1
|
Liu T, Lei H, Zhen X, Liu J, Xie W, Tang Q, Gou D, Zhao J. Advancements in modifying insoluble dietary fiber: Exploring the microstructure, physicochemical properties, biological activity, and applications in food industry-A review. Food Chem 2024; 458:140154. [PMID: 38944924 DOI: 10.1016/j.foodchem.2024.140154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Recent research has primarily focused on strategies for modifying insoluble dietary fiber (IDF) to enhance its performance and functionality. IDF is obtained from various inexpensive sources and can be manipulated to alter its biological effects, making it possible to revolutionize food processing and nutrition. In this review, multiple IDF modification techniques are thoroughly examined and discussed, with particular emphasis on the resulting changes in the physicochemical properties, biological activities, and microstructure of the fiber. An extensive overview of the practical applications of modified IDF in food processing is provided. Our study aims to raise awareness about the vast possibilities presented by modified IDF and encourage further exploration and utilization of this field in the realm of food production.
Collapse
Affiliation(s)
- Tong Liu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Hongyu Lei
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Xinyu Zhen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jiaxing Liu
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Wenlong Xie
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Qilong Tang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| |
Collapse
|
2
|
Shaikh JR, Chakraborty S, Odaneth A, Annapure US. A sequential approach of alkali enzymatic extraction of dietary fiber from rice bran: Effects on structural, thermal, crystalline properties, and food application. Food Res Int 2024; 193:114847. [PMID: 39160052 DOI: 10.1016/j.foodres.2024.114847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024]
Abstract
Rice bran is abundant in dietary fiber and is often referred to as the seventh nutrient, recognized for its numerous health benefits. The objective of the current study is to investigate the extraction of both soluble and insoluble dietary fiber from defatted rice bran (DRB) using an alkali-enzymatic treatment through response surface methodology. The independent variables like substrate percentage (5-30 %), enzyme concentration (1-50 µL/g), and treatment time (2-12 h) and dependent variables were the yield of soluble and insoluble DF. The highest extraction yield was observed with alkali enzyme concentration (50 µL/g) treatment, resulting in 2 % SDF and 59.5 % IDF at 24 h of extraction. The results indicate that cellulase-AC enzyme aids in the hydrolysis of higher polysaccharides, leading to structural alterations in DRB and an increase in DF yield. Furthermore, the disruption of intra-molecular hydrogen bonding between oligosaccharides and the starch matrix helps to increase in DF yield, was also confirmed through FTIR and SEM. The extracted DF soluble and insoluble was then used to develop rice porridge. Sensory evaluation using fuzzy logic analysis reported the highest scores for samples containing 0.5 % insoluble DF and 1.25 % soluble DF.
Collapse
Affiliation(s)
- Jasmin R Shaikh
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Snehasis Chakraborty
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Annamma Odaneth
- Center of Energy Biosciences, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Uday S Annapure
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
3
|
Hou Y, Luo S, Li Z, Zhang H, Chen T, Liu C. Extrusion treatment of rice bran insoluble fiber generates specific niches favorable for Bacteroides during in vitro fermentation. Food Res Int 2024; 190:114599. [PMID: 38945569 DOI: 10.1016/j.foodres.2024.114599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024]
Abstract
To investigate the morphological changes of insoluble fiber and their effects on microbiota modulation, particularly Bacteroides, rice bran insoluble fibers were extruded at different feed moisture levels (E20, E40, and E60). The physicochemical properties and SEM revealed that E20 exhibited the highest water holding capacity and displayed the most fragmented edges. E40 had the highest swelling holding capacity and displayed the most lamellar gaps. E60 showed minimal change in physicochemical properties but had a rough surface. After 48h fermentation, E40 showed the highest levels of Bacteroides and SCFAs. E20 and E60 resulted in a modest increase in Bacteroides abundance. SEM showed that bacteria were attached to fragmented edges, loosened lamellar gaps, and rough surfaces of the extruded insoluble fibers. The results suggested that Bacteroides gained a competitive advantage within the extrusion treatment created structural changes. Extrusion treatment can be used to generate specific niches favorable for Bacteroides.
