1
|
Yulia E, Martin PN. Development of a rapid method for determination of Ochratoxin A in grape mash and wine. Mycotoxin Res 2024; 40:605-613. [PMID: 39033481 DOI: 10.1007/s12550-024-00543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/30/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024]
Abstract
The occurrence of Ochratoxin A (OTA) in wine is commonly known, but there is only limited information about its occurrence in grape mash and wines of German origin. Climate change has led to higher temperatures in the southern regions of Germany, which may increase the growth of fungi associated with the production of OTA and increase the content of this mycotoxin in grapes. A safe and rapid UHPLC-FLD method was developed and validated to assess the contamination of grape mash and wine with OTA. A total of 71 samples of grape mash and 30 wines from various wine producers in Baden-Württemberg, Germany, were analysed for OTA content. The results showed that no samples contained OTA in concentrations above the limit of detection. Further monitoring of samples from different vintages is needed.
Collapse
Affiliation(s)
- Efanova Yulia
- State Research Institute for Viticulture & Pomiculture, Weinsberg, Germany.
| | | |
Collapse
|
2
|
Zhang L, Zhang X, Chen X, Zhang W, Zhao L, Wang Z, Guo Y. Biodegradation of ochratoxin A by Brevundimonas diminuta HAU429: Characterized performance, toxicity evaluation and functional enzymes. Food Res Int 2024; 187:114409. [PMID: 38763660 DOI: 10.1016/j.foodres.2024.114409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
Ochratoxin A (OTA) is a notorious mycotoxin commonly contaminating food products worldwide. In this study, an OTA-degrading strain Brevundimonas diminuta HAU429 was isolated by using hippuryl-L-phenylalanine as the sole carbon source. The biodegradation of OTA by strain HAU429 was a synergistic effect of intracellular and extracellular enzymes, which transformed OTA into ochratoxin α (OTα) through peptide bond cleavage. Cytotoxicity tests and cell metabolomics confirmed that the transformation of OTA into OTα resulted in the detoxification of its hepatotoxicity since OTA but not OTα disturbed redox homeostasis and induced oxidative damage to hepatocytes. Genome mining identified nine OTA hydrolase candidates in strain HAU429. They were heterologously expressed in Escherichia coli, and three novel amidohydrolase BT6, BT7 and BT9 were found to display OTA-hydrolyzing activity. BT6, BT7 and BT9 showed less than 45 % sequence identity with previously identified OTA-degrading amidohydrolases. BT6 and BT7 shared 60.9 % amino acid sequence identity, and exhibited much higher activity towards OTA than BT9. BT6 and BT7 could completely degrade 1 μg mL-1 of OTA within 1 h and 50 min, while BT9 hydrolyzed 100 % of OTA in the reaction mixture by 12 h. BT6 was the most thermostable retaining 38 % of activity after incubation at 70 °C for 10 min, while BT7 displayed the highest tolerance to ethanal remaining 76 % of activity in the presence of 6 % ethanol. This study could provide new insights towards microbial OTA degradation and promote the development of enzyme-catalyzed OTA detoxification during food processing.
Collapse
Affiliation(s)
- Liangyu Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xingke Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaoxue Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Wei Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Lihong Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhixiang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yongpeng Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
3
|
Chtioui W, Heleno S, Migheli Q, Rodrigues P. Plant extracts as biocontrol agents against Aspergillus carbonarius growth and ochratoxin A production in grapes. Int J Food Microbiol 2023; 407:110425. [PMID: 37804776 DOI: 10.1016/j.ijfoodmicro.2023.110425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/24/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Aspergillus carbonarius (Bainier) Thom. is an important pathogen and ochratoxin A (OTA) producer in grapes that can be controlled by adopting sustainable approaches. Here we evaluate the application of natural plant extracts as an alternative to synthetic fungicides to reduce OTA contamination and to prevent infection of grapes by two isolates of A. carbonarius. In a preliminary screening, natural extracts of chestnut flower, cistus, eucalyptus, fennel, and orange peel were evaluated for their antifungal and anti-mycotoxigenic efficiency in a grape-based medium at concentrations of 10 and 20 mg/mL. Cistus and orange peel extracts demonstrated the best antifungal activity at both concentrations. Although the eucalyptus extract demonstrated no significant effect on Aspergillus vegetative growth, it significantly reduced OTA by up to 85.75 % at 10 mg/mL compared to the control. Chestnut flower, cistus, eucalyptus, and orange peel extracts were then tested at the lowest concentration (10 mg/mL) for their antifungal activity in artificially inoculated grape berries. The cistus and orange peel extracts demonstrated the greatest antifungal activity and significantly reduced mold symptoms in grapes. Moreover, all tested natural extracts were able to reduce OTA content in grape berries (17.7 ± 8.3 % - 82.3 ± 3.85 % inhibition), although not always significantly. Eucalyptus extract was particularly efficient, inhibiting OTA production by both strains of A. carbonarius by up to >80 % with no effects on fungal growth. The use of natural eucalyptus extract represents a feasible strategy to reduce OTA formation without disrupting fungal growth, apparently maintaining the natural microbial balance, while cistus and orange peel extracts appear promising as inhibitors of A. carbonarius mycelial growth. Our findings suggest that plant extracts may be useful sources of bioactive chemicals for preventing A. carbonarius contamination and OTA production. Nonetheless, it will be necessary to evaluate their effect on the organoleptic properties of the grapes.
Collapse
Affiliation(s)
- Wiem Chtioui
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100, Sassari, Italy; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Sandrina Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.
| | - Quirico Migheli
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100, Sassari, Italy; Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Via E. De Nicola 9, 07100, Sassari, Italy
| | - Paula Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.
| |
Collapse
|
4
|
Cox A, Bomstein Z, Jayaraman A, Allred C. The intestinal microbiota as mediators between dietary contaminants and host health. Exp Biol Med (Maywood) 2023; 248:2131-2150. [PMID: 37997859 PMCID: PMC10800128 DOI: 10.1177/15353702231208486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
The gut microbiota sit at an important interface between the host and the environment, and are exposed to a multitude of nutritive and non-nutritive substances. These microbiota are critical to maintaining host health, but their supportive roles may be compromised in response to endogenous compounds. Numerous non-nutritive substances are introduced through contaminated foods, with three common groups of contaminants being bisphenols, phthalates, and mycotoxins. The former contaminants are commonly introduced through food and/or beverages packaged in plastic, while mycotoxins contaminate various crops used to feed livestock and humans alike. Each group of contaminants have been shown to shift microbial communities following exposure; however, specific patterns in microbial responses have yet to be identified, and little is known about the capacity of the microbiota to metabolize these contaminants. This review characterizes the state of existing research related to gut microbial responses to and biotransformation of bisphenols, phthalates, and mycotoxins. Collectively, we highlight the need to identify consistent, contaminant-specific responses in microbial shifts, whether these community alterations are a result of contaminant effects on the host or microbiota directly, and to identify the extent of contaminant biotransformation by microbiota, including if these transformations occur in physiologically relevant contexts.
Collapse
Affiliation(s)
- Amon Cox
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Zach Bomstein
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Clinton Allred
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| |
Collapse
|
5
|
Felšöciová S, Sabo J, Čmiková N, Kowalczewski PŁ, Kačániová M. Mycobiota in Slovak wine grapes: A case study from the small Carpathians wine region. Open Life Sci 2023; 18:20220676. [PMID: 37711215 PMCID: PMC10499011 DOI: 10.1515/biol-2022-0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/28/2023] [Accepted: 07/18/2023] [Indexed: 09/16/2023] Open
Abstract
The microbiological characteristics of the grapes are made up of a wide variety of microorganisms, including filamentous fungi. Their presence in grapes is traditionally associated with deterioration in quality. The health of the grapes is very important for obtaining quality wine. The objective of this study was to investigate the diversity of mycobiota on the surface and inside of different grapevine varieties at harvest time in the temperate climate of Slovakia and to identify potentially pathogenic isolates of Aspergillus and Penicillium producing selected mycotoxins. During the 2021 grape harvest, grapes were collected from the Small Carpathians wine region. Eleven grape samples were analyzed by the plating method and plating method with surface disinfection. Emphasis was placed on Aspergillus and Penicillium species because of their importance in mycotoxin production. Of the 605 fungal strains detected, 11 genera were identified in the exogenous mycobiota. The most common and abundant genera were Alternaria and Botrytis. In the genus Aspergillus, A. section Nigri is the most abundant, while in the genus Penicillium, P. raistrickii reached the highest frequency and abundance. Of the 379 strains detected and identified from the endogenous mycobiota, the most common genera were again Alternaria and Botrytis and the most abundant genus was Botrytis. Penicillium species were detected in 17% of all fungi found, with P. raistrickii dominating. The A. section Nigri reached only 4% of the relative density of all isolates. Potentially toxigenic Aspergillus and Penicillium species were tested for toxinogenity by thin layer chromatography. The most important mycotoxin-producing species found were A. section Nigri but without ochratoxin A production.
