Tomoki Kohno
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan.,Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
15
|
Finding the Perfect Membrane: Current Knowledge on Barrier Membranes in Regenerative Procedures: A Descriptive Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031042] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Guided tissue regeneration (GTR) and guided bone regeneration (GBR) became common procedures in the corrective phase of periodontal treatment. In order to obtain good quality tissue neo-formation, most techniques require the use of a membrane that will act as a barrier, having as a main purpose the blocking of cell invasion from the gingival epithelium and connective tissue into the newly formed bone structure. Different techniques and materials have been developed, aiming to obtain the perfect barrier membrane. The membranes can be divided according to the biodegradability of the base material into absorbable membranes and non-absorbable membranes. The use of absorbable membranes is extremely widespread due to their advantages, but in clinical situations of significant tissue loss, the use of non-absorbable membranes is often still preferred. This descriptive review presents a synthesis of the types of barrier membranes available and their characteristics, as well as future trends in the development of barrier membranes along with some allergological aspects of membrane use.
Collapse
|
16
|
Solomon SM, Sufaru IG, Teslaru S, Ghiciuc CM, Stafie CS. Finding the Perfect Membrane: Current Knowledge on Barrier Membranes in Regenerative Procedures: A Descriptive Review. APPLIED SCIENCES-BASEL 2022. [DOI: https://doi.org/10.3390/app12031042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Guided tissue regeneration (GTR) and guided bone regeneration (GBR) became common procedures in the corrective phase of periodontal treatment. In order to obtain good quality tissue neo-formation, most techniques require the use of a membrane that will act as a barrier, having as a main purpose the blocking of cell invasion from the gingival epithelium and connective tissue into the newly formed bone structure. Different techniques and materials have been developed, aiming to obtain the perfect barrier membrane. The membranes can be divided according to the biodegradability of the base material into absorbable membranes and non-absorbable membranes. The use of absorbable membranes is extremely widespread due to their advantages, but in clinical situations of significant tissue loss, the use of non-absorbable membranes is often still preferred. This descriptive review presents a synthesis of the types of barrier membranes available and their characteristics, as well as future trends in the development of barrier membranes along with some allergological aspects of membrane use.
Collapse
|
17
|
Measurement of the Clinical Effects of a Marine Fish Extract on Periodontal Healing—A Preliminary Clinical Interventional Study. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of the study was to assess the clinical effects of periodontal healing using a Romanian pharmaceutical compound of marine fish extract (Alflutop®). Adults with periodontal disease were included in the study group. Gingival inflammation, the degree of tooth mobility, and probing depth (PD) were recorded for each patient before and after therapy. Patients were divided into two groups: group I—after scaling and root planing (SRP), patients followed therapy with marine fish extract, Alflutop®, group II—SRP therapy alone. Statistically significant differences between groups in terms of gingival inflammation reduction (p = 0.045) were found. Tooth mobility reduction, as well as PD improvement, were also noticed after the therapy (p = 0.001), but no statistically significant differences among PD reduction rates were found (p = 0.356). Alflutop® has proven a certain therapeutic efficiency in the treatment of periodontitis in terms of reduction in the clinical signs of inflammation and tooth mobility.
Collapse
|
18
|
Wei Y, Deng Y, Ma S, Ran M, Jia Y, Meng J, Han F, Gou J, Yin T, He H, Wang Y, Zhang Y, Tang X. Local drug delivery systems as therapeutic strategies against periodontitis: A systematic review. J Control Release 2021; 333:269-282. [PMID: 33798664 DOI: 10.1016/j.jconrel.2021.03.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/27/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022]
Abstract
Periodontitis is a chronic inflammation of the soft tissue surrounding and supporting the teeth, which causes periodontal structural damage, alveolar bone resorption, and even tooth loss. Its prevalence is very high, with nearly 60% of the global population affected. Hence, periodontitis is an important public health concern, and the development of effective healing treatments for oral diseases is a major target of the health sciences. Currently, the application of local drug delivery systems (LDDS) as an adjunctive therapy to scaling and root planning (SRP) in periodontitis is a promising strategy, giving higher efficacy and fewer side effects by controlling drug release. The cornerstone of successful periodontitis therapy is to select an appropriate bioactive agent and route of administration. In this context, this review highlights applications of LDDS with different properties in the treatment of periodontitis with or without systemic diseases, in order to reveal existing challenges and future research directions.
Collapse
Affiliation(s)
- Ying Wei
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yaxin Deng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Shuting Ma
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Meixin Ran
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yannan Jia
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao 028000, Neimenggu, China
| | - Jia Meng
- Liaoning Institute of Basic Medicine, Shenyang 110016, Liaoning, China
| | - Fei Han
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China.
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yanjiao Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China.
