1
|
Ren N, Huang H, Liu B, Wu C, Xiang J, Zhou Q, Kang S, Zhang X, Jiang Y. Interactive effects of atmospheric oxidising pollutants and heat waves on the risk of residential mortality. Glob Health Action 2024; 17:2313340. [PMID: 38381455 PMCID: PMC10883108 DOI: 10.1080/16549716.2024.2313340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND The impact of heat waves and atmospheric oxidising pollutants on residential mortality within the framework of global climate change has become increasingly important. OBJECTIVE In this research, the interactive effects of heat waves and oxidising pollutants on the risk of residential mortality in Fuzhou were examined. Methods We collected environmental, meteorological, and residential mortality data in Fuzhou from 1 January 2016, to 31 December 2021. We then applied a generalised additive model, distributed lagged nonlinear model, and bivariate three-dimensional model to investigate the effects and interactions of various atmospheric oxidising pollutants and heat waves on the risk of residential mortality. RESULTS Atmospheric oxidising pollutants increased the risk of residential mortality at lower concentrations, and O3 and Ox were positively associated with a maximum risk of 2.19% (95% CI: 0.74-3.66) and 1.29% (95% CI: 0.51-2.08). The risk of residential mortality increased with increasing temperature, with a strong and long-lasting effect and a maximum cumulative lagged effect of 1.11% (95% CI: 1.01, 1.23). Furthermore, an interaction between atmospheric oxidising pollutants and heat waves may have occurred: the larger effects in the longest cumulative lag time on residential mortality per 10 µg/m3 increase in O3, NO2 and Ox during heat waves compared to non-heat waves were [-3.81% (95% CI: -14.82, 8.63)]; [-0.45% (95% CI: -2.67, 1.81)]; [67.90% (95% CI: 11.55, 152.71)]; 16.37% (95% CI: 2.43, 32.20)]; [-3.00% (95% CI: -20.80, 18.79)]; [-0.30% (95% CI: -3.53, 3.04)]. The risk on heat wave days was significantly higher than that on non-heat wave days and higher than the separate effects of oxidising pollutants and heat waves. CONCLUSIONS Overall, we found some evidence suggesting that heat waves increase the impact of oxidising atmospheric pollutants on residential mortality to some extent.
Collapse
Affiliation(s)
- Nan Ren
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Huimin Huang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Baoying Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Chuancheng Wu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jianjun Xiang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Quan Zhou
- Department of Public Health, Fuzhou Center for Disease Control and Prevention, Fuzhou, China
| | - Shuling Kang
- Department of Public Health, Fuzhou Center for Disease Control and Prevention, Fuzhou, China
| | - Xiaoyang Zhang
- Department of Public Health, Fuzhou Center for Disease Control and Prevention, Fuzhou, China
| | - Yu Jiang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| |
Collapse
|
2
|
McIntyre A, Heidari L, Hagen M, Bongiovanni R, Bowman BN, Fabian P, Kinney P, Scammell MK. Extreme Heat and Air Quality: Community Leader Perspectives on Information Barriers and Opportunities in Two Environmental Justice Communities. New Solut 2024:10482911241290557. [PMID: 39445356 DOI: 10.1177/10482911241290557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Extreme heat and air pollution exposure are leading causes of adverse cardiorespiratory health outcomes. Exposure reduction strategies are often focused at the local level. This study examined critical challenges community leaders face in understanding and sharing environmental exposure and health information. We conducted interviews with 19 community leaders of two urban environmental justice communities in Massachusetts, United States. Using directed content analysis, we examined air quality and heat perceptions, information and data resources, and barriers to understanding and communicating relevant local information. Participants shared concerns about both poor air quality and extreme heat. They also expressed the opinion that exposure risk information about these topics is siloed; heat and air quality data can be hard to access, interpret, and effectively communicate with community members. Solutions recommended by participants included community engagement, open-data portals, and creative science communication. Increasing sustainable collaborations among academic, government, healthcare, and nonprofit sectors is recommended.
Collapse
Affiliation(s)
- Alina McIntyre
- Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Leila Heidari
- Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Michael Hagen
- Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Roseann Bongiovanni
- Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | | | - Patricia Fabian
- Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Patrick Kinney
- Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | | |
Collapse
|
3
|
Brito FC, Saba H, Panizio RM, Nobre CP, Guarieiro LLN, Ferreira CV, Ferreira P, Santos AÁB, Nascimento Filho AS. Consumer-driven selection of low-emission vehicles for sustainable urban centers: An AHP-based approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176993. [PMID: 39423882 DOI: 10.1016/j.scitotenv.2024.176993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/19/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
In densely populated urban areas, air quality is one of the main concerns, affecting human health and the environment. In developing and emerging countries, an alternative method for reducing the effects of air pollution is to select vehicles with lower pollutant emissions, as a way of making these large centers more sustainable. Since the complete elimination of vehicle emissions is not possible in the short term. The aim of this work is conducting a selectivity study of low-emission vehicles to increase the proportion of less polluting vehicles by using a dynamic combination of technical information while simultaneously meeting consumer preferences. An adapted Analytic Hierarchy Process (AHP), a multi-criteria technique, was applied on secondary data on vehicle characteristics. The Brazilian Labeling Program was the main resource used in this research. The research innovatively promotes vehicle selection considering environmental aspects. In addition to being adaptable, dynamic, and interactive, it facilitates its use in different vehicle markets and contributes to policies for reducing pollutant emissions. Thus, the study presents a strategy to minimize vehicle emissions in urban centers until the energy transition is consolidated, especially in emerging countries like Brazil.
Collapse
Affiliation(s)
- Filipe Cardoso Brito
- Centro Uniersitário SENAI CIMATEC, Orlando Gomes Avenue, 1845 - Piatã, Salvador 41650-010, Bahia, Brazil; Núcleo de Pesquisa Aplicada e Inovação - NPAI, Orlando Gomes Avenue, 1845 - Piatã, Salvador 41650-010, Bahia, Brazil
| | - Hugo Saba
- Centro Uniersitário SENAI CIMATEC, Orlando Gomes Avenue, 1845 - Piatã, Salvador 41650-010, Bahia, Brazil; Universidade do Estado da Bahia - UNEB, Silveira Martins Street, 2555 - Cabula, Salvador 41150-000, Bahia, Brazil; Núcleo de Pesquisa Aplicada e Inovação - NPAI, Orlando Gomes Avenue, 1845 - Piatã, Salvador 41650-010, Bahia, Brazil
| | - Roberta Mota Panizio
- Instituto Politécnico de Portalegre - IPP, Praça do Município, 11, Portalegre 7300-110, Portugal
| | - Catarina Pereira Nobre
- Instituto Politécnico de Portalegre - IPP, Praça do Município, 11, Portalegre 7300-110, Portugal
| | - Lilian Lefol Nani Guarieiro
- Centro Uniersitário SENAI CIMATEC, Orlando Gomes Avenue, 1845 - Piatã, Salvador 41650-010, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT EA, Salvador 40170-115, Bahia, Brazil
| | - Cristiano Vasconcellos Ferreira
- Universidade Federal de Santa Catarina - Campus Joinville - Departamento de Engenharias da Mobilidade, Rua Dona Francisca, 8300 - Distrito Industrial de Joinville, Joinville 89219-600, Santa Catarina, Brazil
| | - Paulo Ferreira
- Instituto Politécnico de Portalegre - IPP, Praça do Município, 11, Portalegre 7300-110, Portugal; VALORIZA, Research Center for Endogenous Resource Valorization, Polytechnic University, Portalegre 7300-550, Portugal; CEFAGE-UE, IIFA, Universidade de Évora, Évora 7000-809, Évora, Portugal
| | - Alex Álisson Bandeira Santos
- Centro Uniersitário SENAI CIMATEC, Orlando Gomes Avenue, 1845 - Piatã, Salvador 41650-010, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT EA, Salvador 40170-115, Bahia, Brazil; Instituto de Ciência, Inovação e Tecnologia em Energias Renováveis do Estado da Bahia - INCITERE, Salvador 40210-190, Bahia, Brazil
| | - Aloísio S Nascimento Filho
- Centro Uniersitário SENAI CIMATEC, Orlando Gomes Avenue, 1845 - Piatã, Salvador 41650-010, Bahia, Brazil; Núcleo de Pesquisa Aplicada e Inovação - NPAI, Orlando Gomes Avenue, 1845 - Piatã, Salvador 41650-010, Bahia, Brazil.
