1
|
Chalvatzaki E, Lazaridis M. A model study on the effect of human's height variability in particle deposition and retained dose in the respiratory tract. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50198-50208. [PMID: 39090297 DOI: 10.1007/s11356-024-34539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
The objective of the current study was to investigate the impact of human's height variability to the deposition percentage, the deposited and the retained dose of particulate matter in the respiratory tract. In addition, the dose to the oesophagus, blood and lymph nodes was evaluated after particle clearance. A methodology which correlates anatomical and physiological parameters with height was adopted into an existing particle dosimetry model (Exposure Dose Model 2, ExDoM2). Model results showed that deposition of particles with aerodynamic diameter (dae) ranging from 0.001 to 10 μm depends on the competition between anatomical/physiological parameters, with the maximum effect induced from height variability to be observed for particles in the size range of 0.30 μm
Collapse
Affiliation(s)
- Eleftheria Chalvatzaki
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100, Chania, Crete, Greece
| | - Mihalis Lazaridis
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100, Chania, Crete, Greece.
| |
Collapse
|
2
|
Mylonaki M, Gini M, Georgopoulou M, Pilou M, Chalvatzaki E, Solomos S, Diapouli E, Giannakaki E, Lazaridis M, Pandis SN, Nenes A, Eleftheriadis K, Papayannis A. Wildfire and African dust aerosol oxidative potential, exposure and dose in the human respiratory tract. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169683. [PMID: 38160832 DOI: 10.1016/j.scitotenv.2023.169683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Exposure to wildfire smoke and dust can severely affect air quality and health. Although particulate matter (PM) levels and exposure are well-established metrics linking to health outcomes, they do not consider differences in particle toxicity or deposition location in the respiratory tract (RT). Usage of the oxidative potential (OP) exposure may further shape our understanding on how different pollution events impact health. Towards this goal, we estimate the aerosol deposition rates, OP and resulting OP deposition rates in the RT for a typical adult Caucasian male residing in Athens, Greece. We focus on a period when African dust (1-3 of August 2021) and severe wildfires at the northern part of the Attika peninsula and the Evia island, Greece (4-18 of August 2021) affected air quality in Athens. During these periods, the aerosol levels increased twofold leading to exceedances of the World Health Organization (WHO) [15(5) μg m-3] PM10 (PM2.5) air quality standard by almost 100 %. We show that the OP exposure is 1.5-times larger during the wildfire smoke events than during the dust intrusion, even if the latter was present in higher mass loads - because wildfire smoke has a higher specific OP than dust. This result carries two important implications: OP exposure should be synergistically used with other metrics - such as PM levels - to efficiently link aerosol exposure with the resulting health effects, and, certain sources of air pollution (in our case, exposure to biomass burning smoke) may need to be preferentially controlled, whenever possible, owing to their disproportionate contribution to OP exposure and ability to penetrate deeper into the human RT.
Collapse
Affiliation(s)
- Maria Mylonaki
- Laser Remote Sensing Unit, Department of Physics, National and Technical University of Athens, Zografou 15780, Greece; Meteorological Institute, Ludwig-Maximilians-Universität München, Munich 80333, Germany
| | - Maria Gini
- ENRACT, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, N.C.S.R. "Demokritos", Ag. Paraskevi 15310, Greece
| | - Maria Georgopoulou
- Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras 26504, Greece
| | - Marika Pilou
- Thermal Hydraulics and Multiphase Flow Laboratory, INRaSTES, NCSR "Demokritos", Agia Paraskevi 15310, Greece
| | - Eleftheria Chalvatzaki
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania 73100, Greece
| | - Stavros Solomos
- Research Centre for Atmospheric Physics and Climatology, Academy of Athens, Athens 10679, Greece
| | - Evangelia Diapouli
- ENRACT, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, N.C.S.R. "Demokritos", Ag. Paraskevi 15310, Greece
| | - Elina Giannakaki
- Department of Environmental Physics and Meteorology, Faculty of Physics, National and Kapodistrian University of Athens, Athens, Greece
| | - Mihalis Lazaridis
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania 73100, Greece
| | - Spyros N Pandis
- Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras 26504, Greece; Department of Chemical Engineering, University of Patras, Patras 26504, Greece
| | - Athanasios Nenes
- Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras 26504, Greece; Laboratory of Atmospheric Processes and their Impacts, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland.