Collapse
Affiliation(s)
- Soňa Felšöciová
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76Nitra, Slovak Republic
| | - Jozef Sabo
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76Nitra, Slovak Republic
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76Nitra, Slovak Republic
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624Poznań, Poland
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76Nitra, Slovak Republic
- Department of Bioenergetics and Food Analysis, Institute of Food Technology and Nutrition, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| |
Collapse
|
6
|
Avîrvarei AC, Salanță LC, Pop CR, Mudura E, Pasqualone A, Anjos O, Barboza N, Usaga J, Dărab CP, Burja-Udrea C, Zhao H, Fărcaș AC, Coldea TE. Fruit-Based Fermented Beverages: Contamination Sources and Emerging Technologies Applied to Assure Their Safety. Foods 2023; 12:foods12040838. [PMID: 36832913 PMCID: PMC9957501 DOI: 10.3390/foods12040838] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
The food and beverage market has become broader due to globalization and consumer claims. Under the umbrella of consumer demands, legislation, nutritional status, and sustainability, the importance of food and beverage safety must be decisive. A significant sector of food production is related to ensuring fruit and vegetable conservation and utilization through fermentation. In this respect, in this review, we critically analyzed the scientific literature regarding the presence of chemical, microbiological and physical hazards in fruit-based fermented beverages. Furthermore, the potential formation of toxic compounds during processing is also discussed. In managing the risks, biological, physical, and chemical techniques can reduce or eliminate any contaminant from fruit-based fermented beverages. Some of these techniques belong to the technological flow of obtaining the beverages (i.e., mycotoxins bound by microorganisms used in fermentation) or are explicitly applied for a specific risk reduction (i.e., mycotoxin oxidation by ozone). Providing manufacturers with information on potential hazards that could jeopardize the safety of fermented fruit-based drinks and strategies to lower or eliminate these hazards is of paramount importance.
Collapse
Affiliation(s)
- Alexandra Costina Avîrvarei
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Liana Claudia Salanță
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Carmen Rodica Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Elena Mudura
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, I-70126 Bari, Italy
| | - Ofelia Anjos
- Instituto Politécnico de Castelo Branco, 6001-909 Castelo Branco, Portugal
- Forest Research Centre, School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal
- Spectroscopy and Chromatography Laboratory, CBP-BI-Centro de Biotecnologia de Plantas da Beira Interior, 6001-909 Castelo Branco, Portugal
| | - Natalia Barboza
- Food Technology Department, University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
- National Center of Food Science and Technology (CITA), University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
| | - Jessie Usaga
- National Center of Food Science and Technology (CITA), University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
| | - Cosmin Pompei Dărab
- Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
| | - Cristina Burja-Udrea
- Industrial Engineering and Management Department, Faculty of Engineering, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| | - Anca Corina Fărcaș
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
7
|
Resistance of Black Aspergilli Species from Grape Vineyards to SDHI, QoI, DMI, and Phenylpyrrole Fungicides. J Fungi (Basel) 2023; 9:jof9020221. [PMID: 36836335 PMCID: PMC9961879 DOI: 10.3390/jof9020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Fungicide applications constitute a management practice that reduces the size of fungal populations and by acting as a genetic drift factor, may affect pathogen evolution. In a previous study, we showed that the farming system influenced the population structure of the Aspergillus section Nigri species in Greek vineyards. The current study aimed to test the hypothesis that the differences in the population structure may be associated with the selection of fungicide-resistant strains within the black aspergilli populations. To achieve this, we determined the sensitivity of 102, 151, 19, and 22 for the A. uvarum, A. tubingensis, A. niger, and A. carbonarious isolates, respectively, originating either from conventionally-treated or organic vineyards to the fungicides fluxapyroxad-SDHIs, pyraclostrobin-QoIs, tebuconazole-DMIs, and fludioxonil-phenylpyrroles. The results showed widespread resistance to all four fungicides tested in the A. uvarum isolates originating mostly from conventional vineyards. In contrast, all the A. tubingensis isolates tested were sensitive to pyraclostrobin, while moderate frequencies of only lowly resistant isolates were identified for tebuconazole, fludioxonil, and fluxapyroxad. Sequencing analysis of the corresponding fungicide target encoding genes revealed the presence of H270Y, H65Q/S66P, and G143A mutations in the sdhB, sdhD, and cytb genes of A. uvarum resistant isolates, respectively. No mutations in the Cyp51A and Cyp51B genes were detected in either the A. uvarum or A. tubingensis isolates exhibiting high or low resistance levels to DMIs, suggesting that other resistance mechanisms are responsible for the observed phenotype. Our results support the initial hypothesis for the contribution of fungicide resistance in the black aspergilli population structure in conventional and organic vineyards, while this is the first report of A. uvarum resistance to SDHIs and the first documentation of H270Y or H65Q/S66P mutations in sdhB, sdhD, and of the G143A mutation in the cytb gene of this fungal species.
Collapse
|
8
|
La Placa L, Tsitsigiannis D, Camardo Leggieri M, Battilani P. From Grapes to Wine: Impact of the Vinification Process on Ochratoxin A Contamination. Foods 2023; 12:260. [PMID: 36673352 PMCID: PMC9858051 DOI: 10.3390/foods12020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Ochratoxin A (OTA) is one of the major mycotoxins, classified as "potentially carcinogenic to humans" (Group 2B) by the International Agency for Research on Cancer (IARC), and wine is one of its main sources of intake in human consumption. The main producer of this toxin is Aspergillus carbonarius, a fungus that contaminates grapes early in the growing season. The vinification process, as a whole, reduces the toxin content in wine compared to the grapes; however, not all vinification steps contribute equally to this reduction. During the maceration phase in red wines, toxin concentrations generally tend to increase. Based on previous studies, this review provides an overview of how each step of the vinification process influences the final OTA contamination in wine. Moreover, certain physical, chemical, and microbiological post-harvest strategies are useful in reducing OTA levels in wine. Among these, the use of fining agents, such as gelatin, egg albumin, and bentonite, must be considered. Therefore, this review describes the fate of OTA during the winemaking process, including quantitative data when available, and highlights actions able to reduce the final OTA level in wine.
Collapse
Affiliation(s)
- Laura La Placa
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Dimitrios Tsitsigiannis
- Department of Crop Science, School of Plant Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Marco Camardo Leggieri
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Paola Battilani
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
9
|
Giacomini RX, Barnes Rodrigues Cerqueira M, Primel EG, Garda-Buffon J. Monitoring of mycotoxins and pesticides in winemaking. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2023. [DOI: 10.1051/ctv/ctv20233801010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study monitored concentrations of both pesticides 2,4-dichlorophenoxyacetic acid (2,4-D) and procymidone, and mycotoxin ochratoxin A (OTA) in stages of the winemaking process. Sampling was carried out in the usual vinification process of red wine in a winery between the steps to obtain must and alcoholic fermentation. The highest transference of contaminants in the process occurred in the crushing step to 2,4-D (100%) and maceration to OTA and procymidone (100%). Removal of contaminants in the winemaking process corresponded to 100%, with a half-life (T1/2) longer for procymidone (216.5 h) and shorter for 2,4-D (38.5 h) and OTA (96 h). The processing factors (PFs) (0) for the contaminants, together with the data obtained, characterize winemaking as a process of reducing mycotoxin and pesticides. Results highlight the importance of fermentation to reduce contaminants and that yeasts promote detoxification
Collapse
|
10
|
Karachaliou CE, Koukouvinos G, Zisis G, Kizis D, Krystalli E, Siragakis G, Goustouridis D, Kakabakos S, Petrou P, Livaniou E, Raptis I. Fast and Accurate Determination of Minute Ochratoxin A Levels in Cereal Flours and Wine with the Label-Free White Light Reflectance Spectroscopy Biosensing Platform. BIOSENSORS 2022; 12:877. [PMID: 36291014 PMCID: PMC9599867 DOI: 10.3390/bios12100877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Ochratoxin A (OTA) is one of the most toxic naturally encountered contaminants and is found in a variety of foods and beverages, including cereals and wine. Driven by the strict regulations regarding the maximum allowable OTA concentration in foodstuff and the necessity for on-site determination, the development of fast and sensitive methods for the OTA determination in cereal flours and wine samples, based on white light reflectance spectroscopy, is presented. The method relied on appropriately engineered silicon chips, on top of which an OTA-protein conjugate was immobilized. A polyclonal antibody against OTA was then employed to detect the analyte in the framework of a competitive immunoassay; followed by the subsequent addition of a biotinylated secondary antibody and streptavidin for signal enhancement. A small size instrument performed all assay steps automatically and the bioreactions were monitored in real time as the software converted the spectral shifts into effective biomolecular adlayer thickness increase. The assay developed had a detection limit of 0.03 ng/mL and a working range up to 200 ng/mL. The assay lasted 25 min (less than 1h, including calibrators/antibody pre-incubation) and was accomplished following a simple sample preparation protocol. The method was applied to corn and wheat flour samples and white and red wines with recovery values ranging from 87.2 to 111%. The simplicity of the overall assay protocol and convenient instrumentation demonstrates the potential of the immunosensor developed for OTA detection at the point of need.