Collapse
Affiliation(s)
- Yaqin Hou
- The State Key Laboratory of Food Science and Resources, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China
| | - Shunjing Luo
- The State Key Laboratory of Food Science and Resources, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition & Health, Guangzhou 510663, China
| | - Huibin Zhang
- The State Key Laboratory of Food Science and Resources, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China
| | - Tingting Chen
- The State Key Laboratory of Food Science and Resources, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang, Jiangxi 330200, China.
| | - Chengmei Liu
- The State Key Laboratory of Food Science and Resources, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang, Jiangxi 330200, China.
| |
Collapse
|
4
|
Huang Y, Li C, Zheng S, Fu X, Huang Q, Liu G, Chen Q. Influence of Three Modification Methods on the Structure, Physicochemical, and Functional Properties of Insoluble Dietary Fiber from Rosa roxburghii Tratt Pomace. Molecules 2024; 29:2111. [PMID: 38731600 PMCID: PMC11085671 DOI: 10.3390/molecules29092111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Rosa roxburghii Tratt pomace is rich in insoluble dietary fiber (IDF). This study aimed to investigate the influence of three modification methods on Rosa roxburghii Tratt pomace insoluble dietary fiber (RIDF). The three modified RIDFs, named U-RIDF, C-RIDF, and UC-RIDF, were prepared using ultrasound, cellulase, and a combination of ultrasound and cellulase methods, respectively. The structure, physicochemical characteristics, and functional properties of the raw RIDF and modified RIDF were comparatively analyzed. The results showed that all three modification methods, especially the ultrasound-cellulase combination treatment, increased the soluble dietary fiber (SDF) content of RIDF, while also causing a transition in surface morphology from smooth and dense to wrinkled and loose structures. Compared with the raw RIDF, the modified RIDF, particularly UC-RIDF, displayed significantly improved water-holding capacity (WHC), oil-binding capacity (OHC), and swelling capacity (SC), with increases of 12.0%, 84.7%, and 91.3%, respectively. Additionally, UC-RIDF demonstrated the highest nitrite ion adsorption capacity (NIAC), cholesterol adsorption capacity (CAC), and bile salt adsorption capacity (BSAC). In summary, the combination of ultrasound and cellulase treatment proved to be an efficient approach for modifying IDF from RRTP, with the potential for developing a functional food ingredient.
Collapse
Affiliation(s)
- Yumeng Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.H.); (S.Z.); (X.F.); (Q.H.)
| | - Chao Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.H.); (S.Z.); (X.F.); (Q.H.)
| | - Siyuan Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.H.); (S.Z.); (X.F.); (Q.H.)
| | - Xiong Fu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.H.); (S.Z.); (X.F.); (Q.H.)
| | - Qiang Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.H.); (S.Z.); (X.F.); (Q.H.)
| | - Guang Liu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China;
| | - Qing Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.H.); (S.Z.); (X.F.); (Q.H.)