| | - Konstantinos Eleftheriadis
- ENRACT, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, N.C.S.R. "Demokritos", Ag. Paraskevi 15310, Greece
| | - Alexandros Papayannis
- Laser Remote Sensing Unit, Department of Physics, National and Technical University of Athens, Zografou 15780, Greece; Laboratory of Atmospheric Processes and their Impacts, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland.
| |
Collapse
|
3
|
Almalawi A, Khan AI, Alsolami F, Alkhathlan A, Fahad A, Irshad K, Alfakeeh AS, Qaiyum S. Arithmetic optimization algorithm with deep learning enabled airborne particle-bound metals size prediction model. CHEMOSPHERE 2022; 303:134960. [PMID: 35580643 DOI: 10.1016/j.chemosphere.2022.134960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Recently, heavy metal air pollution has received significant interest in computing the total concentration of every toxic metal. Chemical fractionation of possibly toxic substances in airborne particles becomes a vital element. Among the primary and secondary air pollutants, airborne particulate matter (APM) received considerable internet among research communities owing to the adversative impact on human health. Hence, size distribution details of airborne heavy metals are important in assessing the adverse health effects over the globe. Recently, deep learning models have gained significant interest over the mathematical and statistical prediction models. In this view, this paper presents a novel arithmetic optimization algorithm (AOA) with multi-head attention based bidirectional long short-term memory (MABLSTM) model for predicting the size fractionated airborne particle bound metals. The proposed AOA-MABLSTM technique focuses on the forecasting of the size-fractionated airborne particle bound matter. The presented model intends to examine the concentration of PM and distinct sized-fractionated APM. The proposed model establishes MABLSTM based accurate predictive approaches for atmospheric heavy 83 metals is used for determining temporal trend of heavy metal. The proposed model employs AOA based hyperparameter tuning process to optimally tune the hyperparameters included in the MABLSTM method. To demonstrate the improved outcomes of the AOA-MABLSTM approach, a comparison study is performed with recent models. The stimulation results emphasized the betterment of the presented model over the other methods. Aluminum metal had an RMSE of 73.200 for AOA-MABLSTM. On Cu metal, the AOA-MABLSTM approach had an RMSE of 6.747. On Zn metal, the AOA-MABLSTM system lowered the RMSE by 45.250.
Collapse
Affiliation(s)
- Abdulmohsen Almalawi
- Computer Science Department, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Asif Irshad Khan
- Computer Science Department, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Fawaz Alsolami
- Computer Science Department, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ali Alkhathlan
- Computer Science Department, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Adil Fahad
- Department of Computer Science, College of Computer Science & Information Technology, Al Baha University, Al Baha, 65527, Saudi Arabia
| | - Kashif Irshad
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), Research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Researcher at K.A.CARE Energy Research & Innovation Center at Dhahran, Saudi Arabia
| | - Ahmed S Alfakeeh
- Department of Information Systems, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sana Qaiyum
- Center for Research in Data Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia
| |
Collapse
|
4
|
Purves J, Hussey SJK, Corscadden L, Purser L, Hall A, Misra R, Selley L, Monks PS, Ketley JM, Andrew PW, Morrissey JA. Air pollution induces Staphylococcus aureus USA300 respiratory tract colonization mediated by specific bacterial genetic responses involving the global virulence gene regulators Agr and Sae. Environ Microbiol 2022; 24:4449-4465. [PMID: 35642645 PMCID: PMC9796851 DOI: 10.1111/1462-2920.16076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 01/07/2023]
Abstract
Exposure to particulate matter (PM), a major component of air pollution, is associated with exacerbation of chronic respiratory disease, and infectious diseases such as community-acquired pneumonia. Although PM can cause adverse health effects through direct damage to host cells, our previous study showed that PM can also impact bacterial behaviour by promoting in vivo colonization. In this study we describe the genetic mechanisms involved in the bacterial response to exposure to black carbon (BC), a constituent of PM found in most sources of air pollution. We show that Staphylococcus aureus strain USA300 LAC grown in BC prior to inoculation showed increased murine respiratory tract colonization and pulmonary invasion in vivo, as well as adhesion and invasion of human epithelial cells in vitro. Global transcriptional analysis showed that BC has a widespread effect on S. aureus transcriptional responses, altering the regulation of the major virulence gene regulators Sae and Agr and causing increased expression of genes encoding toxins, proteases and immune evasion factors. Together these data describe a previously unrecognized causative mechanism of air pollution-associated infection, in that exposure to BC can increase bacterial colonization and virulence factor expression by acting directly on the bacterium rather than via the host.
