1
|
Kumar V, Verma P. Microbial valorization of kraft black liquor for production of platform chemicals, biofuels, and value-added products: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121631. [PMID: 38986370 DOI: 10.1016/j.jenvman.2024.121631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
The proper treatment and utilization of kraft black liquor, generated from the pulp and paper industry through the kraft pulping method, is required to reduce environmental impacts prior to the final disposal. It also improves the economic performance through the utilization of waste. Microbial valorization appears to demonstrates the dual benefits of waste management and resource recovery by providing an innovative solution to convert kraft black liquor into resource for reuse. A comprehensive review on the microbial valorization of kraft black liquor, describing the role in valorization and management, is still lacking in the literature, forming the rationale of this article. Thus, the present study reviews and systematically discusses the potential of utilizing microorganisms to valorize kraft black liquor as a sustainable feedstock to develop a numerous portfolio of platform chemicals, bioenergy, and other value-added products. This work contributes to sustainability and resource efficiency within the pulp and paper industry. The recent developments in utilization of synthetic biology tools and molecular techniques, including omics approaches for engineering novel microbial strains, for enhancing kraft black liquor valorization has been presented. This review explores how the better utilization of kraft black liquor in the pulp and paper industry contributes to achieving UN Sustainable Development Goals (SDGs), particularly clean water and sanitation (SDG 6) as well as the affordable and clean energy goal (SDG 7). The current review also addresses challenges related to toxicity, impurities, low productivity, and downstream processing that serve as obstacles to the progress of developing highly efficient bioproducts. The new directions for future research efforts to fill the critical knowledge gaps are proposed. This study concludes that by implementing microbial valorization techniques, the pulp and paper industry can transition from a linear to a circular bioeconomy and eco-friendly manage the kraft black liuor. This approach showed to be effective towards resource recovery, while simultaneously minimizing the environmental burden.
Collapse
Affiliation(s)
- Vineet Kumar
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
2
|
Nuncira J, Manoel GF, Ribas Batalha LA, Gonçalves LM, Mendoza-Martinez C, Cardoso M, Vakkilainen EK. Comparison of thermal, rheological properties of Finnish Pinus sp. and Brazilian Eucalyptus sp. black liquors and their impact on recovery units. Sci Rep 2024; 14:15498. [PMID: 38969829 PMCID: PMC11226715 DOI: 10.1038/s41598-024-66513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024] Open
Abstract
Black liquor (BL) is the major bioproduct and biomass fuel in pulp mill processes. However, the high viscosity of BL makes it a challenging material to work with, resulting in issues with evaporators and heat exchangers during its transport and processing. The thermal and rheological properties of BLs from Pinus sp. (PBL) and Eucalyptus sp. (EBL) were studied. FTIR spectra revealed the presence of the characteristic functional groups and the chemical composition in liquors. TGA/DTG curves showed three characteristic degradation stages related to evaporation of water, pyrolysis of organic groups, and condensation of char. Rheologically, liquors are classified as non-Newtonian and with comportment pseudoplastic. Their rheological dynamic shear properties included a linear viscoelastic region up to 1% shear strain, while frequency sweeps showed that storage modulus (G') > loss modulus (G''), thus confirming the solid-like behavior of both BLs. The rheological study demonstrated that increasing the temperature and oscillatory deformations of PBL and EBL decreased their degree of viscoelasticity, which could favor their pumping and handling within the pulp mill, as well as the droplet formation and swelling characteristics in the recovery furnace.