- School of Food and Health, Guangzhou City Polytechnic, Guangzhou 510405, China
| |
Collapse
|
5
|
Yang R, Ye Y, Liu W, Liang B, He H, Li X, Ji C, Sun C. Modification of pea dietary fibre by superfine grinding assisted enzymatic modification: Structural, physicochemical, and functional properties. Int J Biol Macromol 2024; 267:131408. [PMID: 38604426 DOI: 10.1016/j.ijbiomac.2024.131408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Using the optimal extraction conditions determined by response surface optimisation, the yield of soluble dietary fibre (SDF) modified by superfine grinding combined with enzymatic modification (SE-SDF) was significantly increased from 4.45 % ± 0.21 % (natural pea dietary fibre) to 16.24 % ± 0.09 %. To further analyse the modification mechanism, the effects of three modification methods-superfine grinding (S), enzymatic modification (E), and superfine grinding combined with enzymatic modification (SE)-on the structural, physicochemical, and functional properties of pea SDF were studied. Nuclear magnetic resonance spectroscopy results showed that all four SDFs had α- and β-glycosidic bonds. Fourier transform infrared spectroscopy and X-ray diffraction spectroscopy results showed that the crystal structure of SE-SDF was most severely damaged. The Congo red experimental results showed that none of the four SDFs had a triple-helical structure. Scanning electron microscopy showed that SE-SDF had a looser structure and an obvious honeycomb structure than other SDFs. Thermogravimetric analysis, particle size, and zeta potential results showed that SE-SDF had the highest thermal stability, smallest particle size, and excellent solution stability compared with the other samples. The hydration properties showed that SE-SDF had the best water solubility capacity and water-holding capacity. All three modification methods (S, E, and SE) enhanced the sodium cholate adsorption capacity, cholesterol adsorption capacity, cation exchange capacity, and nitrite ion adsorption capacity of pea SDF. Among them, the SE modification had the greatest effect. This study showed that superfine grinding combined with enzymatic modification can effectively improve the SDF content and the physicochemical and functional properties of pea dietary fibre, which gives pea dietary fibre great application potential in functional foods.
Collapse
Affiliation(s)
- Renhui Yang
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Ying Ye
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Weiting Liu
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Bin Liang
- College of Food Engineering, Ludong University, Yantai, Shandong 264025, China.
| | - Hongjun He
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Xiulian Li
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Changjian Ji
- Department of Physics and Electronic Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Chanchan Sun
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China.
| |
Collapse
|
6
|
Masamran S, Supawong S. Gamma radiation vs high pressure pretreatment on physicochemical characteristics of rice bran hydrolysate. Heliyon 2024; 10:e24117. [PMID: 38293412 PMCID: PMC10825425 DOI: 10.1016/j.heliyon.2024.e24117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
This study investigated the effect of using gamma radiation and high-pressure processing as pretreatment, to consider the structural and amino acid composition changes in rice bran hydrolysate (RBH). The extraction yield and degree of hydrolysis of the irradiated sample were greater than those of the pressurized and control samples, which radiation at 10 kGy gave 31 % yield. Protein content of the control was the highest at 36.1 %, with 32.4 % in pressurized sample at 500 MPa. Control had the highest concentration of total and branched-chain amino acids, with a value of 25,834 mg/100g. Before and after extraction, the microstructure changed visibly and protein agglomeration can be significantly induced by applying a high-pressure. Therefore, this study showed the potential of using both pretreatment methods prior to enzymolysis extraction, with radiation producing more extract. High-pressure produced more protein content, but neither method produced any difference in amino acid content.
Collapse
Affiliation(s)
- Sikarin Masamran
- Department of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Klong Nueng, Klong Luang, Pathumthani 12121, Thailand
| | - Supattra Supawong
- Department of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Klong Nueng, Klong Luang, Pathumthani 12121, Thailand
| |
Collapse
|
7
|
Yan K, Liu J, Yan W, Wang Q, Huo Y, Feng S, Zhang L, Hu Q, Xu J. Effects of Alkaline Hydrogen Peroxide and Cellulase Modifications on the Physicochemical and Functional Properties of Forsythia suspensa Dietary Fiber. Molecules 2023; 28:7164. [PMID: 37894643 PMCID: PMC10608965 DOI: 10.3390/molecules28207164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Besides active substances, Forsythia suspensa is rich in dietary fiber (DF), but it is often wasted or discarded and not put to good use. In order to improve the function of Forsythia DF, it was modified using alkaline hydrogen peroxide (AHP) and cellulase (EM). Compared to the control DF (ODF), the DF modified using AHP (AHDF) and EM (EMDF) had a looser microstructure, lower crystallinity, and higher oil holding capacity (OHC) and cation exchange capacity (CEC). The AHP treatment significantly increased the water holding capacity (WHC) and water swelling ability (WSA) of the DF, while the EM treatment achieved just the opposite. Moreover, the functional properties of AHDF and EMDF, including their cholesterol adsorption capacity (CAC), nitrite ion adsorption capacity (NAC), glucose adsorption capacity (GAC), glucose dialysis retardation index (GDRI), α-amylase inhibitory activity, and DPPH radical scavenging activity, were far better than those of ODF. Together, the results revealed that AHP and EM modifications could effectively improve or enhance the physicochemical and functional properties of Forsythia suspensa DF.