| |
Collapse
|
4
|
Fu K, Zhou Q, Wang H. Variability in Microbial Communities Driven by Particulate Matter on Human Facial Skin. TOXICS 2024; 12:497. [PMID: 39058149 PMCID: PMC11280976 DOI: 10.3390/toxics12070497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Microbial communities are known to play an important role in maintaining ecological balance and can be used as an indicator for assessing environmental pollution. Numerous studies have revealed that air pollution can alter the structure of microbial communities, which may increase health risks. Nevertheless, the relationships between microbial communities and particulate matter (PM) caused by air pollution in terms of health risk assessment are not well understood. This study aimed to validate the influences of PM chemical compositions on microbial communities and assess the associated health risks. Our results, based on similarity analysis, revealed that the stability structure of the microbial communities had a similarity greater than 73%. In addition, the altered richness and diversity of microbial communities were significantly associated with PM chemical compositions. Volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) exerted a positive influence on microbial communities in different environmental variables. Additionally, a stronger linear correlation was observed between hydroxyl radicals (·OH) and the richness of microbial communities. All estimated health risks from PM chemical compositions, calculated under different environmental variables, significantly exceeded the acceptable level by a factor of more than 49. Cr and 1,2-Dibromoethane displayed dual adverse effects of non-carcinogenic and carcinogenic risks. Overall, the study provides insights into the fundamental mechanisms of the variability in microbial communities driven by PM, which may support the crucial role of PM chemical compositions in the risk of microorganisms in the atmospheric environment.
Collapse
Affiliation(s)
- Kai Fu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; (K.F.)
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Heli Wang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; (K.F.)
| |
Collapse
|
5
|
Zhao Y, Li J, Collins RM, Deng K, Wu H, Yang L, Chang F, Wan J. Bridging the gap: Public engagement in blue-green space development for healthier urban futures. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121173. [PMID: 38768523 DOI: 10.1016/j.jenvman.2024.121173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND With the rapid escalation of global urbanization, the role of blue-green spaces in urban ecology, public health, and planning has become increasingly prominent. Although their contributions to ecological preservation, public health, and urban design are widely acknowledged, research into public engagement and willingness to participate in the management and planning of these spaces is still in its early stages. OBJECTIVE This study aims to identify key factors influencing public willingness to participate in blue-green space management, focusing specifically on people's perceptions of blue-green spaces (including perceived quality and accessibility), their usage behaviors (i.e., frequency of usage of blue-green spaces), and their self-assessed physical and mental health. METHODS We interviewed local residents through random sampling to obtain sample data, and used a representative sample (n = 815, 510 women; 305 men, age 18-85 years, lived in Chengdu for an extensive time) of residents living in Chengdu City, China. Employing a quantitative approach, we examined the relationships between factors such as gender, regular occupation, income, behavior, and health status in relation to the willingness to participate. Additionally, we explored how perceptions and behaviors impacted health statuses and, consequently, inclinations to participate. RESULTS The findings indicate that individuals with steady occupations and higher incomes are more inclined to engage in the management and planning of blue-green spaces. Notably, men exhibited a greater tendency to participate than women. Furthermore, access to blue-green spaces emerged as a crucial mechanism for addressing health disparities, offering significant implications for urban planning and public health. CONCLUSION Successful blue-green space planning and understanding of willingness to participate necessitates the holistic consideration of people's perceptions of blue-green spaces, their usage behaviour and their self-rate health. For a tangible impact on health equity and global urban development, it's essential to prioritize blue-green spaces in planning, especially in lower-income regions. This not only promotes environmental perception but can also be a strategic approach to address health disparities. Our findings offer vital insights for tailoring international urban planning and management practices towards these goals.
Collapse
Affiliation(s)
- Yutong Zhao
- School of Architecture and Urban-Rural Planning, Sichuan Agricultural University, Chengdu, 611830, China.
| | - Jia Li
- School of Architecture and Urban-Rural Planning, Sichuan Agricultural University, Chengdu, 611830, China.
| | - Rebecca M Collins
- Geography and Environmental Science, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
| | - Kuntao Deng
- School of Architecture and Urban-Rural Planning, Sichuan Agricultural University, Chengdu, 611830, China.
| | - Hongyu Wu
- School of Architecture and Urban-Rural Planning, Sichuan Agricultural University, Chengdu, 611830, China.
| | - Linchuan Yang
- Department of Urban and Rural Planning, School of Architecture, Southwest Jiaotong University, Chengdu, 611756, China.
| | - Fei Chang
- Sichuan Institute of Land and Spatial Planning, Chengdu, 610081, China.
| | - Jiangjun Wan
- School of Architecture and Urban-Rural Planning, Sichuan Agricultural University, Chengdu, 611830, China.
| |
Collapse
|
6
|
Karim N, Hod R, Wahab MIA, Ahmad N. Projecting non-communicable diseases attributable to air pollution in the climate change era: a systematic review. BMJ Open 2024; 14:e079826. [PMID: 38719294 PMCID: PMC11086555 DOI: 10.1136/bmjopen-2023-079826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVES Climate change is a major global issue with significant consequences, including effects on air quality and human well-being. This review investigated the projection of non-communicable diseases (NCDs) attributable to air pollution under different climate change scenarios. DESIGN This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 flow checklist. A population-exposure-outcome framework was established. Population referred to the general global population of all ages, the exposure of interest was air pollution and its projection, and the outcome was the occurrence of NCDs attributable to air pollution and burden of disease (BoD) based on the health indices of mortality, morbidity, disability-adjusted life years, years of life lost and years lived with disability. DATA SOURCES The Web of Science, Ovid MEDLINE and EBSCOhost databases were searched for articles published from 2005 to 2023. ELIGIBILITY CRITERIA FOR SELECTING STUDIES The eligible articles were evaluated using the modified scale of a checklist for assessing the quality of ecological studies. DATA EXTRACTION AND SYNTHESIS Two reviewers searched, screened and selected the included studies independently using standardised methods. The risk of bias was assessed using the modified scale of a checklist for ecological studies. The results were summarised based on the projection of the BoD of NCDs attributable to air pollution. RESULTS This review included 11 studies from various countries. Most studies specifically investigated various air pollutants, specifically particulate matter <2.5 µm (PM2.5), nitrogen oxides and ozone. The studies used coupled-air quality and climate modelling approaches, and mainly projected health effects using the concentration-response function model. The NCDs attributable to air pollution included cardiovascular disease (CVD), respiratory disease, stroke, ischaemic heart disease, coronary heart disease and lower respiratory infections. Notably, the BoD of NCDs attributable to air pollution was projected to decrease in a scenario that promotes reduced air pollution, carbon emissions and land use and sustainable socioeconomics. Contrastingly, the BoD of NCDs was projected to increase in a scenario involving increasing population numbers, social deprivation and an ageing population. CONCLUSION The included studies widely reported increased premature mortality, CVD and respiratory disease attributable to PM2.5. Future NCD projection studies should consider emission and population changes in projecting the BoD of NCDs attributable to air pollution in the climate change era. PROSPERO REGISTRATION NUMBER CRD42023435288.