Collapse
Affiliation(s)
- Chrysoula-Evangelia Karachaliou
- Immunopeptide Chemistry Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 15310 Agia Paraskevi, Greece
| | - Georgios Koukouvinos
- Immunoassay/Immunosensors Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 15310 Agia Paraskevi, Greece
| | - Grigoris Zisis
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 15310 Agia Paraskevi, Greece or
| | - Dimosthenis Kizis
- Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 14561 Kifissia, Greece
| | | | - George Siragakis
- Tuv Austria Food Allergens Labs Ltd., Kalopsidas 38, 7060 Livadia, Cyprus
| | | | - Sotirios Kakabakos
- Immunoassay/Immunosensors Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 15310 Agia Paraskevi, Greece
| | - Panagiota Petrou
- Immunoassay/Immunosensors Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 15310 Agia Paraskevi, Greece
| | - Evangelia Livaniou
- Immunopeptide Chemistry Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 15310 Agia Paraskevi, Greece
| | - Ioannis Raptis
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 15310 Agia Paraskevi, Greece or
- ThetaMetrisis S.A., Christou Lada 40, 12132 Athens, Greece
| |
Collapse
|
11
|
Geleta GS. A colorimetric aptasensor based on gold nanoparticles for detection of microbial toxins: an alternative approach to conventional methods. Anal Bioanal Chem 2022; 414:7103-7122. [PMID: 35902394 DOI: 10.1007/s00216-022-04227-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/01/2022]
Abstract
Frequent contamination of foods with microbial toxins produced by microorganisms such as bacteria, fungi, and algae represents an increasing public health problem that requires the development of quick and easy tools to detect them at trace levels. Recently, it has been found that colorimetric detection methods may replace traditional methods in the field because of their ease of use, quick response, ease of manufacture, low cost, and naked-eye visibility. Therefore, it is suitable for fieldwork, especially for work in remote areas of the world. However, the development of colorimetric detection methods with low detection limits is a challenge that limits their wide applicability in the detection of food contaminants. To address these challenges, nanomaterial-based transduction systems are used to construct colorimetric biosensors. For example, gold nanoparticles (AuNPs) provide an excellent platform for the development of colorimetric biosensors because they offer the advantages of easy synthesis, biocompatibility, advanced surface functionality, and adjustable physicochemical properties. The selectivity of the colorimetric biosensor can be achieved by the combination of aptamers and gold nanoparticles, which provides an unprecedented opportunity to detect microbial toxins. Compared to antibodies, aptamers have significant advantages in the analysis of microbial toxins due to their smaller size, higher binding affinity, reproducible chemical synthesis and modification, stability, and specificity. Two colorimetric mechanisms for the detection of microbial toxins based on AuNPs have been described. First, sensors that use the localized surface plasmon resonance (LSPR) phenomenon of gold nanoparticles can exhibit very strong colors in the visible range because of changes caused by aggregation or disaggregation. Second, the detection mechanism of AuNPs is based on their enzyme mimetic properties and it is possible to construct a colorimetric biosensor based on the 3,3',5,5'-tetramethylbenzidine/Hydrogen peroxide, TMB/H2O2 reaction to detect microbial toxins. Therefore, this review summarizes the recent applications of AuNP-based colorimetric aptasensors for detecting microbial toxins, including bacterial toxins, fungal toxins, and algal toxins focusing on selectivity, sensitivity, and practicality. Finally, the most important current challenges in this field and future research opportunities are discussed.
Collapse
Affiliation(s)
- Girma Salale Geleta
- Department of Chemistry, College of Natural Sciences, Salale University, P.O. Box 245, Oromia, Fiche, Ethiopia.
| |
Collapse
|
12
|
Ergonomic Risk Minimization in the Portuguese Wine Industry: A Task Scheduling Optimization Method Based on the Ant Colony Optimization Algorithm. Processes (Basel) 2022. [DOI: 10.3390/pr10071364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the wine industry, task planning is based on decision-making processes that are influenced by technical and organizational constraints as well as regulatory limitations. A characteristic constraint inherent to this sector concerns occupational risks, in which companies must reduce and mitigate work-related accidents, resulting in lower operating costs and a gain in human, financial, and material efficiency. This work proposes a task scheduling optimization model using a methodology based on the ant colony optimization approach to mitigate the ergonomic risks identified in general winery production processes by estimating the metabolic energy expenditure during the execution of tasks. The results show that the tasks were reorganized according to their degree of ergonomic risk, preserving an acceptable priority sequence of tasks with operational affinity and satisfactory efficiency from the point of view of the operationalization of processes, while the potential ergonomic risks are simultaneously minimized by the rotation and alternation of operative teams between those tasks with higher and lower values of metabolic energy required. We also verified that tasks with lower ergonomic-load requirements influence the reorganization of the task sequence by lowering the overall value of metabolic energy, which is reflected in the reduction of the ergonomic load.
Collapse
|
13
|
Mostashari P, Gavahian M, Jafarzadeh S, Guo JH, Hadidi M, Pandiselvam R, Huseyn E, Mousavi Khaneghah A. Ozone in wineries and wine processing: A review of the benefits, application, and perspectives. Compr Rev Food Sci Food Saf 2022; 21:3129-3152. [PMID: 35674465 DOI: 10.1111/1541-4337.12971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
Abstract
Ozone (O3 ) is an emerging eco-friendly technology that has been widely used in the beverage industry due to its broad spectrum of usages, such as fermentation, microbial inactivation, Clean-in-Place (CIP) systems, and postharvest treatment. Wine is among the most financially profitable sectors of the beverage industry. Ozone technology as an alternative approach to conventional methods to inhibit microbes in wine processing and wineries has attracted researchers' attention as this emerging technology will probably play important roles in wineries in the future. This review discusses the prospective applications of ozone in winemaking and wineries and elaborates on ozone's antimicrobial effects on the control of the broad spectrum of microorganisms during wine processing. Also, this paper provides discussions on its effects of O3 on wine quality and the benefits this emerging technology can bring to wineries. Ozone treatments can improve yeast fermentation by impacting the yeast ecology of postharvested wine grapes, mainly by affecting apiculate yeasts and adjusting the population of undesirable yeasts, such as Brettanomyces spp., during the fermentation process. Furthermore, ozone treatment may enhance wine's anthocyanin concentration, physicochemical properties, color, pH, oxidative stability, and concentration of pleasant volatile compounds and esters. This article presents important information to have a better understanding of the impact of ozone treatment on different stages of wine preparation.
Collapse
Affiliation(s)
- Parisa Mostashari
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science & Technology, 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan
| | - Shima Jafarzadeh
- School of Engineering, Edith Cowan University, Joondalup, Washington, Australia
| | - Jia-Hsin Guo
- Department of Food Science, National Pingtung University of Science & Technology, 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Ciudad Real, Spain
| | - R Pandiselvam
- Physiology, Biochemistry, and Post-harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod, India
| | - Elcin Huseyn
- Research Laboratory of Intelligent Control and Decision-Making Systems in Industry and Economics, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, Warsaw, 02-532, Poland
| |
Collapse
|
14
|
Conventional vs. organic vineyards: Black Aspergilli population structure, mycotoxigenic capacity and mycotoxin contamination assessment in wines, using a new Q-TOF MS-MS detection method. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Bai F, Cai C, Zhang T, Wang P, Shi L, Zhai L, Li H, Zhang L, Yao S. Genome-Based Analysis of Aspergillus niger Aggregate Species from China and Their Potential for Fumonisin B 2 and Ochratoxin A Production. Curr Microbiol 2022; 79:193. [PMID: 35579721 DOI: 10.1007/s00284-022-02876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
Based on entire genome sequencing, this study focused on the classification of Aspergillus niger aggregation species and investigated their potential for fumonisin B2 (FB2) and ochratoxin A (OTA) production. In the current study, 22 strains were used, namely 17 A. niger strains, four A. welwitschiae strains, and one A. lacticoffeatus (a synonym of A. niger) strain. Traditional multigene phylogenetic analysis, average nucleotide identity analysis (ANI), and the whole-genome single-nucleotide polymorphism (SNP) analyses were used to reconfirm the taxonomic status of A. niger, A. welwitschiae, and A. lacticoffeatus. The ability of A. niger to produce FB2 and OTA on five culture substrates was determined, and the association between FB2 and OTA gene clusters and toxin-producing abilities was explored. The results revealed that the ANI method could distinguish A. niger from A. welwitschiae, with an ANI value of < 98%. The SNP-based phylogenetic analysis suggested that A. niger and A. welwitschiae were two independent phylogenetic species. The ANI, SNP, and multigene phylogenetic analysis supported previous findings that A. lacticoffeatus was a synonymous species of A. niger. Aspergillus niger strains exhibited the varied potential of producing FB2 and OTA on different culture media. The A. niger genome sequence analysis revealed no significant difference in fumonisin gene clusters between FB2-nonproducing isolates and FB2-producing isolates, and the integrity of the ochratoxin biosynthesis genes cluster was clearly associated with OTA production. In conclusion, gene sequencing can be useful in assessing A. niger's ability to produce OTA, but it cannot reliably predict its ability to produce FB2.