Collapse
Affiliation(s)
- Jo Purves
- Department of GeneticsUniversity of Leicester, University RoadLeicesterLE1 7RHUK
| | - Shane J. K. Hussey
- Department of GeneticsUniversity of Leicester, University RoadLeicesterLE1 7RHUK
| | - Louise Corscadden
- Department of GeneticsUniversity of Leicester, University RoadLeicesterLE1 7RHUK
| | - Lillie Purser
- Department of GeneticsUniversity of Leicester, University RoadLeicesterLE1 7RHUK
| | - Andie Hall
- Molecular Biology, Core Research LaboratoriesNatural History MuseumCromwell Road, LondonSW7 5BDUK
| | - Raju Misra
- Molecular Biology, Core Research LaboratoriesNatural History MuseumCromwell Road, LondonSW7 5BDUK
| | - Liza Selley
- MRC Toxicology UnitUniversity of CambridgeCambridgeCB2 1QRUK
| | - Paul S. Monks
- Department of ChemistryUniversity of LeicesterUniversity RoadLeicesterLE1 7RHUK
| | - Julian M. Ketley
- Department of GeneticsUniversity of Leicester, University RoadLeicesterLE1 7RHUK
| | - Peter W. Andrew
- Department of Respiratory SciencesUniversity of LeicesterUniversity Road, LeicesterLE1 9HNUK
| | - Julie A. Morrissey
- Department of GeneticsUniversity of Leicester, University RoadLeicesterLE1 7RHUK
| |
Collapse
|
5
|
Gini M, Manousakas M, Karydas AG, Eleftheriadis K. Mass size distributions, composition and dose estimates of particulate matter in Saharan dust outbreaks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118768. [PMID: 34990737 DOI: 10.1016/j.envpol.2021.118768] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The present study highlights the importance of examining the contribution of Saharan dust (SD) sources not only in terms of overall mass contribution but also in terms of composition, size distribution and inhaled dose. The effect of SD intrusions on PM and the respective major and trace metals mass concentrations and size distributions was investigated in a suburban site in Athens, Greece. SD events were associated, on average, with lower boundary layer heights (BLH) compared to the non-Sahara (nSD) dust days. During SD events, PM1-10 concentrations showed an increasing trend with increasing atmospheric BLH, in contrary to the fine PM (PM1). Generally, increased PM1 and CO (i.e. anthropogenic origin) levels were observed for BLH lower than around 500 m. The average contribution of SD to PM10 and PM2.5 mass concentration was roughly equal to 30.9% and 19.4%, respectively. The mass size distributions of PM and specific major and trace elements (Na, Al, Si, S, Cl, K, Ca, Fe, and Zn) displayed a somewhat different behavior with respect to the mass origin (Algeria-Tunisia vs Libya-Egypt), affecting in turn the regional deposition of inhaled aerosol in the human respiratory tract (HRT). The average PM deposited mass in the upper and lower HRT was 80.1% (Head) and 26.9% (Lung; Tracheobronchial and Pulmonary region) higher for SD days than for nSD days. Higher doses were estimated in the upper and lower HRT for the majority of the elements, when SD intrusions occurred, supporting the increasingly growing interest in exploring the health effects of SD. Only the mass deposition for S, and Na in the lower HRT and Zn in the upper HRT was higher in the case of nSD.