Collapse
Affiliation(s)
- Norhafizah Karim
- Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala lumpur, Malaysia
| | - Rozita Hod
- Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala lumpur, Malaysia
| | - Muhammad Ikram A Wahab
- Center of Toxicology and Health Risk Studies (CORE), Universiti Kebangsaan Malaysia Fakulti Sains Kesihatan, Kuala Lumpur, Wilayah Persekutuan, Malaysia
| | - Norfazilah Ahmad
- Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala lumpur, Malaysia
| |
Collapse
|
7
|
Sebastião BF, Hortelão RM, Granadas SS, Faria JM, Pinto JR, Henriques HR. Air quality self-management in asthmatic patients with COPD: An integrative review for developing nursing interventions to prevent exacerbations. Int J Nurs Sci 2024; 11:46-56. [PMID: 38352284 PMCID: PMC10859576 DOI: 10.1016/j.ijnss.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/16/2023] [Accepted: 12/07/2023] [Indexed: 02/16/2024] Open
Abstract
Objectives Asthma-chronic obstructive pulmonary disease (COPD) overlap (ACO) patients experience a lower quality of life, frequent exacerbations, and worse pulmonary function. Environmental management is essential in a complex chronic condition, as pollutant exposure can worsen symptoms and increase morbidity and mortality. We aimed to identify evidence that informs nursing interventions in promoting self-management of air quality in asthmatic people with COPD. Methods We conducted an integrative review in March of 2023. We searched the databases CINAHL, MEDLINE, Academic Search Complete, Cochrane Database of Systematic Reviews (CDSR), Scopus, Web of Science, Joanna Briggs Institute (JBI) Evidence-Based Practice Database, and Google Scholar. We included articles whose participants were adults with asthma, COPD, or both; the intervention was air quality management and the outcome of any exacerbations. We excluded editorials, letters, commentaries, opinion papers, position papers, study protocols, conference abstracts, and reviews. Data extraction and synthesis were performed, categorizing interventions according to nursing actions. Methodological quality assessment was conducted using the JBI Critical Appraisal Checklist tools. The review protocol was registered at Open Science Framework (https://doi.org/10.17605/OSF.IO/5Y4KW). Results We included five articles from different countries. The interventions promoting air quality self-management for individuals with asthma and COPD included vigilance interventions (health professional regular visits, assessment of symptoms), monitoring interventions (measurement of indoor and outdoor trigger factors), and educational interventions (air quality alerts, allergen avoidance). Policy interventions such as smoke-free policies and comprehensive strategies to improve air quality were also identified. These areas of focus represent critical components of nurses' interventions and can integrate the fundamental patterns of knowing in nursing. Although the studies reveal heterogeneous interventions and the methodological quality is variable, these interventions showed potential for preventing exacerbations, reducing emergency department visits, and minimizing hospitalizations. Conclusions The study emphasizes the need for a comprehensive approach involving nurses in multidisciplinary teams to air quality self-management. They can use these results to inform their interventions and ways of knowing, benefiting individuals with asthma and COPD. Further research is needed to expand the evidence base and refine these interventions.
Collapse
Affiliation(s)
- Bruna F. Sebastião
- Nursing School of Lisbon, Lisbon, Portugal
- Hospital Center of Central Lisbon, Portugal
| | - Raquel M. Hortelão
- Nursing School of Lisbon, Lisbon, Portugal
- CUF Tejo Hospital, Lisbon, Portugal
| | - Sara S. Granadas
- Nursing School of Lisbon, Lisbon, Portugal
- University Hospital Center of Northern Lisbon, Lisbon, Portugal
| | - José M. Faria
- Nursing School of Lisbon, Lisbon, Portugal
- Hospital Center of Central Lisbon, Portugal
- Nursing Research, Innovation and Development Centre of Lisbon (CIDNUR), Lisbon, Portugal
| | - Joana R. Pinto
- Nursing School of Lisbon, Lisbon, Portugal
- Hospital Center of Central Lisbon, Portugal
- Nursing Research, Innovation and Development Centre of Lisbon (CIDNUR), Lisbon, Portugal
| | - Helga Rafael Henriques
- Nursing School of Lisbon, Lisbon, Portugal
- Nursing Research, Innovation and Development Centre of Lisbon (CIDNUR), Lisbon, Portugal
| |
Collapse
|
8
|
Yan R, Ying S, Jiang Y, Duan Y, Chen R, Kan H, Fu Q, Gu Y. Associations between ultrafine particle pollution and daily outpatient visits for respiratory diseases in Shanghai, China: a time-series analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3004-3013. [PMID: 38072886 PMCID: PMC10791965 DOI: 10.1007/s11356-023-31248-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024]
Abstract
Previous epidemiological studies have linked short-term exposure to particulate matter with outpatient visits for respiratory diseases. However, evidence on ultrafine particle (UFP) is still scarce in China. To investigate the association between short-term UFP exposure and outpatient visits for respiratory diseases as well as the corresponding lag patterns, information on outpatient visits for main respiratory diseases during January 1, 2017, to December 31, 2019 was collected from electronic medical records of two large tertiary hospitals in Shanghai, China. Generalized additive models employing a Quasi-Poisson distribution were employed to investigate the relationships between UFP and respiratory diseases. We computed the percentage change and its corresponding 95% confidence interval (CI) for outpatient visits related to respiratory diseases per interquartile range (IQR) increase in UFP concentrations. Based on a total of 1,034,394 hospital visits for respiratory diseases in Shanghai, China, we found that the strongest associations of total UFP with acute upper respiratory tract infection (AURTI), bronchitis, chronic obstructive pulmonary disease (COPD), and pneumonia occurred at lag 03, 03, 0, and 03 days, respectively. Each IQR increase in the total UFP concentrations was associated with increments of 9.02% (95% CI: 8.64-9.40%), 3.94% (95% CI: 2.84-5.06%), 4.10% (95% CI: 3.01-5.20%), and 10.15% (95% CI: 9.32-10.99%) for AURTI, bronchitis, COPD, and pneumonia, respectively. Almost linear concentration-response relationship curves without apparent thresholds were observed between total UFP and outpatient-department visits for four respiratory diseases. Stratified analyses illustrated significantly stronger associations of total UFP with AURTI, bronchitis, and pneumonia among female patients, while that with COPD was stronger among male patients. After adjustment of criteria air pollutants, these associations all remained robust. This time-series study indicates that short-term exposure to UFP was associated with increased risk of hospital visits for respiratory diseases, underscoring the importance of reducing ambient UFP concentrations for respiratory diseases control and prevention.
Collapse
Affiliation(s)
- Ran Yan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Shengjie Ying
- Shanghai Minhang District Center for Disease Control and Prevention, Shanghai, 201101, China
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yusen Duan
- Shanghai Environmental Monitoring Center, Shanghai, 200235, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai, 200235, China
| | - Yiqin Gu
- Shanghai Minhang District Center for Disease Control and Prevention, Shanghai, 201101, China.