Collapse
Affiliation(s)
- Feirong Bai
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Chengshan Cai
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Tianci Zhang
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Penghui Wang
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Liang Shi
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Lei Zhai
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Hui Li
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Lu Zhang
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Su Yao
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China.
| |
Collapse
|
16
|
Zou D, Ji J, Ye Y, Yang Y, Yu J, Wang M, Zheng Y, Sun X. Degradation of Ochratoxin A by a UV-Mutated Aspergillus niger Strain. Toxins (Basel) 2022; 14:toxins14050343. [PMID: 35622590 PMCID: PMC9146908 DOI: 10.3390/toxins14050343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin that can contaminate a wide range of crops such as grains and grapes. In this study, a novel fungal mutant strain (FS-UV-21) with a high OTA degradation rate (74.5%) was obtained from Aspergillus niger irradiated with ultraviolet light (15 W for 20 min). The effect of pH, temperature, and inoculation concentration on the degradation of OTA by FS-UV-21 was investigated, and the results revealed that the detoxification effect was optimal (89.4%) at a pH of 8 and a temperature of 30 °C. Ultra-performance liquid chromatography-tandem mass spectrometry was used to characterize the degraded products of OTA, and the main degraded product was ochratoxin α. Triple quadrupole-linear ion trap-mass spectrometry combined with LightSight software was used to analyze the biotransformation pathway of OTA in FS-UV-21, to trace the degraded products, and to identify the main metabolite, P1 (C19H18ClNO6, m/z 404). After the FS-UV-21 strain was treated with OTA, the HepG2 cellular toxicity of the degradation products was significantly reduced. For the real sample, FS-UV-21 was used to remove OTA from wheat bran contaminated by mycotoxins through fermentation, resulting in the degradation of 59.8% of OTA in wheat bran. Therefore, FS-UV-21 can be applied to the degradation of OTA in agricultural products and food.
Collapse
Affiliation(s)
- Dong Zou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (D.Z.); (J.J.); (Y.Y.); (Y.Y.); (J.Y.)
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (D.Z.); (J.J.); (Y.Y.); (Y.Y.); (J.Y.)
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (D.Z.); (J.J.); (Y.Y.); (Y.Y.); (J.Y.)
| | - Yang Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (D.Z.); (J.J.); (Y.Y.); (Y.Y.); (J.Y.)
| | - Jian Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (D.Z.); (J.J.); (Y.Y.); (Y.Y.); (J.Y.)
| | - Meng Wang
- Institute of Quality Standards and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Yi Zheng
- Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 214122, China;
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (D.Z.); (J.J.); (Y.Y.); (Y.Y.); (J.Y.)
- Correspondence:
| |
Collapse
|
17
|
Nan M, Xue H, Bi Y. Contamination, Detection and Control of Mycotoxins in Fruits and Vegetables. Toxins (Basel) 2022; 14:309. [PMID: 35622556 PMCID: PMC9143439 DOI: 10.3390/toxins14050309] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 01/09/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by pathogenic fungi that colonize fruits and vegetables either during harvesting or during storage. Mycotoxin contamination in fruits and vegetables has been a major problem worldwide, which poses a serious threat to human and animal health through the food chain. This review systematically describes the major mycotoxigenic fungi and the produced mycotoxins in fruits and vegetables, analyzes recent mycotoxin detection technologies including chromatography coupled with detector (i.e., mass, ultraviolet, fluorescence, etc.) technology, electrochemical biosensors technology and immunological techniques, as well as summarizes the degradation and detoxification technologies of mycotoxins in fruits and vegetables, including physical, chemical and biological methods. The future prospect is also proposed to provide an overview and suggestions for future mycotoxin research directions.
Collapse
Affiliation(s)
- Mina Nan
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
- Basic Experiment Teaching Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
18
|
Meta-Heuristic Model for Optimization of Production Layouts Based on Occupational Risk Assessment: Application to the Portuguese Wine Sector. APPLIED SYSTEM INNOVATION 2022. [DOI: 10.3390/asi5020040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
A factory layout is a decisive factor in the improvement of production levels, efficiency, and even in the sustainability of a company. Regardless of the type of layout to be implemented, they are typically designed to optimize the work conditions and provide high performance, reducing production losses. The wine sector encompasses a wide diversity of possible configurations of production layouts, from one-level designs with separate infrastructures in several buildings or centralized single facilities, or even subdivided into different levels or floors. The general purpose is to maximize energy efficiency and process performance while minimizing costs. Thus, an optimization model based on the organization of productive layouts is proposed, using a methodology based on a genetic algorithm. The obtained results reveal that the optimization model for winery layouts was successfully applied, providing feasible solutions to improve the production processes’ efficiency combined with the minimization of general and ergonomic risks.
Collapse
|
19
|
Windholtz S, Vinsonneau E, Farris L, Thibon C, Masneuf-Pomarède I. Yeast and Filamentous Fungi Microbial Communities in Organic Red Grape Juice: Effect of Vintage, Maturity Stage, SO 2, and Bioprotection. Front Microbiol 2022; 12:748416. [PMID: 35002998 PMCID: PMC8740202 DOI: 10.3389/fmicb.2021.748416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/01/2021] [Indexed: 01/16/2023] Open
Abstract
Changes are currently being made to winemaking processes to reduce chemical inputs [particularly sulfur dioxide (SO2)] and adapt to consumer demand. In this study, yeast growth and fungal diversity were investigated in merlot during the prefermentary stages of a winemaking process without addition of SO2. Different factors were considered, in a two-year study: vintage, maturity level and bioprotection by the adding yeast as an alternative to SO2. The population of the target species was monitored by quantitative-PCR, and yeast and filamentous fungi diversity was determined by 18S rDNA metabarcoding. A gradual decrease of the α-diversity during the maceration process was highlighted. Maturity level played a significant role in yeast and fungal abundance, which was lower at advanced maturity, while vintage had a strong impact on Hanseniaspora spp. population level and abundance. The presence of SO2 altered the abundance of yeast and filamentous fungi, but not their nature. The absence of sulfiting led to an unexpected reduction in diversity compared to the presence of SO2, which might result from the occupation of the niche by certain dominant species, namely Hanseniaspora spp. Inoculation of the grape juice with non-Saccharomyces yeast resulted in a decrease in the abundance of filamentous fungi generally associated with a decline in grape must quality. Lower abundance and niche occupation by bioprotection agents were observed at the overripened stage, thus suggesting that doses applied should be reconsidered at advanced maturity. Our study confirmed the bioprotective role of Metschnikowia pulcherrima and Torulaspora delbrueckii in a context of vinification without sulfites.
Collapse
Affiliation(s)
- Sara Windholtz
- Univ. Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, Villenave d'Ornon, France
| | | | - Laura Farris
- Univ. Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, Villenave d'Ornon, France.,Bordeaux Sciences Agro, Gradignan, France
| | - Cécile Thibon
- Univ. Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, Villenave d'Ornon, France
| | - Isabelle Masneuf-Pomarède
- Univ. Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, Villenave d'Ornon, France.,Bordeaux Sciences Agro, Gradignan, France
| |
Collapse
|
20
|
Caridi A, Sidari R, Pulvirenti A, Blaiotta G, Ritieni A. Clonal selection of wine yeasts with differential adsorption activities towards phenolics and ochratoxin A. FOOD BIOTECHNOL 2022. [DOI: 10.1080/08905436.2021.2006064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Andrea Caridi
- Department of Agriculture, “Mediterranea” University, Reggio Calabria, Italy
| | - Rossana Sidari
- Department of Agriculture, “Mediterranea” University, Reggio Calabria, Italy
| | - Andrea Pulvirenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Giuseppe Blaiotta
- Department of Agricultural Sciences, Division of Vine and Wine Sciences, Federico II University of Napoli, Avellino, Italy
| | - Alberto Ritieni
- Department of Pharmacy, Department of UNESCO Chair for Health Education and Sustainable Development, Federico II University of Napoli, Napoli, Italy
| |
Collapse
|
21
|
Nekrasov N, Jaric S, Kireev D, Emelianov AV, Orlov AV, Gadjanski I, Nikitin PI, Akinwande D, Bobrinetskiy I. Real-time detection of ochratoxin A in wine through insight of aptamer conformation in conjunction with graphene field-effect transistor. Biosens Bioelectron 2021; 200:113890. [PMID: 34953205 DOI: 10.1016/j.bios.2021.113890] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022]
Abstract
Mycotoxins comprise a frequent type of toxins present in food and feed. The problem of mycotoxin contamination has been recently aggravated due to the increased complexity of the farm-to-fork chains, resulting in negative effects on human and animal health and, consequently, economics. The easy-to-use, on-site, on-demand, and rapid monitoring of mycotoxins in food/feed is highly desired. In this work, we report on an advanced mycotoxin biosensor based on an array of graphene field-effect transistors integrated on a single silicon chip. A specifically designed aptamer against ochratoxin A (OTA) was used as a recognition element, where it was covalently attached to graphene surface via pyrenebutanoic acid, succinimidyl ester (PBASE) chemistry. Namely, an electric field stimulation was used to promote more efficient π-π stacking of PBASE to graphene. The specific G-rich aptamer strand suggest its π-π stacking on graphene in free-standing regime and reconfiguration in G-quadruplex during binding an OTA molecule. This realistic behavior of the aptamer is sensitive to the ionic strength of the analyte solution, demonstrating a 10-fold increase in sensitivity at low ionic strengths. The graphene-aptamer sensors reported here demonstrate fast assay with the lowest detection limit of 1.4 pM for OTA within a response time as low as 10 s, which is more than 30 times faster compared to any other reported aptamer-based methods for mycotoxin detection. The sensors hold comparable performance when operated in real-time within a complex matrix of wine without additional time-consuming pre-treatment.