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| |
Collapse
|
19
|
Murizan NIS, Mustafa NS, Ngadiman NHA, Mohd Yusof N, Idris A. Review on Nanocrystalline Cellulose in Bone Tissue Engineering Applications. Polymers (Basel) 2020; 12:E2818. [PMID: 33261121 PMCID: PMC7761060 DOI: 10.3390/polym12122818] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022] Open
Abstract
Nanocrystalline cellulose is an abundant and inexhaustible organic material on Earth. It can be derived from many lignocellulosic plants and also from agricultural residues. They endowed exceptional physicochemical properties, which have promoted their intensive exploration in biomedical application, especially for tissue engineering scaffolds. Nanocrystalline cellulose has been acknowledged due to its low toxicity and low ecotoxicological risks towards living cells. To explore this field, this review provides an overview of nanocrystalline cellulose in designing materials of bone scaffolds. An introduction to nanocrystalline cellulose and its isolation method of acid hydrolysis are discussed following by the application of nanocrystalline cellulose in bone tissue engineering scaffolds. This review also provides comprehensive knowledge and highlights the contribution of nanocrystalline cellulose in terms of mechanical properties, biocompatibility and biodegradability of bone tissue engineering scaffolds. Lastly, the challenges for future scaffold development using nanocrystalline cellulose are also included.
Collapse
Affiliation(s)
- Nur Ilyana Sahira Murizan
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia; (N.I.S.M.); (N.S.M.); (N.M.Y.)
| | - Nur Syahirah Mustafa
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia; (N.I.S.M.); (N.S.M.); (N.M.Y.)
| | - Nor Hasrul Akhmal Ngadiman
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia; (N.I.S.M.); (N.S.M.); (N.M.Y.)
| | - Noordin Mohd Yusof
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia; (N.I.S.M.); (N.S.M.); (N.M.Y.)
| | - Ani Idris
- c/o Institute of Bioproduct Development, School of Chemical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia;
| |
Collapse
|
20
|
Porta M, Tonda-Turo C, Pierantozzi D, Ciardelli G, Mancuso E. Towards 3D Multi-Layer Scaffolds for Periodontal Tissue Engineering Applications: Addressing Manufacturing and Architectural Challenges. Polymers (Basel) 2020; 12:polym12102233. [PMID: 32998365 PMCID: PMC7599927 DOI: 10.3390/polym12102233] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Reduced periodontal support, deriving from chronic inflammatory conditions, such as periodontitis, is one of the main causes of tooth loss. The use of dental implants for the replacement of missing teeth has attracted growing interest as a standard procedure in clinical practice. However, adequate bone volume and soft tissue augmentation at the site of the implant are important prerequisites for successful implant positioning as well as proper functional and aesthetic reconstruction of patients. Three-dimensional (3D) scaffolds have greatly contributed to solve most of the challenges that traditional solutions (i.e., autografts, allografts and xenografts) posed. Nevertheless, mimicking the complex architecture and functionality of the periodontal tissue represents still a great challenge. In this study, a porous poly(ε-caprolactone) (PCL) and Sr-doped nano hydroxyapatite (Sr-nHA) with a multi-layer structure was produced via a single-step additive manufacturing (AM) process, as a potential strategy for hard periodontal tissue regeneration. Physicochemical characterization was conducted in order to evaluate the overall scaffold architecture, topography, as well as porosity with respect to the original CAD model. Furthermore, compressive tests were performed to assess the mechanical properties of the resulting multi-layer structure. Finally, in vitro biological performance, in terms of biocompatibility and osteogenic potential, was evaluated by using human osteosarcoma cells. The manufacturing route used in this work revealed a highly versatile method to fabricate 3D multi-layer scaffolds with porosity levels as well as mechanical properties within the range of dentoalveolar bone tissue. Moreover, the single step process allowed the achievement of an excellent integrity among the different layers of the scaffold. In vitro tests suggested the promising role of the ceramic phase within the polymeric matrix towards bone mineralization processes. Overall, the results of this study demonstrate that the approach undertaken may serve as a platform for future advances in 3D multi-layer and patient-specific strategies that may better address complex periodontal tissue defects.
Collapse
Affiliation(s)
- Marta Porta
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 29, 10129 Turin, Italy; (M.P.); (C.T.-T.); (G.C.)