Collapse
Affiliation(s)
- M Gini
- Environmental Radioactivity Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, N.C.S.R. "Demokritos", Agia Paraskevi, Athens, 15310, Greece.
| | - M Manousakas
- Environmental Radioactivity Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, N.C.S.R. "Demokritos", Agia Paraskevi, Athens, 15310, Greece; Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - A G Karydas
- Institute of Nuclear and Particle Physics, N.C.S.R. "Demokritos", 15310, Agia Paraskevi, Athens, Greece
| | - K Eleftheriadis
- Environmental Radioactivity Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, N.C.S.R. "Demokritos", Agia Paraskevi, Athens, 15310, Greece
| |
Collapse
|
6
|
100 Hz ROCS microscopy correlated with fluorescence reveals cellular dynamics on different spatiotemporal scales. Nat Commun 2022; 13:1758. [PMID: 35365619 PMCID: PMC8975811 DOI: 10.1038/s41467-022-29091-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/28/2022] [Indexed: 02/08/2023] Open
Abstract
Fluorescence techniques dominate the field of live-cell microscopy, but bleaching and motion blur from too long integration times limit dynamic investigations of small objects. High contrast, label-free life-cell imaging of thousands of acquisitions at 160 nm resolution and 100 Hz is possible by Rotating Coherent Scattering (ROCS) microscopy, where intensity speckle patterns from all azimuthal illumination directions are added up within 10 ms. In combination with fluorescence, we demonstrate the performance of improved Total Internal Reflection (TIR)-ROCS with variable illumination including timescale decomposition and activity mapping at five different examples: millisecond reorganization of macrophage actin cortex structures, fast degranulation and pore opening in mast cells, nanotube dynamics between cardiomyocytes and fibroblasts, thermal noise driven binding behavior of virus-sized particles at cells, and, bacterial lectin dynamics at the cortex of lung cells. Using analysis methods we present here, we decipher how motion blur hides cellular structures and how slow structure motions cover decisive fast motions.
Collapse
|
7
|
Chalvatzaki E, Chatoutsidou SE, Kopanakis I, Melas D, Parliari D, Mihalopoulos N, Lazaridis M. Personal deposited dose and its influencing factors at several Greek sites: an analysis in respect to seasonal and diurnal variations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29276-29286. [PMID: 33559072 DOI: 10.1007/s11356-021-12815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
The deposited dose in the human respiratory tract and its influencing factors were investigated for 8 urban/suburban locations within Greek cities. A dosimetry model (ExDoM2) was implemented assuming a 24-h exposure scenario to ambient PM10 whereby regional deposition rates were obtained. Simulations were performed considering three cases (Sahara dust, cold, and warm periods) with seasonal and diurnal variations examining the relative sources and other influencing factors in each case. Health risk indexes such as the relative risk and attributable fraction were also estimated. Overall, higher daily deposited dose was obtained for all urban compared with suburban locations (p < 0.05) and for cold compared with the warm periods (252-820 μg for cold period and 300-686 μg for warm period) for all locations. This finding was associated with increased deposition rate on cold period during evening/night hours, as a result of significant heating emissions. Besides that, most of the urban locations showed relative comparable deposition rates during the day, compared with the daily mean, for the two periods (cold and warm), indicating that urban-associated sources such as exhaust emissions and road dust resuspension contribute similarly to the deposited dose irrespectively of the season. Finally, the highest deposited dose was obtained during Sahara dust events ranged from 1881 to 4648 μg.
Collapse
Affiliation(s)
- Eleftheria Chalvatzaki
- School of Environmental Engineering, Technical University of Crete, 73100, Chania, Greece
| | | | - Ilias Kopanakis
- School of Environmental Engineering, Technical University of Crete, 73100, Chania, Greece
| | - Dimitris Melas
- Laboratory of Atmospheric Physics, Physics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Daphne Parliari
- Laboratory of Atmospheric Physics, Physics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikos Mihalopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Palaia Penteli, 15236, Athens, Greece
- Environmental Chemical Processes Laboratory, Chemistry Department, University of Crete, 2208, 71003, Heraklion, Greece
| | - Mihalis Lazaridis
- School of Environmental Engineering, Technical University of Crete, 73100, Chania, Greece.