Collapse
Affiliation(s)
- Nikita Nekrasov
- National Research University of Electronic Technology, Moscow, Zelenograd, 124498, Russia.
| | - Stefan Jaric
- BioSense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, Novi Sad, 21000, Serbia.
| | - Dmitry Kireev
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Aleksei V Emelianov
- National Research University of Electronic Technology, Moscow, Zelenograd, 124498, Russia
| | - Alexey V Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991, Moscow, Russia
| | - Ivana Gadjanski
- BioSense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, Novi Sad, 21000, Serbia
| | - Petr I Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991, Moscow, Russia.
| | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Ivan Bobrinetskiy
- National Research University of Electronic Technology, Moscow, Zelenograd, 124498, Russia; BioSense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, Novi Sad, 21000, Serbia
| |
Collapse
|
22
|
Li X, Ma W, Ma Z, Zhang Q, Li H. The Occurrence and Contamination Level of Ochratoxin A in Plant and Animal-Derived Food Commodities. Molecules 2021; 26:6928. [PMID: 34834020 PMCID: PMC8623125 DOI: 10.3390/molecules26226928] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Ochratoxin A (OTA) is a highly toxic mycotoxin and poses great threat to human health. Due to its serious toxicity and widespread contamination, great efforts have been made to evaluate its human exposure. This review focuses on the OTA occurrence and contamination level in nine plant and animal derived food commodities: cereal, wine, coffee, beer, cocoa, dried fruit, spice, meat, and milk. The occurrence and contamination level varied greatly in food commodities and were affected by many factors, including spices, geography, climate, and storage conditions. Therefore, risk monitoring must be routinely implemented to ensure minimal OTA intake and food safety.
Collapse
Affiliation(s)
- Xianjiang Li
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China; (Q.Z.); (H.L.)
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China;
| | - Zhiyong Ma
- Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Qinghe Zhang
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China; (Q.Z.); (H.L.)
| | - Hongmei Li
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China; (Q.Z.); (H.L.)
| |
Collapse
|
23
|
Wang Q, Zhao Y, Chen P, Zeng R, Liang Y. Ochratoxin A and zearalenone in poultry feed samples from South China. J Food Saf 2021. [DOI: 10.1111/jfs.12944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Qiongshan Wang
- College of Life Science Technology of Huazhong Agricultural University Wuhan China
| | - Yarong Zhao
- Public Monitoring Center for Agro‐products of Guangdong Academy of Agricultural Sciences Guangzhou China
| | - Peirong Chen
- Public Monitoring Center for Agro‐products of Guangdong Academy of Agricultural Sciences Guangzhou China
| | - Rui Zeng
- Public Monitoring Center for Agro‐products of Guangdong Academy of Agricultural Sciences Guangzhou China
| | - Yunxiang Liang
- College of Life Science Technology of Huazhong Agricultural University Wuhan China
| |
Collapse
|
24
|
Comparison study of nanofibers, composite nano/microfiber materials, molecularly imprinted polymers, and core-shell sorbents used for on-line extraction-liquid chromatography of ochratoxins in Tokaj wines. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
25
|
|
26
|
Diversity of Mycobiota in Spanish Grape Berries and Selection of Hanseniaspora uvarum U1 to Prevent Mycotoxin Contamination. Toxins (Basel) 2021; 13:toxins13090649. [PMID: 34564653 PMCID: PMC8473298 DOI: 10.3390/toxins13090649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/02/2022] Open
Abstract
The occurrence of mycotoxins on grapes poses a high risk for food safety; thus, it is necessary to implement effective prevention methods. In this work, a metagenomic approach revealed the presence of important mycotoxigenic fungi in grape berries, including Aspergillus flavus, Aspergillus niger aggregate species, or Aspergillus section Circumdati. However, A. carbonarius was not detected in any sample. One of the samples was not contaminated by any mycotoxigenic species, and, therefore, it was selected for the isolation of potential biocontrol agents. In this context, Hanseniaspora uvarum U1 was selected for biocontrol in vitro assays. The results showed that this yeast is able to reduce the growth rate of the main ochratoxigenic and aflatoxigenic Aspergillus spp. occurring on grapes. Moreover, H. uvarum U1 seems to be an effective detoxifying agent for aflatoxin B1 and ochratoxin A, probably mediated by the mechanisms of adsorption to the cell wall and other active mechanisms. Therefore, H. uvarum U1 should be considered in an integrated approach to preventing AFB1 and OTA in grapes due to its potential as a biocontrol and detoxifying agent.
Collapse
|
27
|
Xu X, Li T, Ji Y, Jiang X, Shi X, Wang B. Origin, Succession, and Control of Biotoxin in Wine. Front Microbiol 2021; 12:703391. [PMID: 34367103 PMCID: PMC8339702 DOI: 10.3389/fmicb.2021.703391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Wine is a worldwide alcoholic beverage with antioxidant active substances and complex flavors. Moderate drinking of wine has been proven to be beneficial to health. However, wine has some negative components, such as residual pesticides, heavy metals, and biotoxins. Of these, biotoxins from microorganisms were characterized as the most important toxins in wine. Wine fermentation mainly involves alcoholic fermentation, malolactic fermentation, and aging, which endue wine with complex flavors and even produce some undesirable metabolites. These metabolites cause potential safety risks that are not thoroughly understood. This review aimed to investigate the origin, evolution, and control technology of undesirable metabolites (e.g., ochratoxin A, ethyl carbamate, and biogenic amines) in wine. It also highlighted current wine industry practices of minimizing the number of biotoxins in wine.
Collapse
Affiliation(s)
| | | | | | | | - Xuewei Shi
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Bin Wang
- School of Food Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
28
|
Ortiz-Villeda B, Lobos O, Aguilar-Zuniga K, Carrasco-Sánchez V. Ochratoxins in Wines: A Review of Their Occurrence in the Last Decade, Toxicity, and Exposure Risk in Humans. Toxins (Basel) 2021; 13:toxins13070478. [PMID: 34357950 PMCID: PMC8310159 DOI: 10.3390/toxins13070478] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/03/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022] Open
Abstract
Ochratoxins (OTs) are mycotoxins frequently found in wines, and their contamination can occur during any stage of the winemaking process. Ochratoxin A (OTA) has been the most widely reported and the only one whose concentrations are legislated in this beverage. However, ochratoxin B, ochratoxin A methyl ester, ochratoxin B methyl ester, ochratoxin A ethyl ester, ochratoxin B ethyl ester, ochratoxin α, ochratoxin β, OTα methyl ester, OTA ethyl amide, and OTA glucose ester have also been reported in wines. Thus, detecting only OTA would lead to the underestimation of ochratoxin levels, which is a risk to human health. Considering the threat represented by the presence of ochratoxins in wines and the long-term health problems that they can cause in wine drinkers, this paper aims to review reports of the last 10 years regarding the presence of different ochratoxins in wines and how the winemaking process influences the degree of contamination, mainly by OTA. Additionally, toxicity from human exposure due to the consumption of contaminated wines is addressed.
Collapse
|
29
|
Cosme F, Inês A, Silva D, Filipe-Ribeiro L, Abrunhosa L, Nunes FM. Elimination of ochratoxin A from white and red wines: Critical characteristics of activated carbons and impact on wine quality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Biodiversity of Oenological Lactic Acid Bacteria: Species- and Strain-Dependent Plus/Minus Effects on Wine Quality and Safety. FERMENTATION 2021. [DOI: 10.3390/fermentation7010024] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Winemaking depends on several elaborate biochemical processes that see as protagonist either yeasts or lactic acid bacteria (LAB) of oenological interest. In particular, LAB have a fundamental role in determining the quality chemical and aromatic properties of wine. They are essential not only for malic acid conversion, but also for producing several desired by-products due to their important enzymatic activities that can release volatile aromatic compounds during malolactic fermentation (e.g., esters, carbonyl compounds, thiols, monoterpenes). In addition, LAB in oenology can act as bioprotectors and reduce the content of undesired compounds. On the other hand, LAB can affect wine consumers’ health, as they can produce harmful compounds such as biogenic amines and ethyl carbamate under certain conditions during fermentation. Several of these positive and negative properties are species- and strain-dependent characteristics. This review focuses on these aspects, summarising the current state of knowledge on LAB’s oenological diversity, and highlighting their influence on the final product’s quality and safety. All our reported information is of high interest in searching new candidate strains to design starter cultures, microbial resources for traditional/typical products, and green solutions in winemaking. Due to the continuous interest in LAB as oenological bioresources, we also underline the importance of inoculation timing. The considerable variability among LAB species/strains associated with spontaneous consortia and the continuous advances in the characterisation of new species/strains of interest for applications in the wine sector suggest that the exploitation of biodiversity belonging to this heterogeneous group of bacteria is still rising.
Collapse
|
31
|
Nekrasov N, Yakunina N, Pushkarev AV, Orlov AV, Gadjanski I, Pesquera A, Centeno A, Zurutuza A, Nikitin PI, Bobrinetskiy I. Spectral-Phase Interferometry Detection of Ochratoxin A via Aptamer-Functionalized Graphene Coated Glass. NANOMATERIALS 2021; 11:nano11010226. [PMID: 33467115 PMCID: PMC7830041 DOI: 10.3390/nano11010226] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022]
Abstract
In this work, we report a novel method of label-free detection of small molecules based on direct observation of interferometric signal change in graphene-modified glasses. The interferometric sensor chips are fabricated via a conventional wet transfer method of CVD-grown graphene onto the glass coverslips, lowering the device cost and allowing for upscaling the sensor fabrication. For the first time, we report the use of graphene functionalized by the aptamer as the bioreceptor, in conjunction with Spectral-Phase Interferometry (SPI) for detection of ochratoxin A (OTA). In a direct assay with an OTA-specific aptamer, we demonstrated a quick and significant change of the optical signal in response to the maximum tolerable level of OTA concentration. The sensor regeneration is possible in urea solution. The developed platform enables a direct method of kinetic analysis of small molecules using a low-cost optical chip with a graphene-aptamer sensing layer.