- Shanghai Minhang Dental Disease Prevention and Treatment Institute, Shanghai, 201103, China.
| |
Collapse
|
9
|
Lo Y, Vosper E, Higgins JP, Howard G. Heat impacts on human health in the Western Pacific Region: an umbrella review. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 42:100952. [PMID: 38022710 PMCID: PMC10652124 DOI: 10.1016/j.lanwpc.2023.100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Background High temperatures and heatwaves are occurring more frequently and lasting longer because of climate change. A synthesis of existing evidence of heat-related health impacts in the Western Pacific Region (WPR) is lacking. This review addresses this gap. Methods The Scopus and PubMed databases were searched for reviews about heat impacts on mortality, cardiovascular morbidity, respiratory morbidity, dehydration and heat stroke, adverse birth outcomes, and sleep disturbance. The last search was conducted in February 2023 and only publications written in English were included. Primary studies and reviews that did not include specific WPR data were excluded. Data were extracted from 29 reviews. Findings There is strong evidence of heat-related mortality in the WPR, with the evidence concentrating on high-income countries and China. Associations between heat and cardiovascular or respiratory morbidity are not robust. There is evidence of heat-related dehydration and stroke, and preterm and still births in high-income countries in the WPR. Some evidence of sleep disturbance from heat is found for Australia, Japan and China. Interpretation Mortality is by far the most studied and robust health outcome of heat. Future research should focus on morbidity, and lower income countries in continental Asia and Pacific Island States, where there is little review-level evidence. Funding Funded by the World Health Organization WPR Office.
Collapse
Affiliation(s)
- Y.T.Eunice Lo
- Cabot Institute for the Environment, University of Bristol, UK
- Elizabeth Blackwell Institute for Health Research, University of Bristol, UK
| | - Emily Vosper
- Cabot Institute for the Environment, University of Bristol, UK
- School of Geographical Sciences, University of Bristol, UK
| | - Julian P.T. Higgins
- Population Health Sciences, Bristol Medical School, University of Bristol, UK
- NIHR Applied Research Collaboration West (ARC West) at University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Guy Howard
- Cabot Institute for the Environment, University of Bristol, UK
- School of Civil, Aerospace and Design Engineering, University of Bristol, UK
| |
Collapse
|
10
|
Tran HM, Tsai FJ, Lee YL, Chang JH, Chang LT, Chang TY, Chung KF, Kuo HP, Lee KY, Chuang KJ, Chuang HC. The impact of air pollution on respiratory diseases in an era of climate change: A review of the current evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:166340. [PMID: 37591374 DOI: 10.1016/j.scitotenv.2023.166340] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
The impacts of climate change and air pollution on respiratory diseases present significant global health challenges. This review aims to investigate the effects of the interactions between these challenges focusing on respiratory diseases. Climate change is predicted to increase the frequency and intensity of extreme weather events amplifying air pollution levels and exacerbating respiratory diseases. Air pollution levels are projected to rise due to ongoing economic growth and population expansion in many areas worldwide, resulting in a greater burden of respiratory diseases. This is especially true among vulnerable populations like children, older adults, and those with pre-existing respiratory disorders. These challenges induce inflammation, create oxidative stress, and impair the immune system function of the lungs. Consequently, public health measures are required to mitigate the effects of climate change and air pollution on respiratory health. The review proposes that reducing greenhouse gas emissions contribute to slowing down climate change and lessening the severity of extreme weather events. Enhancing air quality through regulatory and technological innovations also helps reduce the morbidity of respiratory diseases. Moreover, policies and interventions aimed at improving healthcare access and social support can assist in decreasing the vulnerability of populations to the adverse health effects of air pollution and climate change. In conclusion, there is an urgent need for continuous research, establishment of policies, and public health efforts to tackle the complex and multi-dimensional challenges of climate change, air pollution, and respiratory health. Practical and comprehensive interventions can protect respiratory health and enhance public health outcomes for all.
Collapse
Affiliation(s)
- Huan Minh Tran
- Ph.D. Program in Global Health and Health Security, College of Public Health, Taipei Medical University, Taipei, Taiwan; Faculty of Public Health, Da Nang University of Medical Technology and Pharmacy, Viet Nam
| | - Feng-Jen Tsai
- Ph.D. Program in Global Health and Health Security, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Li-Te Chang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung, Taiwan
| | - Ta-Yuan Chang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Han-Pin Kuo
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; National Heart and Lung Institute, Imperial College London, London, UK; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
11
|
Ding J, Han S, Wang X, Yao Q. Impact of air pollution changes and meteorology on asthma outpatient visits in a megacity in North China Plain. Heliyon 2023; 9:e21803. [PMID: 38027642 PMCID: PMC10651508 DOI: 10.1016/j.heliyon.2023.e21803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
The effects of air pollution and meteorology on asthma is less studied in North China Plain. In the last decade, air quality in this region is markedly mitigated. This study compared the short-term effects of air pollutants on daily asthma outpatient visits (AOV) within different sex and age groups from 2014 to 2016 and 2017-2019 in Tianjin, with the application of distributed lag nonlinear model. Moreover, relative humidity (RH) and temperature as well as the synergistic impact with air pollutants were assessed. Air pollutants-associated risk with linear (different reference values were used) and non-linear assumptions were compared. In 2014-2016, PM10 and PM2.5 exhibited a larger impact on AOV, with the corresponding cumulative excess risks (ER) for every 10 μg/m3 increase at 1.04 % (95%CI:0.67-1.40 %, similarly hereafter) and 0.79 % (0.35-1.23 %), as well as increased to 43 % (26-63 %) and 20 % (10-31 %) at severe pollution. In 2017-2019, NO2 and MDA8 O3 exhibited a larger impact on AOV, with a cumulative ER for every 10 μg/m3 increase at 1.0 (0.63-1.4 %) and 0.36 % (0.15-0.57 %), with corresponding values of 7.9 % (4.8-11 %) and 5.6 % (2.3-9.0 %), at severe pollution. SO2 associated risk was only significant from 2014 to 2016. Cold effect, including extremely low temperature exposure and sharp temperature drop could generate a pronounced increase in AOV at 9.6 % (3.8-16 %) and 24 % (9.1-41 %), respectively. Moderate low temperature combined with air pollutants can enhance AOV during winter. Higher temperature in spring and autumn could trigger asthma by increasing pollen levels. Low RH resulted in AOV increase by 4.6 % (2.4-6.9), while higher RH generated AOV increase by 3.4 % (1.6-5.3). Females, children, and older adults tended to have a higher risk for air pollution, non-optimum temperature, and RH. As air pollution-associated risks on AOV tends to be weaker due to air quality improvement in recent years, the impact of extreme meteorological condition amidst climate change on asthma visits warrants further attention.
Collapse
Affiliation(s)
- Jing Ding
- Tianjin Environmental Meteorological Center, Tianjin 300070, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300070, China
| | - Suqin Han
- Tianjin Environmental Meteorological Center, Tianjin 300070, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300070, China
| | - Xiaojia Wang
- Tianjin Environmental Meteorological Center, Tianjin 300070, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300070, China
| | - Qing Yao
- Tianjin Environmental Meteorological Center, Tianjin 300070, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300070, China
| |
Collapse
|
12
|
Shirinde J, Wichmann J. Temperature modifies the association between air pollution and respiratory disease mortality in Cape Town, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1122-1131. [PMID: 35581190 DOI: 10.1080/09603123.2022.2076813] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
The aim of this 10-year study was to investigate whether and how temperature modifies the association between daily ambient PM10, NO2, SO2 air pollution and daily respiratory disease mortality in Cape Town. A time-stratified case-crossover epidemiological design was applied. Susceptibility by sex and age groups (15-64 years and ≥65 years) was also investigated. On days with medium Tapp levels, NO2 displayed a stronger association with respiratory mortality than PM10 or SO2. Females appeared to be more susceptible to NO2 at medium Tapp levels to males. The 15-64-year-old age group seemed to be more vulnerable to NO2 and PM10 at medium Tapp levels compared to the elderly (≥65 years). At high Tapp levels, females were more susceptible to PM10. The 15-64-year-old group were more vulnerable to NO2 and SO2. The results can be used in present-day early warning systems and in risk assessments to estimate the impact of increased air pollution and temperature.