| |
Collapse
|
8
|
Das A, Habib G, Perumal V, Kumar A. Estimating seasonal variations of realistic exposure doses and risks to organs due to ambient particulate matter -bound metals of Delhi. CHEMOSPHERE 2020; 260:127451. [PMID: 32673876 DOI: 10.1016/j.chemosphere.2020.127451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
This study aims to calculate deposition of PM2.5 -bound hazardous metals in different organs after inhalation of particulate matter for the Delhi (India), and to estimate risks to organs following inhalation. Bio-accessible fractions of three PM-associated carcinogenic metals (As, Pb &Cd) were calculated using the metal values in simulated lung fluids. Depositions of metals in different organs were calculated using an integrated model consists of HRT and PBPK models. The calculation indicates that the major or significant deposition of metal Pb occurs in tissues, such as bone, muscle and blood. Most of the depositions of Cd happens in lung whereas most of the depositions of As happens in lung, muscle and skin. Most of the deposition of studied metals was found in lung (45% for arsenic and 70% for cadmium of their bio -dissolved contents). The following order of depositions of metals in different tissues were found (from highest deposition to smallest deposition): As: Lung > muscle = liver; Pb: bone > blood > muscle; Cd: lung > intestine. The combined exposures of PM2.5 and its associated metals were found to give interaction-based hazard index greater than 1 for several months of the year, indicating a chance of health risk. Hazard quotient (HQ) <1 was seen for ingestion and dermal pathways, indicating no cause of concern. Findings indicate the need for doing periodic monitoring and estimating deposition doses and exposure risks of PM-associated metals to lungs and other organs for protecting human health.
Collapse
Affiliation(s)
- Ananya Das
- Department of Civil Engineering, Indian Institute of Technology, Delhi, India.
| | - Gazala Habib
- Department of Civil Engineering, Indian Institute of Technology, Delhi, India.
| | - Vivekanandan Perumal
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India.
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology, Delhi, India.
| |
Collapse
|
9
|
Prediction of Aerosol Deposition in the Human Respiratory Tract via Computational Models: A Review with Recent Updates. ATMOSPHERE 2020. [DOI: 10.3390/atmos11020137] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The measurement of deposited aerosol particles in the respiratory tract via in vivo and in vitro approaches is difficult due to those approaches’ many limitations. In order to overcome these obstacles, different computational models have been developed to predict the deposition of aerosol particles inside the lung. Recently, some remarkable models have been developed based on conventional semi-empirical models, one-dimensional whole-lung models, three-dimensional computational fluid dynamics models, and artificial neural networks for the prediction of aerosol-particle deposition with a high accuracy relative to experimental data. However, these models still have some disadvantages that should be overcome shortly. In this paper, we take a closer look at the current research trends as well as the future directions of this research area.
Collapse
|
10
|
Characterization of Human Health Risks from Particulate Air Pollution in Selected European Cities. ATMOSPHERE 2019. [DOI: 10.3390/atmos10020096] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The objective of the current study was to estimate health risk indexes caused by the inhalation of particulate matter (PM) by adult males and children using data sampled in three European cities (Athens, Kuopio, Lisbon). Accordingly, the cancer risk (CR) and the hazard quotient (HQ) were estimated from particle-bound metal concentrations whilst the epidemiology-based excess risk (ER), the attributable fraction (AF), and the mortality cases were obtained due to exposure to PM10 and PM2.5. CR and HQ were estimated using two methodologies: the first methodology incorporated the particle-bound metal concentrations (As, Cd, Co, Cr, Mn, Ni, Pb) whereas the second methodology used the deposited dose rate of particle-bound metals in the respiratory tract. The indoor concentration accounts for 70% infiltration from outdoor air for the time activity periods allocated to indoor environments. HQ was lower than 1 and the cumulative CR was lower than the acceptable level (10−4), although individual CR for some metals exceeded the acceptable limit (10−6). In a lifetime the estimated number of attributable cancer cases was 74, 0.107, and 217 in Athens, Kuopio, and Lisbon, respectively. Excess risk-based mortality estimates (due to outdoor pollution) for fine particles were 3930, 44.1, and 2820 attributable deaths in Athens, Kuopio, and Lisbon, respectively.
Collapse
|