Collapse
Affiliation(s)
- Jesús Nuncira
- LUT University, Yliopistonkatu 34, 53850, Lappeenranta, Finland
| | - Getúlio Francisco Manoel
- Pontifical Catholic University of Minas Gerais (PUC Minas), Belo Horizonte, MG, 30535-000, Brazil
| | | | - Lindomar Matias Gonçalves
- Institute of Pure and Applied Sciences, Federal University of Itajubá (UNIFEI), Rua Irmã Ivone Drumond, 200 - Industrial District II, Itabira, MG, 35903-087, Brazil
| | | | - Marcelo Cardoso
- Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | | |
Collapse
|
3
|
Raditya VYA, Lubis MAR, Sari RK, Antov P, Lee SH, Kristak L, Mardawati E, Iswanto AH. Properties of Ramie ( Boehmeria nivea (L.) Gaudich) Fibers Impregnated with Non-Isocyanate Polyurethane Resins Derived from Lignin. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5704. [PMID: 37629995 PMCID: PMC10456696 DOI: 10.3390/ma16165704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
The textile industries need an alternative to cotton since its supply is unable to keep up with the growing global demand. The ramie (Boehmeria nivea (L.) Gaudich) fiber has a lot of potential as a renewable raw material but has low fire-resistance, which should be improved. In this work, the objectives were to investigate the characteristics of lignin derived from black liquor of kraft pulping, as well as the properties of the developed lignin-based non-isocyanate-polyurethane (L-NIPU), and to analyze ramie fiber before and after impregnation with L-NIPU. Two different formulations of L-NIPU were impregnated into ramie fiber for 30, 60, and 90 min at 25 × 2 °C under 50 kPa. The calculation of the Weight Percent Gain (WPG), Fourier Transform Infrared Spectrometer (FTIR), Rotational Rheometer, Dynamic Mechanical Analyzer (DMA), Pyrolysis Gas Chromatography Mass Spectrometer (Py-GCMS), Universal Testing Machine (UTM), and hydrolysis test were used to evaluate the properties of ramie fibers. The result showed that ramie fiber impregnated with L-NIPU produced higher mechanical property values and WPG than non-impregnated ramie fiber. There is a tendency that the longer impregnation time results in better WPG values, FTIR intensity of the urethane group, thermomechanical properties, crystallinity, and mechanical properties of ramie fiber. However, the use of DMC and HMT cannot replace the role of isocyanates in the synthesis of L-NIPU because it produces lower heat resistance than ramie impregnated using pMDI. Based on the results obtained, the impregnation of ramie fiber with L-NIPU represents a promising approach to increase its wider industrial application as a functional material.
Collapse
Affiliation(s)
- Vincentius Yolanda Angger Raditya
- Department of Forest Products, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia;
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Jakarta Pusat 16911, Indonesia
| | - Muhammad Adly Rahandi Lubis
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Jakarta Pusat 16911, Indonesia
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Bandung 45363, Indonesia;
| | - Rita Kartika Sari
- Department of Forest Products, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia;
| | - Petar Antov
- Faculty of Forest Industry, University of Forestry, 1797 Sofia, Bulgaria;
| | - Seng Hua Lee
- Department of Wood Industry, Faculty of Applied Sciences, The MARA Technological University, Shah Alam 40450, Malaysia;
| | - Lubos Kristak
- Faculty of Wood Sciences and Technology, Technical University in Zvolen, 96001 Zvolen, Slovakia;
| | - Efri Mardawati
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Bandung 45363, Indonesia;
- Department of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Apri Heri Iswanto
- Department of Forest Products Technology, Faculty of Forestry, Universitas Sumatera Utara, Kwala Bekala Campus, Medan 20355, Indonesia;
| |
Collapse
|
4
|
Influence of Lignin Content and Pressing Time on Plywood Properties Bonded with Cold-Setting Adhesive Based on Poly (Vinyl Alcohol), Lignin, and Hexamine. Polymers (Basel) 2022; 14:polym14102111. [PMID: 35631993 PMCID: PMC9144503 DOI: 10.3390/polym14102111] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 12/18/2022] Open
Abstract
The sustainability, performance, and cost of production in the plywood industry depend on wood adhesives and the hot-pressing process. In this study, a cold-setting plywood adhesive was developed based on polyvinyl alcohol (PVOH), high-purity lignin, and hexamine. The influence of lignin content (10%, 15%, and 20%) and cold-pressing time (3, 6, 12, and 24 h) on cohesion, adhesion, and formaldehyde emission of plywood were investigated through physical, chemical, thermal, and mechanical analyses. The increased lignin addition level lowered the solids content, which resulted in reduced average viscosity of the adhesive. As a result, the cohesion strength of the adhesive formulation with 10% lignin addition was greater than those of 15% and 20% lignin content. Markedly, the adhesive formulation containing a 15% lignin addition level exhibited superior thermo-mechanical properties than the blends with 10% and 20% lignin content. This study showed that 10% and 15% lignin content in the adhesive resulted in better cohesion strength than that with 20% lignin content. However, statistical analysis revealed that the addition of 20% lignin in the adhesive and using a cold-pressing time of 24 h could produce plywood that was comparable to the control polyurethane resins, i.e., dry tensile shear strength (TSS) value of 0.95 MPa, modulus of rupture (MOR) ranging from 35.8 MPa, modulus of elasticity (MOE) values varying from 3980 MPa, and close-to-zero formaldehyde emission (FE) of 0.1 mg/L, which meets the strictest emission standards. This study demonstrated the feasibility of fabricating eco-friendly plywood bonded with PVOH–lignin–hexamine-based adhesive using cold pressing as an alternative to conventional plywood.