Collapse
Affiliation(s)
- Joyce Shirinde
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Janine Wichmann
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
13
|
Robinson EJZ. Climate friendly public health policies make economic sense. BMJ 2023; 383:2236. [PMID: 37793690 DOI: 10.1136/bmj.p2236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Affiliation(s)
- Elizabeth J Z Robinson
- Grantham Research Institute on Climate Change and the Environment, London School of Economics and Political Science
| |
Collapse
|
14
|
Sharma R, Humphrey JL, Frueh L, Kinnee EJ, Sheffield PE, Clougherty JE. Neighborhood violence and socioeconomic deprivation influence associations between acute air pollution and temperature on childhood asthma in New York city. ENVIRONMENTAL RESEARCH 2023; 231:116235. [PMID: 37244495 PMCID: PMC10364588 DOI: 10.1016/j.envres.2023.116235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Ambient air pollution, temperature, and social stressor exposures are linked with asthma risk, with potential synergistic effects. We examined associations for acute pollution and temperature exposures, with modification by neighborhood violent crime and socioeconomic deprivation, on asthma morbidity among children aged 5-17 years year-round in New York City. Using conditional logistic regression in a time-stratified, case-crossover design, we quantified percent excess risk of asthma event per 10-unit increase in daily, residence-specific exposures to PM2.5, NO2, SO2, O3, and minimum daily temperature (Tmin). Data on 145,834 asthma cases presenting to NYC emergency departments from 2005 to 2011 were obtained from the New York Statewide Planning and Research Cooperative System (SPARCS). Residence- and day-specific spatiotemporal exposures were assigned using the NYC Community Air Survey (NYCCAS) spatial data and daily EPA pollution and NOAA weather data. Point-level NYPD violent crime data for 2009 (study midpoint) was aggregated, and Socioeconomic Deprivation Index (SDI) scores assigned, by census tract. Separate models were fit for each pollutant or temperature exposure for lag days 0-6, controlling for co-exposures and humidity, and mutually-adjusted interactions (modification) by quintile of violent crime and SDI were assessed. We observed stronger main effects for PM2.5 and SO2 in the cold season on lag day 1 [4.90% (95% CI: 3.77-6.04) and 8.57% (5.99-11.21), respectively]; Tmin in the cold season on lag day 0 [2.26% (1.25-3.28)]; and NO2 and O3 in the warm season on lag days 1 [7.86% (6.66-9.07)] and 2 [4.75% (3.53-5.97)], respectively. Violence and SDI modified the main effects in a non-linear manner; contrary to hypotheses, we found stronger associations in lower-violence and -deprivation quintiles. At very high stressor exposures, although asthma exacerbations were highly prevalent, pollution effects were less apparent-suggesting potential saturation effects in socio-environmental synergism.
Collapse
Affiliation(s)
- Rachit Sharma
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA.
| | - Jamie L Humphrey
- Center for Health Analytics, Media & Policy, RTI International, Research Triangle Park, NC, USA
| | - Lisa Frueh
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA
| | - Ellen J Kinnee
- University Center for Social and Urban Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Perry E Sheffield
- Department of Environmental Medicine and Public Health, and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jane E Clougherty
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
15
|
Yang J, Xu X, Ma X, Wang Z, You Q, Shan W, Yang Y, Bo X, Yin C. Application of machine learning to predict hospital visits for respiratory diseases using meteorological and air pollution factors in Linyi, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88431-88443. [PMID: 37438508 DOI: 10.1007/s11356-023-28682-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Urbanization and industrial development have resulted in increased air pollution, which is concerning for public health. This study evaluates the effect of meteorological factors and air pollution on hospital visits for respiratory diseases (pneumonia, acute upper respiratory infections, and chronic lower respiratory diseases). The test dataset comprises meteorological parameters, air pollutant concentrations, and outpatient hospital visits for respiratory diseases in Linyi, China, from January 1, 2016 to August 20, 2022. We use support vector regression (SVR) to build models that enable analysis of the effect of meteorological factors and air pollutants on the number of outpatient visits for respiratory diseases. Spearman correlation analysis and SVR model results indicate that NO2, PM2.5, and PM10 are correlated with the occurrence of respiratory diseases, with the strongest correlation relating to pneumonia. An increase in the daily average temperature and daily relative humidity decreases the number of patients with pneumonia and chronic lower respiratory diseases but increases the number of patients with acute upper respiratory infections. The SVR modeling has the potential to predict the number of respiratory-related hospital visits. This work demonstrates that machine learning can be combined with meteorological and air pollution data for disease prediction, providing a useful tool whereby policymakers can take preventive measures.
Collapse
Affiliation(s)
- Jing Yang
- Intersection of Wohushan Road and Wuhan Road in Beicheng New Area, Linyi People's Hospital, Linyi, 276000, Shandong, People's Republic of China
| | - Xin Xu
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiaotian Ma
- School of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin City, 132022, People's Republic of China
| | - Zhaotong Wang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Qian You
- School of Management and Engineering, Capital University of Economics and Business, Beijing, 100070, People's Republic of China
| | - Wanyue Shan
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Ying Yang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xin Bo
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- BUCT Institute for Carbon-Neutrality of Chinese Industries, Beijing, 100029, People's Republic of China
| | - Chuansheng Yin
- Intersection of Wohushan Road and Wuhan Road in Beicheng New Area, Linyi People's Hospital, Linyi, 276000, Shandong, People's Republic of China.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW This review examines the impact of climate change on the respiratory health of children, with a focus on temperature, humidity, air pollution, and extreme weather events. Climate change is considered the greatest health threat of our time, and children are especially at risk. This review is timely and relevant as it provides an overview of the current literature on the effects of climate change on children's respiratory health, and the implications of these findings for clinical practice and research. RECENT FINDINGS The findings of this review suggest that climate change has a significant impact on children's respiratory health, with temperature, humidity, air pollution, and extreme weather events being key contributory factors. Increases in extreme weather events such as heatwaves, wildfires, floods, droughts, hurricanes and dust storms all cause the health of children's respiratory system to be at increased risk. SUMMARY The findings of this review suggest that climate change has a significant impact on children's respiratory health, and that mitigation and adaptation strategies are necessary to protect children from the harmful effects of climate change and improve their respiratory health. Overall, a comprehensive and integrated approach is necessary to protect children from the increasing impacts of climate change.
Collapse
Affiliation(s)
- Olivia Kline
- Sean Parker Center for Allergy and Asthma Research, Stanford School of Medicine, Stanford, USA
| | | |
Collapse
|
17
|
He Y, Liu WJ, Jia N, Richardson S, Huang C. Viral respiratory infections in a rapidly changing climate: the need to prepare for the next pandemic. EBioMedicine 2023:104593. [PMID: 37169688 PMCID: PMC10363434 DOI: 10.1016/j.ebiom.2023.104593] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/13/2023] Open
Abstract
Viral respiratory infections (VRIs) cause seasonal epidemics and pandemics, with their transmission influenced by climate conditions. Despite the risks posed by novel VRIs, the relationships between climate change and VRIs remain poorly understood. In this review, we synthesized existing literature to explore the connections between changes in meteorological conditions, extreme weather events, long-term climate warming, and seasonal outbreaks, epidemics, and pandemics of VRIs from an interdisciplinary perspective. We proposed a comprehensive conceptual framework highlighting the potential biological, socioeconomic, and ecological mechanisms underlying the impact of climate change on VRIs. Our findings suggested that climate change increases the risk of VRI emergence and transmission by affecting the biology of viruses, host susceptibility, human behavior, and environmental conditions of both society and ecosystems. Further interdisciplinary research is needed to address the dual challenge of climate change and pandemics.