Collapse
Affiliation(s)
- Kejing Yan
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (K.Y.); (J.L.); (W.Y.); (Y.H.); (S.F.); (L.Z.)
| | - Jiale Liu
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (K.Y.); (J.L.); (W.Y.); (Y.H.); (S.F.); (L.Z.)
| | - Wensheng Yan
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (K.Y.); (J.L.); (W.Y.); (Y.H.); (S.F.); (L.Z.)
| | - Qing Wang
- College of Life Science, Shanxi Normal University, Taiyuan 030031, China;
| | - Yanxiong Huo
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (K.Y.); (J.L.); (W.Y.); (Y.H.); (S.F.); (L.Z.)
| | - Saisai Feng
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (K.Y.); (J.L.); (W.Y.); (Y.H.); (S.F.); (L.Z.)
| | - Liangliang Zhang
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (K.Y.); (J.L.); (W.Y.); (Y.H.); (S.F.); (L.Z.)
| | - Qingping Hu
- College of Life Science, Shanxi Normal University, Taiyuan 030031, China;
| | - Jianguo Xu
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (K.Y.); (J.L.); (W.Y.); (Y.H.); (S.F.); (L.Z.)
| |
Collapse
|
8
|
Zhu R, Tan S, Wang Y, Zhang L, Huang L. Physicochemical Properties and Hypolipidemic Activity of Dietary Fiber from Rice Bran Meal Obtained by Three Oil-Production Methods. Foods 2023; 12:3695. [PMID: 37835348 PMCID: PMC10572562 DOI: 10.3390/foods12193695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
This study investigated the effects of three oil production methods on the physicochemical properties of dietary fiber from rice bran flour, and the hypolipidemic effects of the dietary fibers were investigated in vitro and in vivo. The particle size results showed that the organic-solvent-impregnated rice bran meal dietary fiber (N-RBDF) had the smallest average particle size and the aqueous enzymatic rice bran meal dietary fiber (E-RBDF) had the narrowest particle size distribution. Scanning electron microscopy (SEM) results demonstrated that all three kinds of rice bran meal dietary fibers (RBDFs) were irregularly flaky. Fourier transform infrared spectroscopy (FT-IR) results revealed that the three RBDFs had similar reactive groups, and X-ray diffraction (XRD) results indicated that all three RBDFs were cellulose type I crystals. The results of thermogravimetric analysis showed that the lignin content of N-RBDF was significantly lower than that of the other two. Among the three kinds of RBDFs, E-RBDF had higher water retention capacity, swelling capacity, oil holding capacity, and adsorption capacity for cholesterol and sodium bile salts. The results of experimental studies in hyperlipidemic rats showed that all three kinds of RBDFs significantly reduced triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) and elevated high-density lipoprotein cholesterol (HDL-C) in the serum of hyperlipidemic rats; they also significantly lowered malondialdehyde (MDA) and elevated total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) activities in the livers of rats. In addition, all three kinds of RBDFs decreased aminotransferase (ALT) and aminotransferase (AST) activity in serum and also improved liver steatosis and reduced atherosclerosis index (AI) in rats with hyperlipidemia. Our study provides a reference for the development and utilization of rice bran meal and the application of rice bran meal dietary fiber in food processing.