Collapse
Affiliation(s)
- Nikita Nekrasov
- National Research University of Electronic Technology, 124498 Moscow, Russia; (N.N.); (N.Y.)
| | - Natalya Yakunina
- National Research University of Electronic Technology, 124498 Moscow, Russia; (N.N.); (N.Y.)
| | - Averyan V. Pushkarev
- Moscow Institute of Physics and Technology, 9 Institutskii per., Dolgoprudny, 141700 Moscow, Russia; (A.V.P.); (A.V.O.)
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow, Russia;
| | - Alexey V. Orlov
- Moscow Institute of Physics and Technology, 9 Institutskii per., Dolgoprudny, 141700 Moscow, Russia; (A.V.P.); (A.V.O.)
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow, Russia;
| | - Ivana Gadjanski
- BioSense Institute-Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Amaia Pesquera
- Graphenea, Avenida de Tolosa 76, 20018 Donostia-San Sebastián, Spain; (A.P.); (A.C.); (A.Z.)
| | - Alba Centeno
- Graphenea, Avenida de Tolosa 76, 20018 Donostia-San Sebastián, Spain; (A.P.); (A.C.); (A.Z.)
| | - Amaia Zurutuza
- Graphenea, Avenida de Tolosa 76, 20018 Donostia-San Sebastián, Spain; (A.P.); (A.C.); (A.Z.)
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow, Russia;
| | - Ivan Bobrinetskiy
- National Research University of Electronic Technology, 124498 Moscow, Russia; (N.N.); (N.Y.)
- BioSense Institute-Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, 21000 Novi Sad, Serbia;
- Correspondence:
| |
Collapse
|
32
|
Maor U, Barda O, Sadhasivam S, Bi Y, Levin E, Zakin V, Prusky DB, Sionov E. Functional roles of LaeA, polyketide synthase, and glucose oxidase in the regulation of ochratoxin A biosynthesis and virulence in Aspergillus carbonarius. MOLECULAR PLANT PATHOLOGY 2021; 22:117-129. [PMID: 33169928 PMCID: PMC7749749 DOI: 10.1111/mpp.13013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/25/2020] [Accepted: 10/07/2020] [Indexed: 05/04/2023]
Abstract
Aspergillus carbonarius is the major producer of ochratoxin A (OTA) among Aspergillus species, but the contribution of this secondary metabolite to fungal virulence has not been assessed. We characterized the functions and addressed the roles of three factors in the regulation of OTA synthesis and pathogenicity in A. carbonarius: LaeA, a transcriptional factor regulating the production of secondary metabolites; polyketide synthase, required for OTA biosynthesis; and glucose oxidase (GOX), regulating gluconic acid (GLA) accumulation and acidification of the host tissue during fungal growth. Deletion of laeA in A. carbonarius resulted in significantly reduced OTA production in colonized nectarines and grapes. The ∆laeA mutant was unable to efficiently acidify the colonized tissue, as a direct result of diminished GLA production, leading to attenuated virulence in infected fruit compared to the wild type (WT). The designed Acpks-knockout mutant resulted in complete inhibition of OTA production in vitro and in colonized fruit. Interestingly, physiological analysis revealed that the colonization pattern of the ∆Acpks mutant was similar to that of the WT strain, with high production of GLA in the colonized tissue, suggesting that OTA accumulation does not contribute to A. carbonarius pathogenicity. Disruption of the Acgox gene inactivated GLA production in A. carbonarius, and this mutant showed attenuated virulence in infected fruit compared to the WT strain. These data identify the global regulator LaeA and GOX as critical factors modulating A. carbonarius pathogenicity by controlling transcription of genes important for fungal secondary metabolism and infection.
Collapse
Affiliation(s)
- Uriel Maor
- Institute of Postharvest and Food SciencesThe Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
- Institute of Biochemistry, Food Science and NutritionThe Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Omer Barda
- Institute of Postharvest and Food SciencesThe Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| | - Sudharsan Sadhasivam
- Institute of Postharvest and Food SciencesThe Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| | - Yang Bi
- College of Food Science and EngineeringGansu Agricultural UniversityLanzhouChina
| | - Elena Levin
- Institute of Postharvest and Food SciencesThe Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| | - Varda Zakin
- Institute of Postharvest and Food SciencesThe Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| | - Dov B. Prusky
- Institute of Postharvest and Food SciencesThe Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
- College of Food Science and EngineeringGansu Agricultural UniversityLanzhouChina
| | - Edward Sionov
- Institute of Postharvest and Food SciencesThe Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| |
Collapse
|
33
|
Maor U, Barda O, Sadhasivam S, Bi Y, Zakin V, Prusky DB, Sionov E. Host Factors Modulating Ochratoxin A Biosynthesis during Fruit Colonization by Aspergillus carbonarius. J Fungi (Basel) 2020; 7:10. [PMID: 33379151 PMCID: PMC7823970 DOI: 10.3390/jof7010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022] Open
Abstract
Aspergillus carbonarius is a strong and consistent ochratoxin A (OTA) producer and considered to be the main source of this toxic metabolite in grapes and grape products such as wine, grape juice and dried vine fruit. OTA is produced under certain growth conditions and its accumulation is affected by several environmental factors, such as growth phase, substrate, temperature, water activity and pH. In this study, we examined the impact of fruit host factors on regulation and accumulation of OTA in colonized grape berries, and assessed in vitro the impact of those factors on the transcriptional levels of the key genes and global regulators contributing to fungal colonization and mycotoxin synthesis. We found that limited sugar content, low pH levels and high malic acid concentrations activated OTA biosynthesis by A. carbonarius, both in synthetic media and during fruit colonization, through modulation of global regulator of secondary metabolism, laeA and OTA gene cluster expression. These findings indicate that fruit host factors may have a significant impact on the capability of A. carbonarius to produce and accumulate OTA in grapes.
Collapse
Affiliation(s)
- Uriel Maor
- Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion 7528809, Israel; (U.M.); (O.B.); (S.S.); (V.Z.); (D.B.P.)
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Omer Barda
- Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion 7528809, Israel; (U.M.); (O.B.); (S.S.); (V.Z.); (D.B.P.)
| | - Sudharsan Sadhasivam
- Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion 7528809, Israel; (U.M.); (O.B.); (S.S.); (V.Z.); (D.B.P.)
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China;
| | - Varda Zakin
- Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion 7528809, Israel; (U.M.); (O.B.); (S.S.); (V.Z.); (D.B.P.)
| | - Dov B. Prusky
- Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion 7528809, Israel; (U.M.); (O.B.); (S.S.); (V.Z.); (D.B.P.)
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China;
| | - Edward Sionov
- Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion 7528809, Israel; (U.M.); (O.B.); (S.S.); (V.Z.); (D.B.P.)
| |
Collapse
|
34
|
He NX, Bayen S. An overview of chemical contaminants and other undesirable chemicals in alcoholic beverages and strategies for analysis. Compr Rev Food Sci Food Saf 2020; 19:3916-3950. [PMID: 33337040 DOI: 10.1111/1541-4337.12649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/21/2020] [Accepted: 09/17/2020] [Indexed: 12/23/2022]
Abstract
The presence of chemical contaminant in alcoholic beverages is a widespread and notable problem with potential implications for human health. With the complexity and wide variation in the raw materials, production processes, and contact materials involved, there are a multitude of opportunities for a diverse host of undesirable compounds to make their way into the final product-some of which may currently remain unidentified and undetected. This review provides an overview of the notable contaminants (including pesticides, environmental contaminants, mycotoxins, process-induced contaminants, residues of food contact material [FCM], and illegal additives) that have been detected in alcoholic products thus far based on prior reviews and findings in the literature, and will additionally consider the potential sources for contamination, and finally discuss and identify gaps in current analytical strategies. The findings of this review highlight a need for further investigation into unwanted substances in alcoholic beverages, particularly concerning chemical migrants from FCMs, as well as a need for comprehensive nontargeted analytical techniques capable of determining unanticipated contaminants.
Collapse
Affiliation(s)
- Nancy Xiaohe He
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
35
|
Mycotoxins in Beverages. BEVERAGES 2020. [DOI: 10.3390/beverages6040069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mycotoxins are secondary metabolites produced by fungi that contaminate raw materials such as cereals, fruits, dried fruits, coffee, and grapes when they have been produced or maintained in a temperature and/or humidity conditions that favor fungi growth [...]