Collapse
Affiliation(s)
- Yucong He
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China; Institute of Healthy China, Tsinghua University, Beijing 100084, China
| | - William J Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Sol Richardson
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China; Institute of Healthy China, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
18
|
Goshua A, Gomez J, Erny B, Gisondi M, Patel L, Sampath V, Sheffield P, Nadeau KC. Child-focused climate change and health content in medical schools and pediatric residencies. Pediatr Res 2023:10.1038/s41390-023-02600-7. [PMID: 37081111 DOI: 10.1038/s41390-023-02600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/24/2023] [Accepted: 03/15/2023] [Indexed: 04/22/2023]
Abstract
Anthropogenic climate change-driven primarily by the combustion of fossil fuels that form greenhouse gases-has numerous consequences that impact health, including extreme weather events of accelerating frequency and intensity (e.g., wildfires, thunderstorms, droughts, and heat waves), mental health sequelae of displacement from these events, and the increase in aeroallergens and other pollutants. Children are especially vulnerable to climate-related exposures given that they are still developing, encounter higher exposures compared to adults, and are at risk of losing many healthy future years of life. In order to better meet the needs of generations of children born into a world affected by climate change, medical trainees must develop their knowledge of the relationships between climate change and children's health-with a focus on applying that information in clinical practice. This review provides an overview of salient climate change and children's health topics that medical school and pediatric residency training curricula should cover. In addition, it highlights the strengths and limitations of existing medical school and residency climate change and pediatric health curricula. IMPACT: Provides insight into the current climate change and pediatric health curricular opportunities for medical trainees in North America at both the medical school and residency levels. Condenses climate change and pediatric health material relevant to trainees to help readers optimize curricula at their institutions.
Collapse
Affiliation(s)
- Anna Goshua
- Stanford School of Medicine, Stanford, CA, USA
| | - Jason Gomez
- Stanford School of Medicine, Stanford, CA, USA
- Stanford Graduate School of Business, Stanford, CA, USA
| | - Barbara Erny
- Department of Internal Medicine, Division of Med/Pulmonary and Critical Care Medicine, Stanford University, Palo Alto, CA, USA
| | - Michael Gisondi
- Department of Emergency Medicine, Precision Education and Assessment Research Lab Stanford University, Palo Alto, CA, USA
| | - Lisa Patel
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
| | - Perry Sheffield
- Departments of Environmental Medicine and Public Health and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kari C Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| |
Collapse
|
19
|
Chen X, Chen S, Zhu Z, Luo J, Wang H, Wulayin M, Huang C, Zhao W, Wang Q. Identifying the critical windows and joint effects of temperature and PM 2.5 exposure on small for gestational age. ENVIRONMENT INTERNATIONAL 2023; 173:107832. [PMID: 36822007 DOI: 10.1016/j.envint.2023.107832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
The potential critical windows for extreme ambient temperature, air pollution exposure and small for gestational age (SGA) are still unclear, and no study has explored their joint effects on SGA. In a national multi-center prospective cohort, we included 179,761 pairs of mother-infant from 16 counties of 8 provinces in China during 2014-2018. Daily averaged temperature and PM2.5 concentration were matched to the maternal residential address to estimate personal exposure. Extreme temperature exposures were categorized by a series of percentile in each meteorological and geographic division for the entire pregnancy, each trimester and gestational week (GA-week). Generalized linear mixed models (GLMMs) and distributed lag nonlinear models (DLNMs) were used to estimate the whole pregnancy-, trimester-specific, and weekly-specific associations of extreme temperature and PM2.5 exposures with SGA. Combined effects were evaluated with the relative excess risk due to interaction (RERI) and proportion attributable to interaction (AP). We observed that by referring to temperature at the 41st - 50th percentile, heat (>90th percentile) exposure during 13th - 29th GA-weeks was associated with SGA; odds ratio (OR) and 95 % confidence intervals (CI) was 1.16 (1.06, 1.28). For cold (<=10th percentile), inverse associations were observed during the 1st - 8th GA-weeks. PM2.5 exposure during the 2nd - 5th and 19th - 27th GA-weeks was associated with SGA, with the strongest association in the 2nd GA-week (OR = 1.0017, 95 %CI: 1.0001, 1.0034, for a 10 μg/m3 increase). No interactive effects between ambient temperature and PM2.5 on SGA were observed. Our findings suggest the weekly susceptibility windows for heat and PM2.5 exposure were primarily the gestational weeks within the 2nd trimester, therefore, corresponding protective measures should be conveyed to pregnant women during routine prenatal visits to reduce exposures.
Collapse
Affiliation(s)
- Xin Chen
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Sidi Chen
- National Center for Women and Children's Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenghong Zhu
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiajun Luo
- Institute for Population and Precision Health, the University of Chicago, Chicago, USA
| | - Huailin Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | | | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Wei Zhao
- National Center for Women and Children's Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
20
|
Phosri A, Ueda K, Seposo X, Honda A, Takano H. Effect modification by temperature on the association between O 3 and emergency ambulance dispatches in Japan: A multi-city study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160725. [PMID: 36493818 DOI: 10.1016/j.scitotenv.2022.160725] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Numerous epidemiological studies have reported that ozone (O3) and temperature are independently associated with health outcomes, but modification of the effects of O3 on health outcomes by temperature, and vice versa, has not been fully described. This study aimed to investigate effect modification by temperature on the association between O3 and emergency ambulance dispatches (EADs) in Japan. Data on daily air pollutants, ambient temperature, and EADs were obtained from eight Japanese cities from 2007 to 2015. A distributed lag non-linear model combined with Poisson regression was performed with temperature as a confounding factor and effect modifier to estimate the effects of O3 on EADs at low (<25th percentile), moderate (25th-75th percentile), and high (>75th percentile) temperature for each city. The estimates obtained from each city were pooled by random-effects meta-analysis. When temperature was entered as a confounder, the estimated effects of O3 on EADs for all acute, cardiovascular, and respiratory illnesses were largest at lag 0 (current-day lag). Therefore, this lag was used to further estimate the effects of O3 on EADs in each temperature category. The estimated effects of O3 on EADs for all acute, cardiovascular, and respiratory illnesses in all eight Japanese cities increased with increasing temperature. Specifically, a 10 ppb increase in O3 was associated with 0.80 % (95 % CI: 0.25 to 1.35), 0.19 % (95 % CI: -0.85 to 1.25), and 1.14 % (95 % CI: -0.01 to 2.31) increases in the risk of EADs for all acute, cardiovascular, and respiratory illnesses, respectively, when city-specific daily temperature exceeded the 75th percentile. Our findings suggest that the association between O3 and EADs for all acute, cardiovascular, and respiratory illnesses is the highest during high temperature. Finding of this study can be used to develop potential mitigation measures against O3 exposure in high temperature environment to reduce its associated adverse health effects.