Collapse
Affiliation(s)
- Renwei Zhu
- School of Materials and Chemical Engineering, Tongren University, Tongren 554300, China
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, China
| | - Sha Tan
- School of Materials and Chemical Engineering, Tongren University, Tongren 554300, China
| | - Yayi Wang
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, China
| | - Linwei Zhang
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, China
| | - Liang Huang
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, China
| |
Collapse
|
9
|
Fayaz G, Soleimanian Y, Mhamadi M, Turgeon SL, Khalloufi S. The applications of conventional and innovative mechanical technologies to tailor structural and functional features of dietary fibers from plant wastes: A review. Compr Rev Food Sci Food Saf 2022; 21:2149-2199. [DOI: 10.1111/1541-4337.12934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/04/2021] [Accepted: 02/05/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Goly Fayaz
- Soils Science and Agri‐Food Engineering Department Laval University Québec Canada
- Institute of Nutrition and Functional Foods Laval University Québec Canada
| | - Yasamin Soleimanian
- Soils Science and Agri‐Food Engineering Department Laval University Québec Canada
- Institute of Nutrition and Functional Foods Laval University Québec Canada
| | - Mmadi Mhamadi
- Soils Science and Agri‐Food Engineering Department Laval University Québec Canada
- Institute of Nutrition and Functional Foods Laval University Québec Canada
| | - Sylvie L. Turgeon
- Institute of Nutrition and Functional Foods Laval University Québec Canada
- Food Science Department Laval University Québec Canada
| | - Seddik Khalloufi
- Soils Science and Agri‐Food Engineering Department Laval University Québec Canada
- Institute of Nutrition and Functional Foods Laval University Québec Canada
| |
Collapse
|
10
|
The effects of enzymatic modification on the functional ingredient - Dietary fiber extracted from potato residue. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Zadeike D, Vaitkeviciene R, Degutyte R, Bendoraitiene J, Rukuiziene Z, Cernauskas D, Svazas M, Juodeikiene G. A comparative study on the structural and functional properties of water‐soluble and alkali‐soluble dietary fibres from rice bran after hot‐water, ultrasound, hydrolysis by cellulase, and combined pre‐treatments. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Daiva Zadeike
- Department of Food Science and Technology Kaunas University of Technology Radvilenu rd. 19 Kaunas LT‐50254 Lithuania
| | - Ruta Vaitkeviciene
- Department of Food Science and Technology Kaunas University of Technology Radvilenu rd. 19 Kaunas LT‐50254 Lithuania
| | - Rimgaile Degutyte
- Department of Food Science and Technology Kaunas University of Technology Radvilenu rd. 19 Kaunas LT‐50254 Lithuania
| | - Joana Bendoraitiene
- Department of Polymer Chemistry and Technology Kaunas University of Technology Radvilenu rd. 19 Kaunas LT‐50254 Lithuania
| | - Zaneta Rukuiziene
- Centre of Laboratories Faculty of Mechanical Engineering and Design Kaunas University of Technology Studentu str. 56 Kaunas LT‐51424 Lithuania
| | - Darius Cernauskas
- Food Institute of Kaunas University of Technology Radvilenu rd. 19 Kaunas LT‐50254 Lithuania
| | - Mantas Svazas
- Department of Food Science and Technology Kaunas University of Technology Radvilenu rd. 19 Kaunas LT‐50254 Lithuania
| | - Grazina Juodeikiene
- Department of Food Science and Technology Kaunas University of Technology Radvilenu rd. 19 Kaunas LT‐50254 Lithuania
| |
Collapse
|
12
|
Mulla MZ, Ahmed J, Baskaya‐Sezer D, Al‐Ruwaih N. Effect of high‐pressure treatment and cellulase‐mediate hydrolysis on functional, rheological and microstructural properties of garden cress seed residual fibre. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mehrajfatema Z. Mulla
- Environment & Life Sciences Research Center Kuwait Institute for Scientific Research P.O. Box 24885 Safat 13109 Kuwait
| | - Jasim Ahmed
- Environment & Life Sciences Research Center Kuwait Institute for Scientific Research P.O. Box 24885 Safat 13109 Kuwait
| | - Duygu Baskaya‐Sezer
- The Department of Food Engineering Middle East Technical University Ankara Turkey
| | - Noor Al‐Ruwaih
- Environment & Life Sciences Research Center Kuwait Institute for Scientific Research P.O. Box 24885 Safat 13109 Kuwait