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Shore Road, Newtownabbey BT37 0QB, UK;
| | - Chiara Tonda-Turo
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 29, 10129 Turin, Italy; (M.P.); (C.T.-T.); (G.C.)
| | - Daniele Pierantozzi
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Shore Road, Newtownabbey BT37 0QB, UK;
| | - Gianluca Ciardelli
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 29, 10129 Turin, Italy; (M.P.); (C.T.-T.); (G.C.)
| | - Elena Mancuso
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Shore Road, Newtownabbey BT37 0QB, UK;
- Correspondence:
| |
Collapse
|
21
|
Megat Abdul Wahab R, Abdullah N, Zainal Ariffin SH, Che Abdullah CA, Yazid F. Effects of the Sintering Process on Nacre-Derived Hydroxyapatite Scaffolds for Bone Engineering. Molecules 2020; 25:E3129. [PMID: 32650572 PMCID: PMC7397188 DOI: 10.3390/molecules25143129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/22/2020] [Accepted: 07/03/2020] [Indexed: 01/08/2023] Open
Abstract
A hydroxyapatite scaffold is a suitable biomaterial for bone tissue engineering due to its chemical component which mimics native bone. Electronic states which present on the surface of hydroxyapatite have the potential to be used to promote the adsorption or transduction of biomolecules such as protein or DNA. This study aimed to compare the morphology and bioactivity of sinter and nonsinter marine-based hydroxyapatite scaffolds. Field emission scanning electron microscopy (FESEM) and micro-computed tomography (microCT) were used to characterize the morphology of both scaffolds. Scaffolds were co-cultured with 5 × 104/cm2 of MC3T3-E1 preosteoblast cells for 7, 14, and 21 days. FESEM was used to observe the cell morphology, and MTT and alkaline phosphatase (ALP) assays were conducted to determine the cell viability and differentiation capacity of cells on both scaffolds. Real-time polymerase chain reaction (rtPCR) was used to identify the expression of osteoblast markers. The sinter scaffold had a porous microstructure with the presence of interconnected pores as compared with the nonsinter scaffold. This sinter scaffold also significantly supported viability and differentiation of the MC3T3-E1 preosteoblast cells (p < 0.05). The marked expression of Col1α1 and osteocalcin (OCN) osteoblast markers were also observed after 14 days of incubation (p < 0.05). The sinter scaffold supported attachment, viability, and differentiation of preosteoblast cells. Hence, sinter hydroxyapatite scaffold from nacreous layer is a promising biomaterial for bone tissue engineering.
Collapse
Affiliation(s)
- Rohaya Megat Abdul Wahab
- Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (R.M.A.W.); (N.A.)
| | - Nurmimie Abdullah
- Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (R.M.A.W.); (N.A.)
| | - Shahrul Hisham Zainal Ariffin
- Centre for Biotechnology and Functional Food, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Che Azurahanim Che Abdullah
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia;
| | - Farinawati Yazid
- Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (R.M.A.W.); (N.A.)
| |
Collapse
|
22
|
Liu J, Zou Q, Cai B, Wei J, Yuan C, Li Y. Heparin conjugated PCL/Gel – PCL/Gel/n-HA bilayer fibrous membrane for potential regeneration of soft and hard tissues. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1421-1436. [DOI: 10.1080/09205063.2020.1760700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jie Liu
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China
| | - Qin Zou
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China
| | - Bin Cai
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China
| | - Jiawei Wei
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China
| | - Chen Yuan
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Gümüşderelioğlu M, Sunal E, Tolga Demirtaş T, Kiremitçi AS. Chitosan-based double-faced barrier membrane coated with functional nanostructures and loaded with BMP-6. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 31:4. [PMID: 31832785 DOI: 10.1007/s10856-019-6331-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
In the present study, a chitosan-based, multifunctional and double-faced barrier membrane was developed for the periodontitis therapy. The porous surface of the membrane was coated with bone-like hydroxyapatite (HA) produced by microwave-assisted biomimetic method and enriched with bone morphogenetic factor 6 (BMP-6) to enhance the bioactivity of chitosan. This surface of the membrane was designed to be in contact with the hard tissue that was damaged due to periodontitis. Otherwise the nonporous surface of membrane, which is in contact with the inflammatory soft tissue, was coated with electrospun polycaprolactone (PCL) fibers to prevent the migration of epithelial cells to the defect area. PrestoBlue, Scanning Electron Microscope (SEM) and real-time PCR results demonstrated that while porous surface of the membrane was enhancing the proliferation and differentiation of MC3T3-E1 preosteoblasts, nonporous surface of membrane did not allow migration of epithelial Madine Darby Bovine Kidney (MDBK) cells. The barrier membrane developed here is biodegradable and can be easily manipulated, has osteogenic activity and inactivity for epithelial cells. Thus, by implanting this membrane to the damaged periodontal tissue, bone regeneration will take place and integrity of periodontal tissues will be preserved.
Collapse
Affiliation(s)
- Menemşe Gümüşderelioğlu
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey.
- Department of Bioengineering, Hacettepe University, Ankara, Turkey.
| | - Elif Sunal
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey
| | | | - Arlin S Kiremitçi
- Department of Restorative Dentistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|