Collapse
Affiliation(s)
- Arthit Phosri
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Department of Environmental Health Sciences, Faculty of Public Health, Mahidol University, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand.
| | - Kayo Ueda
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Department of Hygiene, Social Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan; Graduate School of Global Environmental Sciences, Kyoto University, Kyoto, Japan
| | - Xerxes Seposo
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Department of Hygiene, Social Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akiko Honda
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Graduate School of Global Environmental Sciences, Kyoto University, Kyoto, Japan
| | - Hirohisa Takano
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Graduate School of Global Environmental Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Han A, Deng S, Yu J, Zhang Y, Jalaludin B, Huang C. Asthma triggered by extreme temperatures: From epidemiological evidence to biological plausibility. ENVIRONMENTAL RESEARCH 2023; 216:114489. [PMID: 36208788 DOI: 10.1016/j.envres.2022.114489] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/25/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND There is rapidly growing evidence indicating that extreme temperature is a crucial trigger and potential activator of asthma; however, the effects of extreme temperature on asthma are inconsistently reported and the its potential mechanisms remain undefined. OBJECTIVES This review aims to estimate the impacts of extreme heat, extreme cold, and temperature variations on asthma by systematically summarizing the existing studies from epidemiological evidence to biological plausibility. METHODS We conducted a systematic search in PubMed, Embase, and Web of Science from inception to June 30, 2022, and we retrieved articles of epidemiology and biological studies which assessed associations between extreme temperatures and asthma. This protocol was registered with PROSPERO (CRD42021273613). RESULTS From 12,435 identified records, 111 eligible studies were included in the qualitative synthesis, and 37 articles were included in the meta-analysis (20 for extreme heat, 16 for extreme cold, and 15 for temperature variations). For epidemiological evidence, we found that the synergistic effects of extreme temperatures, indoor/outdoor environments, and individual vulnerabilities are important triggers for asthma attacks, especially when there is extreme heat or cold. Meta-analysis further confirmed the associations, and the pooled relative risks for asthma attacks in extreme heat and extreme cold were 1.07 (95%CI: 1.03-1.12) and 1.20 (95%CI: 1.12-1.29), respectively. Additionally, this review discussed the potential inflammatory mechanisms behind the associations between extreme temperatures and asthma exacerbation, and highlighted the regulatory role of immunological pathways and transient receptor potential ion channels in asthma triggered by extreme temperatures. CONCLUSIONS We concluded that both extreme heat and cold could significantly increase the risk of asthma. Additionally, we proposed a potential mechanistic framework, which is important for understanding the disease pathogenesis that uncovers the complex mechanisms of asthma triggered by extreme temperatures and protects the sensitive individuals from impacts of extreme weather events and climate change.
Collapse
Affiliation(s)
- Azhu Han
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shizhou Deng
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiarui Yu
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China, School of Arts and Sciences, Columbia University, New York City, NY, USA
| | - Yali Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bin Jalaludin
- School of Population Health, University of New South Wales, Sydney, Australia
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
22
|
Goshua A, Sampath V, Efobi JA, Nadeau K. The Role of Climate Change in Asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:25-41. [PMID: 37464115 DOI: 10.1007/978-3-031-32259-4_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Human activity and increased use of fossil fuels have led to climate change. These changes are adversely affecting human health, including increasing the risk of developing asthma. Global temperatures are predicted to increase in the future. In 2019, asthma affected an estimated 262 million people and caused 455,000 deaths. These rates are expected to increase. Climate change by intensifying climate events such as drought, flooding, wildfires, sand storms, and thunderstorms has led to increases in air pollution, pollen season length, pollen and mold concentration, and allergenicity of pollen. These effects bear implications for the onset, exacerbation, and management of childhood asthma and are increasing health inequities. Global efforts to mitigate the effects of climate change are urgently needed with the goal of limiting global warming to between 1.5 and 2.0 °C of preindustrial times as per the 2015 Paris Agreement. Clinicians need to take an active role in these efforts in order to prevent further increases in asthma prevalence. There is a role for clinician advocacy in both the clinical setting as well as in local, regional, and national settings to install measures to control and curb the escalating disease burden of childhood asthma in the setting of climate change.
Collapse
Affiliation(s)
- Anna Goshua
- Stanford School of Medicine, Stanford, CA, USA
| | - Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Palo Alto, CA, USA
| | - Jo Ann Efobi
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Palo Alto, CA, USA
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
23
|
Jia H, Xu J, Ning L, Feng T, Cao P, Gao S, Shang P, Yu X. Ambient air pollution, temperature and hospital admissions due to respiratory diseases in a cold, industrial city. J Glob Health 2022; 12:04085. [PMID: 36243957 PMCID: PMC9569423 DOI: 10.7189/jogh.12.04085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background The influences of air pollution exposure and temperature on respiratory diseases have become major global health concerns. This study investigated the relationship between ambient air pollutant concentrations and temperature in cold industrial cities that have the risk of hospitalization for respiratory diseases. Methods A time-series study was conducted in Changchun, China, from 2015 to 2019 to analyse the number of daily admissions for respiratory diseases, air pollutant concentrations, and meteorological factors. Time-series decomposition was applied to analyse the trend and characteristics of the number of admissions. Generalized additive models and distributed lag nonlinear models were constructed to explore the effects of air pollutant concentrations and temperature on the number of admissions. Results The number of daily admissions showed an increasing trend, and the seasonal fluctuation was obvious, with more daily admissions in winter and spring than in summer and autumn. There were positive and gradually decreasing lag effects of PM10, PM2.5, NO2, and CO concentrations on the number of admissions, whereas O3 showed a J-shaped trend. The results showed that within the 7-day lag period, 0.5°C was the temperature associated with the lowest relative risk of admission due to respiratory disease, and extremely low and high temperatures (<-18°C, >27°C, respectively) increased the risk of hospitalization for respiratory diseases by 8.3% and 12.1%, respectively. Conclusions From 2015 to 2019, respiratory diseases in Changchun showed an increasing trend with obvious seasonality. The increased concentrations of SO2, NO2, CO, PM2.5, O3 and PM10 lead to an increased risk of hospitalization for respiratory diseases, with a significant lag effect. Both extreme heat and cold could lead to increases in the risk of admission due to respiratory disease.
Collapse
Affiliation(s)
- Huanhuan Jia
- School of Public Health, Jilin University, Changchun City, Jilin Province, China
| | - Jiaying Xu
- School of Public Health, Jilin University, Changchun City, Jilin Province, China
| | - Liangwen Ning
- School of Public Administration, Jilin University, Changchun City, Jilin Province, China
| | - Tianyu Feng
- School of Public Health, Jilin University, Changchun City, Jilin Province, China
| | - Peng Cao
- School of Public Health, Jilin University, Changchun City, Jilin Province, China
| | - Shang Gao
- School of Public Health, Jilin University, Changchun City, Jilin Province, China
| | - Panpan Shang
- School of Public Health, Jilin University, Changchun City, Jilin Province, China
| | - Xihe Yu
- School of Public Health, Jilin University, Changchun City, Jilin Province, China
| |
Collapse
|
24
|
Urban Air Pollution, Urban Heat Island and Human Health: A Review of the Literature. SUSTAINABILITY 2022. [DOI: 10.3390/su14159234] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Many cities of the world suffer from air pollution because of poor planning and design and heavy traffic in rapidly expanding urban environments. These conditions are exacerbated due to the Urban Heat Island (UHI) effect. While there have been studies linking the built environment and air pollution with health, they have ignored the aggravating role of UHI. The past urban planning literature in this field has also ignored the science of materials, vehicles and air pollution, and technological solutions for reducing cumulative health impacts of air pollution and UHI. Air Pollution, built environment and human health are complex discussion factors that involve several different fields. The built environment is linked with human health through opportunities of physical activity and air quality. Recent planning literature focuses on creating compact and walkable urban areas dotted with green infrastructure to promote physical activity and to reduce vehicle emission-related air pollution. Reduced car use leading to reduced air pollution and UHI is implied in the literature. The literature from technology fields speaks to the issue of air pollution directly. Zero emission cars, green infrastructure and building materials that absorb air pollutants and reduce UHI fall within this category. This paper identifies main themes in the two streams of urban air pollution and UHI that impact human health and presents a systematic review of the academic papers, policy documents, reports and features in print media published in the last 10–20 years.