| |
Collapse
|
13
|
Evaluation of the Structural, Physicochemical and Functional Properties of Dietary Fiber Extracted from Newhall Navel Orange By-Products. Foods 2021; 10:foods10112772. [PMID: 34829055 PMCID: PMC8625875 DOI: 10.3390/foods10112772] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/23/2022] Open
Abstract
Ultrasound-assisted enzymatic treatment was used to treat Newhall navel orange peel and residue, and then the structural, physicochemical and functional properties of extracted soluble dietary fibers (SDF) and insoluble dietary fibers (IDF) were investigated. The structural properties were determined using scanning electron microscopy, X-ray diffraction, FT-IR and monosaccharide composition. Among these dietary fibers, residue-SDF showed a more complex structure, while peel-IDF exhibited a looser structure. Four samples showed representative infrared spectral features of polysaccharides, typical cellulose crystalline structure and diverse monosaccharide composition. Furthermore, residue-IDF exhibited higher oil-holding capacity (2.08 g/g), water-holding capacity (13.43 g/g) and nitrite ion adsorption capacity (NIAC) than other three samples, and residue-SDF showed the highest swelling capacity (23.33 mL/g), cation exchange capacity (0.89 mmol/g) and cholesterol adsorption capacity (CAC) among these dietary fibers. In summary, this study suggests that the residue-SDF and residue-IDF could be used as the ideal dietary fibers for application in the functional food industry.
Collapse
|
14
|
Effects of modification methods on microstructural and physicochemical characteristics of defatted rice bran dietary fiber. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
Modification of insoluble dietary fiber from rice bran with dynamic high pressure microfluidization: Cd(II) adsorption capacity and behavior. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Saroj R, Singh V, Kushwaha R, Singh M, Kaur D. Screening of the antioxidant, nutritional, physical, and functional properties of bran obtained from six Indian wheat cultivars. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Reshma Saroj
- Center of Food Technology University of Allahabad Allahabad India
| | - Vinti Singh
- Center of Food Technology University of Allahabad Allahabad India
| | - Radha Kushwaha
- Center of Food Technology University of Allahabad Allahabad India
| | - Monika Singh
- Center of Food Technology University of Allahabad Allahabad India
| | - Devinder Kaur
- Center of Food Technology University of Allahabad Allahabad India
| |
Collapse
|
17
|
Sezer DB, Ahmed J, Sumnu G, Sahin S. Green processing of sour cherry (Prunus cerasus L.) pomace: process optimization for the modification of dietary fibers and property measurements. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00883-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Chemical composition, structure, physicochemical and functional properties of rice bran dietary fiber modified by cellulase treatment. Food Chem 2020; 342:128352. [PMID: 33268168 DOI: 10.1016/j.foodchem.2020.128352] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
Abstract
Rice bran dietary fiber (ERBDF) subjected to pre-water-washing and complex enzyme treatment using heat-stable α-amylase, alcalase, and glucoamylase had significantly higher (p < 0.05) proportions of cellulose, hemicellulose, lignin, and lower proportions of lipid, protein, and starch than rice bran dietary fiber subjected to complex enzyme treatment without pre-water-washing. Cellulase modification of ERBDF significantly decreased (p < 0.05) cellulose, hemicellulose, starch, and protein contents while the relative lignin content increased. Cellulase modification significantly improved (p < 0.05) water-holding capacity, oil-holding capacity, swelling capacity, cholesterol absorption capacity, and glucose adsorption capacity, while decreasing the emulsifying capacity and glucose dialysis retardation index. The changes of physicochemical and functional properties of fiber samples after cellulase modification were attributed to the increased porosity of the fiber surface, greater exposure of binding sites caused by reduced crystallinity, and changes to the chemical composition.
Collapse
|
19
|
|