Collapse
|
5
|
Feng X, Larson RA, Digman MF. Evaluating the Feasibility of a Low-Field Nuclear Magnetic Resonance (NMR) Sensor for Manure Nutrient Prediction. SENSORS 2022; 22:s22072438. [PMID: 35408053 PMCID: PMC9002543 DOI: 10.3390/s22072438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/16/2022]
Abstract
Livestock manure is typically applied to fertilize crops, however the accurate determination of manure nutrient composition through a reliable method is important to optimize manure application rates that maximize crop yields and prevent environmental contamination. Existing laboratory methods can be time consuming, expensive, and generally the results are not provided prior to manure application. In this study, the evaluation of a low-field nuclear magnetic resonance (NMR) sensor designated for manure nutrient prediction was assessed. Twenty dairy manure samples were analyzed for total solid (TS), total nitrogen (TN), ammoniacal nitrogen (NH4-N), and total phosphorus (TP) in a certified laboratory and in parallel using the NMR analyzer. The linear regression of NMR prediction versus lab measurements for TS had an R2 value of 0.86 for samples with TS < 8%, and values of 0.94 and 0.98 for TN and NH4-N, respectively, indicating good correlations between NMR prediction and lab measurements. The TP prediction of NMR for all samples agreed with the lab analysis with R2 greater than 0.87. The intra- and inter-sample variations of TP measured by NMR were significantly larger than other parameters suggesting less robustness in TP prediction. The results of this study indicate low-field NMR is a rapid method that has a potential to be utilized as an alternative to laboratory analysis of manure nutrients, however, further investigation is needed before wide application for on farm analysis.
Collapse
|
6
|
Handika SO, Lubis MAR, Sari RK, Laksana RPB, Antov P, Savov V, Gajtanska M, Iswanto AH. Enhancing Thermal and Mechanical Properties of Ramie Fiber via Impregnation by Lignin-Based Polyurethane Resin. MATERIALS 2021; 14:ma14226850. [PMID: 34832252 PMCID: PMC8617714 DOI: 10.3390/ma14226850] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 12/03/2022]
Abstract
In this study, lignin isolated and fractionated from black liquor was used as a pre-polymer to prepare bio-polyurethane (Bio-PU) resin, and the resin was impregnated into ramie fiber (Boehmeria nivea (L.) Gaudich) to improve its thermal and mechanical properties. The isolated lignin was fractionated by one-step fractionation using two different solvents, i.e., methanol (MeOH) and acetone (Ac). Each fractionated lignin was dissolved in NaOH and then reacted with a polymeric 4,4-methane diphenyl diisocyanate (pMDI) polymer at an NCO/OH mole ratio of 0.3. The resulting Bio-PU was then used in the impregnation of ramie fiber. The characterization of lignin, Bio-PU, and ramie fiber was carried out using several techniques, i.e., Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), pyrolysis-gas-chromatography-mass-spectroscopy (Py-GCMS), Micro Confocal Raman spectroscopy, and an evaluation of fiber mechanical properties (modulus of elasticity and tensile strength). Impregnation of Bio-PU into ramie fiber resulted in weight gain ranging from 6% to 15%, and the values increased when extending the impregnation time. The reaction between the NCO group on Bio-PU and the OH group on ramie fiber forms a C=O group of urethane as confirmed by FTIR and Micro Confocal Raman spectroscopies at a wavenumber of 1600 cm−1. Based on the TGA analysis, ramie fiber with lignin-based Bio-PU had better thermal properties than ramie fiber before impregnation with a greater weight residue of 21.7%. The mechanical properties of ramie fiber also increased after impregnation with lignin-based Bio-PU, resulting in a modulus of elasticity of 31 GPa for ramie-L-isolated and a tensile strength of 577 MPa for ramie-L-Ac. The enhanced thermal and mechanical properties of impregnated ramie fiber with lignin-based Bio-PU resins could increase the added value of ramie fiber and enhance its more comprehensive industrial application as a functional material.
Collapse
Affiliation(s)
- Sucia Okta Handika
- Department of Forest Products, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia;
| | - Muhammad Adly Rahandi Lubis
- Research Center for Biomaterials, National Research and Innovation Agency, Cibinong 16911, Indonesia;
- Correspondence: (M.A.R.L.); (R.K.S.); (M.G.)
| | - Rita Kartika Sari
- Department of Forest Products, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia;
- Correspondence: (M.A.R.L.); (R.K.S.); (M.G.)
| | | | - Petar Antov
- Faculty of Forest Industry, University of Forestry, 1797 Sofia, Bulgaria; (P.A.); (V.S.)
| | - Viktor Savov
- Faculty of Forest Industry, University of Forestry, 1797 Sofia, Bulgaria; (P.A.); (V.S.)
| | - Milada Gajtanska
- Faculty of Wood Sciences and Technology, Technical University in Zvolen, 96001 Zvolen, Slovakia
- Correspondence: (M.A.R.L.); (R.K.S.); (M.G.)
| | - Apri Heri Iswanto
- Department of Forest Product, Faculty of Forestry, Universitas Sumatera Utara, Medan 20155, Indonesia;
| |
Collapse
|