Collapse
|
25
|
|
26
|
Affiliation(s)
- Frederica Perera
- From the Department of Environmental Health Sciences and Columbia Center for Children's Environmental Health, Columbia University, New York (F.P.); and the Departments of Medicine, Pediatrics, Otolaryngology, and Epidemiology and Population Health, Stanford University, Stanford, CA (K.N.)
| | - Kari Nadeau
- From the Department of Environmental Health Sciences and Columbia Center for Children's Environmental Health, Columbia University, New York (F.P.); and the Departments of Medicine, Pediatrics, Otolaryngology, and Epidemiology and Population Health, Stanford University, Stanford, CA (K.N.)
| |
Collapse
|
27
|
Interannual Variability of Summer Hotness in China: Synergistic Effect of Frequency and Intensity of High Temperature. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the context of global warming, the impact of summer high temperature events is increasing. The accumulated summer high temperature is often used to reflect the overall hotness of summer. The internal variation of the accumulated temperature can be affected by both the frequency and intensity. In this study, by using the daily data during summers of 1960–2018, we examine the relative importance of the two factors with a multiple linear regression method. It is demonstrated that that the dominant result of summer accumulated temperature is sensitive to the change of threshold. As the threshold increases, the importance of frequency gradually increases, while the importance of the intensity decreases. In addition, it is found that when the threshold changes, the sensitivity of the dominant results is different over regions. This can provide a basis for the selection of regional thresholds and further improve the representation of accumulated temperature for high summer temperatures.
Collapse
|
28
|
Petrus M, Popa C, Bratu AM. Ammonia Concentration in Ambient Air in a Peri-Urban Area Using a Laser Photoacoustic Spectroscopy Detector. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3182. [PMID: 35591515 PMCID: PMC9101576 DOI: 10.3390/ma15093182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 12/10/2022]
Abstract
Measuring ammonia from the environmental air is a sensitive and prioritized issue due to its harmful effects on humans, ecosystems, and climate. Ammonia is an environmental pollutant that has an important role in forming secondary inorganic aerosols, the main component of fine particulate matter concentrations in the urban atmosphere. Through this study, we present a gas analyzer that utilizes the technique of laser photoacoustic spectroscopy to measure ammonia concentration in three different sites located in Magurele, (44°20'58″ N 26°01'47″ E, 93 m altitude), Romania, from March to August 2021 at the breathing level of 1.5 m above ground. The ammonia concentrations from the ambient air were elevated in summer (mean of 46.03 ± 8.05 ppb (parts per billion)) compared to those measured in spring (18.62 ± 2.92 ppb), which means that atmospheric temperature affects ammonia concentrations. The highest mean ammonia concentrations occurred in August, with an ammonia concentration level of 100.68 ± 11.12 ppb, and the low mean ammonia concentrations occurred in March, with an ammonia level concentration of 0.161 ± 0.03 ppb. The results confirm that meteorological characteristics (i.e., temperature) and motor vehicles are major contributors to the elevated ammonia levels during the monitoring period.
Collapse
Affiliation(s)
| | - Cristina Popa
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., P.O. Box MG 36, 077125 Magurele, Romania;
| | - Ana-Maria Bratu
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., P.O. Box MG 36, 077125 Magurele, Romania;
| |
Collapse
|
29
|
Cureau RJ, Pigliautile I, Pisello AL. A New Wearable System for Sensing Outdoor Environmental Conditions for Monitoring Hyper-Microclimate. SENSORS 2022; 22:s22020502. [PMID: 35062468 PMCID: PMC8779384 DOI: 10.3390/s22020502] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/28/2022]
Abstract
The rapid urbanization process brings consequences to urban environments, such poor air quality and the urban heat island issues. Due to these effects, environmental monitoring is gaining attention with the aim of identifying local risks and improving cities’ liveability and resilience. However, these environments are very heterogeneous, and high-spatial-resolution data are needed to identify the intra-urban variations of physical parameters. Recently, wearable sensing techniques have been used to perform microscale monitoring, but they usually focus on one environmental physics domain. This paper presents a new wearable system developed to monitor key multidomain parameters related to the air quality, thermal, and visual domains, on a hyperlocal scale from a pedestrian’s perspective. The system consisted of a set of sensors connected to a control unit settled on a backpack and could be connected via Wi-Fi to any portable equipment. The device was prototyped to guarantee the easy sensors maintenance, and a user-friendly dashboard facilitated a real-time monitoring overview. Several tests were conducted to confirm the reliability of the sensors. The new device will allow comprehensive environmental monitoring and multidomain comfort investigations to be carried out, which can support urban planners to face the negative effects of urbanization and to crowd data sourcing in smart cities.
Collapse
Affiliation(s)
- Roberta Jacoby Cureau
- CIRIAF, Interuniversity Research Center on Pollution and Environment Mauro Felli, University of Perugia, 06125 Perugia, Italy; (R.J.C.); (I.P.)
| | - Ilaria Pigliautile
- CIRIAF, Interuniversity Research Center on Pollution and Environment Mauro Felli, University of Perugia, 06125 Perugia, Italy; (R.J.C.); (I.P.)
- Department of Engineering, University of Perugia, 06125 Perugia, Italy
| | - Anna Laura Pisello
- CIRIAF, Interuniversity Research Center on Pollution and Environment Mauro Felli, University of Perugia, 06125 Perugia, Italy; (R.J.C.); (I.P.)
- Department of Engineering, University of Perugia, 06125 Perugia, Italy
- Correspondence:
| |
Collapse
|
30
|
Unorganized Machines to Estimate the Number of Hospital Admissions Due to Respiratory Diseases Caused by PM10 Concentration. ATMOSPHERE 2021. [DOI: 10.3390/atmos12101345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The particulate matter PM10 concentrations have been impacting hospital admissions due to respiratory diseases. The air pollution studies seek to understand how this pollutant affects the health system. Since prediction involves several variables, any disparity causes a disturbance in the overall system, increasing the difficulty of the models’ development. Due to the complex nonlinear behavior of the problem and their influencing factors, Artificial Neural Networks are attractive approaches for solving estimations problems. This paper explores two neural network architectures denoted unorganized machines: the echo state networks and the extreme learning machines. Beyond the standard forms, models variations are also proposed: the regularization parameter (RP) to increase the generalization capability, and the Volterra filter to explore nonlinear patterns of the hidden layers. To evaluate the proposed models’ performance for the hospital admissions estimation by respiratory diseases, three cities of São Paulo state, Brazil: Cubatão, Campinas and São Paulo, are investigated. Numerical results show the standard models’ superior performance for most scenarios. Nevertheless, considering divergent intensity in hospital admissions, the RP models present the best results in terms of data dispersion. Finally, an overall analysis highlights the models’ efficiency to assist the hospital admissions management during high air pollution episodes.
Collapse
|
31
|
Health Risks to the Russian Population from Temperature Extremes at the Beginning of the XXI Century. ATMOSPHERE 2021. [DOI: 10.3390/atmos12101331] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Climate change and climate-sensitive disasters caused by climatic hazards have a significant and increasing direct and indirect impact on human health. Due to its vast area, complex geographical environment and various climatic conditions, Russia is one of the countries that suffers significantly from frequent climate hazards. This paper provides information about temperature extremes in Russia in the beginning of the 21st century, and their impact on human health. A literature search was conducted using the electronic databases Web of Science, Science Direct, Scopus, and e-Library, focusing on peer-reviewed journal articles published in English and in Russian from 2000 to 2021. The results are summarized in 16 studies, which are divided into location-based groups, including Moscow, Saint Petersburg and other large cities located in various climatic zones: in the Arctic, in Siberia and in the southern regions, in ultra-continental and monsoon climate. Heat waves in cities with a temperate continental climate lead to a significant increase in all-cause mortality than cold waves, compared with cities in other climatic zones. At the same time, in northern cities, in contrast to the southern regions and central Siberia, the influence of cold waves is more pronounced on mortality than heat waves. To adequately protect the population from the effects of temperature waves and to carry out preventive measures, it is necessary to know specific threshold values of air temperature in each city.
Collapse
|