Collapse
|
36
|
Gil-Serna J, Vázquez C, Patiño B. The Genomic Regions That Contain Ochratoxin A Biosynthetic Genes Widely Differ in Aspergillus Section Circumdati Species. Toxins (Basel) 2020; 12:E754. [PMID: 33260416 PMCID: PMC7760312 DOI: 10.3390/toxins12120754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/22/2020] [Accepted: 11/28/2020] [Indexed: 12/31/2022] Open
Abstract
Aspergillus section Circumdati includes 27 species, some of which are considered ochratoxin A (OTA) producers. However, there is considerable controversy about their potential OTA synthesis ability. In this work, the complete genomes of 13 species of Aspergillus section Circumdati were analyzed in order to study the cluster of OTA biosynthetic genes and the region was compared to those previously reported in A. steynii and A. westerdijkiae. The results obtained reveal that the genomes of some species in this section, including A. affinis, A. cretensis, A. elegans, A. muricatus, A. pulvericola, A. roseoglobulosus, and A. subramanianii, contain a potentially functional OTA biosynthetic cluster. Therefore, they might be able to synthesize the toxin. On the contrary, A. melleus, A. ochraceus, A. ostianus, A. persii, A. sclerotiorum, A. sesamicola, and A. westlandensis contain a truncated version of the cluster that lacks many of the genes involved in OTA biosynthesis, which might be related to their inability to produce OTA. The gain/loss pattern is different in all species, which suggests that the genetic evolution of this region might be due to independent events.
Collapse
Affiliation(s)
- Jéssica Gil-Serna
- Department of Genetics, Physiology, and Microbiology, Faculty of Biology, University Complutense of Madrid, Jose Antonio Nováis 12, 28040 Madrid, Spain; (C.V.); (B.P.)
| | | | | |
Collapse
|
37
|
Determination of Ochratoxin A and Ochratoxin B in Archived Tokaj Wines (Vintage 1959-2017) Using On-Line Solid Phase Extraction Coupled to Liquid Chromatography. Toxins (Basel) 2020; 12:toxins12120739. [PMID: 33255273 PMCID: PMC7761308 DOI: 10.3390/toxins12120739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
According to the EU legislation, ochratoxin A contamination is controlled in wines. Tokaj wine is a special type of sweet wine produced from botrytized grapes infected by “noble rot” Botrytis cinerea. Although a high contamination was reported in sweet wines and noble rot grapes could be susceptible to coinfection with other fungi, including ochratoxigenic species, no screening of Tokaj wines for mycotoxin contamination has been carried out so far. Therefore, we developed an analytical method for the determination of ochratoxin A (OTA) and ochratoxin B (OTB) involving online SPE coupled to HPLC-FD using column switching to achieve the fast and sensitive control of mycotoxin contamination. The method was validated with recoveries ranging from 91.6% to 99.1% with an RSD less than 2%. The limits of quantification were 0.1 and 0.2 µg L−1 for OTA and OTB, respectively. The total analysis time of the online SPE-HPLC-FD method was a mere 6 min. This high throughput enables routine analysis. Finally, we carried out an extensive investigation of the ochratoxin contamination in 59 Slovak Tokaj wines of 1959–2017 vintage. Only a few positives were detected. The OTA content in most of the checked wines did not exceed the EU maximum tolerable limit of 2 µg L−1, indicating a good quality of winegrowing and storing.
Collapse
|
38
|
Kontaxakis E, Fysarakis I, Lydakis D, Magan N. Farming System Effect on the Incidence of Aspergillus carbonarius on Kotsifali Grapes and Ochratoxin A Occurrence in Wines of Crete. J Food Prot 2020; 83:1796-1800. [PMID: 32502241 DOI: 10.4315/jfp-20-133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/02/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT During grape cultivation and wine production, the most effective way to prevent ochratoxin A (OTA) contamination of grapes and wine is to control ochratoxigenic fungal species, especially Aspergillus carbonarius, using appropriate cultivation techniques. In this study, the influence of an organic farming system (OFS) and an integrated farming system (IFS) on the incidence of A. carbonarius on grapes, and OTA contamination of wine, were examined. Mycological analysis of grapes collected from Kotsifali cultivar (Vitis vinifera L.) vineyards and grown under two farming systems (OFS and IFS) was performed over two growing seasons. For the same two growing seasons, OTA levels of representative wine samples from wineries located in the same area, made from the same cultivar (single varietal or covinificated with Mandilari), and grown under the two farming systems were determined. The results showed that the farming system had a significant influence on the incidence of A. carbonarius, with IFS being the most effective in the control of the fungus and the prevention of OTA occurrence in wine. This knowledge could offer viticulturists a useful tool to produce safer grapes, giving winemakers an incentive to make low-OTA wine. HIGHLIGHTS
Collapse
Affiliation(s)
- Emmanouil Kontaxakis
- Department of Agriculture, School of Agriculture Science, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece.,(ORCID: https://orcid.org/0000-0001-6829-6264 [E.K.])
| | - Ioannis Fysarakis
- Department of Agriculture, School of Agriculture Science, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece
| | - Dimitris Lydakis
- Department of Agriculture, School of Agriculture Science, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece
| | - Naresh Magan
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Bedford MK43 0AL, UK (ORCID: https://orcid.org/0000-0002-5002-3564 [N.M.])
| |
Collapse
|
39
|
Selection of Wine Saccharomyces cerevisiae Strains and Their Screening for the Adsorption Activity of Pigments, Phenolics and Ochratoxin A. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6030080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ochratoxin A is a dangerous mycotoxin present in wines and is considered the principal safety hazard in the winemaking process. Several authors have investigated the ochratoxin A adsorption ability of Saccharomyces cerevisiae yeasts, and specifically selected strains for this desired trait. In the present work, a huge selection of wine yeasts was done starting from Portuguese, Spanish and Italian fermenting musts of different cultivars. Firstly, 150 isolates were collected, and 99 non-redundant S. cerevisiae strains were identified. Then, the strains were screened following a multi-step approach in order to select those having primary oenological traits, mainly (a) good fermentation performance, (b) low production of H2S and (c) low production of acetic acid. The preselected strains were further investigated for their adsorption activity of pigments, phenolic compounds and ochratoxin A. Finally, 10 strains showed the desired features. The goal of this work was to select the strains capable of absorbing ochratoxin A but not pigments and phenolic compounds in order to improve and valorise both the quality and safety of red wines. The selected strains are considered good candidates for wine starters, moreover, they can be exploited to obtain a further enhancement of the specific adsorption/non-adsorption activity by applying a yeast breeding approach.
Collapse
|
40
|
Nan MN, Bi Y, Xue HL, Long HT, Xue SL, Pu LM, Prusky D. Modification performance and electrochemical characteristics of different groups of modified aptamers applied for label-free electrochemical impedimetric sensors. Food Chem 2020; 337:127761. [PMID: 32777565 DOI: 10.1016/j.foodchem.2020.127761] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 07/12/2020] [Accepted: 08/02/2020] [Indexed: 11/15/2022]
Abstract
Amino and thiolated aptamers are the main aptamers used to construct label-free electrochemical impedimetric aptasensors. In this study, the modification performance and electrochemical properties of amino aptamers and thiolated aptamers were studied in the construction of label-free impedimetric sensors. The results showed that the initial modification density of amino aptamers was higher than that of thiol aptamers. Aptamers can recognize and bind OTA to generate electrical signals. The higher the density of aptamer modification was, the better the electric signals were. If only considering the initial modification density, amino aptamers were more suitable for the preparation of aptasensors than thiolated aptamers. However, the modification density of the amino aptamer decreased with the prolonged immersion time in 1 mM HCl solution, which suggests that the stability of this sensor was poor. However, the thiolated aptamer maintained relatively constant density and could be reused. Thus, the thiolated aptasensor had a wide range and good reproducibility and stability for the determination of ochratoxin A (OTA). In addition, this study proved that gold nanoparticles play an important role in signal amplification by increasing the effective gold surface to fix more aptamers in the process of sensor preparation.
Collapse
Affiliation(s)
- Mi-Na Nan
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China; College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Hua-Li Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Hai-Tao Long
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Su-Lin Xue
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Lu-Mei Pu
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China; Department of Postharvest Science of Fresh Produce, the Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel
| |
Collapse
|
41
|
From grape to wine: Fate of ochratoxin A during red, rose, and white winemaking process and the presence of ochratoxin derivatives in the final products. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107167] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Huang X, Xiao Z, Kong F, Chen A, Perrone G, Wang Z, Wang J, Zhang H. Diversity and ochratoxin A-fumonisin profile of black Aspergilli isolated from grapes in China. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aspergillus spp. are a common contaminant of grapes and a major source of mycotoxins. China is the largest producer of grape in the world now, however, the toxigenic Aspergillus population on grape in this country is still largely unknown. In this study, a total of 345 strains were isolated from grapes of 13 main grapevine producing regions in China. Based on calmodulin gene sequences, eight species within Aspergillus section Nigri were identified. Among them, Aspergillus tubingensis (48.7%) was predominant, followed by Aspergillus welwitschiae (20.6%) and Aspergillus aculeatinus (11%). Average of contamination level was up to 64.19%, and we found the occurrence of section Nigri species on the surface of fresh grapes was significantly influenced by the climate (P<0.05). The subtropical monsoon climate showed the highest fungal detection rate (72.45%), followed by the temperate monsoon climate (49.82%), and the lowest frequency was found in the temperate continental climate (37.23%). Regarding mycotoxin-producing capacity, 4.4% of the total tested section Nigri isolates (137) were positive for ochratoxin A (OTA) production and 59.6% were fumonisin B2 (FB2) producers. Of those, Aspergillus carbonarius was the main OTA producer and A. welwitschiae and Aspergillus niger were the main FB2 producers with different toxigenic ability. Our results highlight the potential risk of OTA and FB2 contamination by A. carbonarius and A. welwitschiae on grape in China, respectively; management strategies should be considered for preventing and reducing the toxigenic Aspergillus and its mycotoxins.
Collapse
Affiliation(s)
- X. Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, China P.R
| | - Z. Xiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, China P.R
- College of Life and Environmental Science, Minzu University of China, Beijing, China P.R
| | - F. Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, China P.R
| | - A.J. Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China P.R
| | - G. Perrone
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Bari, Italy
| | - Z. Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, China P.R
| | - J. Wang
- College of Life and Environmental Science, Minzu University of China, Beijing, China P.R
| | - H. Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, China P.R
| |
Collapse
|
43
|
Ubeda C, Hornedo-Ortega R, Cerezo AB, Garcia-Parrilla MC, Troncoso AM. Chemical hazards in grapes and wine, climate change and challenges to face. Food Chem 2020; 314:126222. [PMID: 31981884 DOI: 10.1016/j.foodchem.2020.126222] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/17/2022]
Abstract
Climate change has an impact on the chemical risks associated to wine consumption related with grape development and microbial contamination. We can classify chemical hazards in wine into two groups: those present in grapes due to agricultural practices, environmental contamination or fungal growth and those coming from fermentation and the winemaking process. The first group includes mycotoxins, whilst the second encompasses ethyl carbamate, biogenic amines, sulfur dioxide and proteins used as technological ingredients such as fining material. Usually the effective control of chemical hazards is achieved by assuring that they either are minimized or absent in the final product since their removal is somewhat difficult and sometimes it may affect sensory properties, which is a major issue in wine. Interestingly, it is possible to give recommendations to avoid excess of these compounds, but more research is needed to face future challenges related to climate change and consumer demands.
Collapse
Affiliation(s)
- Cristina Ubeda
- Departamento de Nutricion y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García Gonzalez 2, 41012 Sevilla, Spain
| | - Ruth Hornedo-Ortega
- MIB, Unité de Recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Villenave d Onron, France
| | - Ana B Cerezo
- Departamento de Nutricion y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García Gonzalez 2, 41012 Sevilla, Spain
| | - M Carmen Garcia-Parrilla
- Departamento de Nutricion y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García Gonzalez 2, 41012 Sevilla, Spain
| | - Ana M Troncoso
- Departamento de Nutricion y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García Gonzalez 2, 41012 Sevilla, Spain.
| |
Collapse
|
44
|
Effect of Aspergillus carbonarius on ochratoxin a levels, volatile profile and antioxidant activity of the grapes and respective wines. Food Res Int 2019; 126:108687. [PMID: 31732020 DOI: 10.1016/j.foodres.2019.108687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
Abstract
Aspergillus carbonarius can produce a possibly carcinogenic mycotoxin named ochratoxin A (OTA). The metabolism of this fungus can also impact grape and wine quality as it influences the volatile and phenolic profiles, which are related to aroma and antioxidant activity, respectively. The objective of this study was to evaluate the effect of A. carbonarius on OTA levels and for the first time on volatile profile and antioxidant activity of grapes and their respective wines. Cabernet Sauvignon (CS, red) grapes presented higher susceptibility to A. carbonarius than Moscato Italico (MI, white) grapes and OTA levels in their respective musts were in accordance with this same trend. However, vinification of red grapes resulted in 67% reduction of OTA, while the reduction observed with white wines was 45%. The presence of acids (hexanoic, octanoic, nonanoic and decanoic, fatty odor) was found to be an indicative of the fungus incidence in grapes. These acids were precursors of esters that might impart negative aroma (methyl nonanoate and isoamyl octanoate, fatty odor) or provide desirable fruity characteristics (ethyl hexanoate, ethyl octanoate and methyl octanoate) for wine. In addition, terpenes were detected only in wines produced with grapes (CS and MI) inoculated with A. carbonarius. The presence of A. carbonarius increased the antioxidant activity of CS grapes. For MI grapes and both wines (CS and MI) no differences were verified in the antioxidant activity of the samples affected or not affected by this fungus. Although A. carbonarius occurrence has shown no influence on the antioxidant activity of wines, it produced OTA and has negatively influenced the wine odor profile, due to the production of some volatiles that impart a deleterious effect on wine aroma.
Collapse
|
45
|
|
46
|
Žurga P, Vahčić N, Pasković I, Banović M, Malenica Staver M. Occurence of Ochratoxin A and Biogenic Amines in Croatian Commercial Red Wines. Foods 2019; 8:E348. [PMID: 31443262 PMCID: PMC6723180 DOI: 10.3390/foods8080348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022] Open
Abstract
Food safety is one of the main concerns in the world and in wine it depends mostly on metabolites of microbial origin. The aim of this study was to investigate the occurrence of natural contaminants, ochratoxin A and biogenic amines (cadaverine, histamine, putrescine and tyramine), in Croatian commercial red wines originating from different Croatian wine-making regions. Ochratoxin A was detected in 92.8% of samples, however its concentrations in all samples were more than 10-fold lower than the limit set by the European Union (2 µg/kg), marking these wines as safe for consumption. The frequency of occurrence and measured concentrations of ochratoxin A were higher in wines produced in southern regions with highest values obtained in wines from southern Dalmatian islands. All samples were contaminated with cadaverine and putrescine, while 88.2% and 82.7% were contaminated with histamine and tyramine, respectively. Histamine concentrations ranged from below the limit of detection to 8.5 mg/L. Higher histamine concentrations were measured in wines with higher pH values which coincided with southern geographic origin. These results reinforce the need for routine detection and quantification of biogenic amines in Croatian wines to achieve better control of vinification and minimize their formation.
Collapse
Affiliation(s)
- Paula Žurga
- Teaching Institute of Public Health of Primorsko-Goranska County, Krešimirova 52a, HR-51000 Rijeka, Croatia.
| | - Nada Vahčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Igor Pasković
- Institute of Agriculture and Tourism, Karla Huguesa 8, HR-52440 Poreč, Croatia
| | - Mara Banović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | | |
Collapse
|
47
|
Abstract
In the past, some microbiological studies have considered most non-Saccharomyces species to be undesirable spoilage microorganisms. For several decades, that belief made the Saccharomyces genus the only option considered by winemakers for achieving the best possible wine quality. Nevertheless, in recent decades, some strains of non-Saccharomyces species have been proven to improve the quality of wine. Non-Saccharomyces species can positively influence quality parameters such as aroma, acidity, color, and food safety. These quality improvements allow winemakers to produce innovative and differentiated wines. For that reason, the yeast strains Torulaspora delbrueckii, Lachancea thermotolerans, Metschnikowia pulcherrima, Schizosaccharomyces pombe, and Pichia kluyveri are now available on the market. Other interesting species, such as Starmerella bacillaris, Meyerozyma guilliermondii, Hanseniospora spp., and others, will probably be available in the near future.
Collapse
|
48
|
The Management of Compounds that Influence Human Health in Modern Winemaking from an HACCP Point of View. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5020033] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The undesirable effects of some hazardous compounds involved in the different steps of the winemaking process may pose health risks to consumers; hence, the importance of compliance with recent international food safety standards, including the Hazard Analysis and Critical Control Point (HACCP) standards. In recent years, there has been a rise in the development of new technologies in response to the hazardous effects of chemical compounds detected during the winemaking process, whether naturally produced or added during different winemaking processes. The main purpose was to reduce the levels of some compounds, such as biogenic amines, ethyl carbamate, ochratoxin A, and sulfur dioxide. These technological advances are currently considered a necessity, because they produce wines free of health-hazardous compounds and, most importantly, help in the management and prevention of health risks. This review shows how to prevent and control the most common potential health risks of wine using a HACCP methodology.
Collapse
|
49
|
Heshmati A, Ghadimi S, Ranjbar A, Khaneghah AM. Changes in aflatoxins content during processing of pekmez as a traditional product of grape. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Silva LJG, Rodrigues AP, Pereira AMPT, Lino CM, Pena A. Ochratoxin A in the Portuguese Wine Market, Occurrence and Risk Assessment. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2019; 12:145-149. [PMID: 30909816 DOI: 10.1080/19393210.2019.1595169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ochratoxin A (OTA) is mainly found in cereals and cereal-based foodstuffs, but also in wine. Being one of the most consumed alcoholic drinks in Portugal and one of the main sources of human exposure to OTA, wine monitoring and exposure studies are essential. The analytical methodology consisted of the direct injection of the filtered samples into the liquid chromatograph, equipped with fluorescent detection (LC-FLD). Linearity was adequate, both in mobile phase and in matrix-matched solutions, with R2 values higher than 0.997. The limits of detection were 0.08 and 0.39 µg/L for white and red wine, respectively and recoveries were above 91.9%. One hundred wine samples acquired on the Portuguese market were investigated. In 5 samples the OTA was detected, with the red wine presenting higher frequency of contamination. Regarding the risk to human health it was observed that the estimated weekly intake (EWI) is considerably lower than the established tolerable weekly intake (TWI).
Collapse
Affiliation(s)
- Liliana J G Silva
- a LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy , University of Coimbra, Polo III , Coimbra , Portugal
| | - Ana P Rodrigues
- a LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy , University of Coimbra, Polo III , Coimbra , Portugal
| | - André M P T Pereira
- a LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy , University of Coimbra, Polo III , Coimbra , Portugal
| | - Celeste M Lino
- a LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy , University of Coimbra, Polo III , Coimbra , Portugal
| | - Angelina Pena
- a LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy , University of Coimbra, Polo III , Coimbra , Portugal
| |
Collapse
|