1
|
Sukumar VK, Tai YK, Chan CW, Iversen JN, Wu KY, Fong CHH, Lim JSJ, Franco-Obregón A. Brief Magnetic Field Exposure Stimulates Doxorubicin Uptake into Breast Cancer Cells in Association with TRPC1 Expression: A Precision Oncology Methodology to Enhance Chemotherapeutic Outcome. Cancers (Basel) 2024; 16:3860. [PMID: 39594815 PMCID: PMC11592624 DOI: 10.3390/cancers16223860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Doxorubicin (DOX) is commonly used as a chemotherapeutic agent for the treatment of breast cancer. Nonetheless, its systemic delivery via intravenous injection and toxicity towards healthy tissues commonly result in a broad range of detrimental side effects. Breast cancer severity was previously shown to be correlated with TRPC1 channel expression that conferred upon it enhanced vulnerability to pulsed electromagnetic field (PEMF) therapy. PEMF therapy was also previously shown to enhance breast cancer cell vulnerability to DOX in vitro and in vivo that correlated with TRPC1 expression and mitochondrial respiratory rates. Methods: DOX uptake was assessed by measuring its innate autofluorescence within murine 4T1 or human MCF7 breast cancer cells following magnetic exposure. Cellular vulnerability to doxorubicin uptake was assessed by monitoring mitochondrial activity and cellular DNA content. Results: Here, we demonstrate that 10 min of PEMF exposure could augment DOX uptake into 4T1 and MCF7 breast cancer cells. DOX uptake could be increased by TRPC1 overexpression, whereas inhibiting the activity of TRPC1 channels with SKF-96356 or genetic knockdown, precluded DOX uptake. PEMF exposure enhances DOX-mediated killing of breast cancer cells, reducing the IC50 value of DOX by half, whereas muscle cells, representative of collateral tissues, were less sensitive to PEMF-enhanced DOX-mediated cytotoxicity. Vesicular loading of DOX correlated with TRPC1 expression. Conclusions: This study presents a novel TRPC1-mediated mechanism through which PEMF therapy may enhance DOX cytotoxicity in breast cancer cells, paving the way for the development of localized non-invasive PEMF platforms to improve cancer outcomes with lower systemic levels of DOX.
Collapse
Affiliation(s)
- Viresh Krishnan Sukumar
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; (V.K.S.); (J.S.J.L.)
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Yee Kit Tai
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; (V.K.S.); (J.S.J.L.)
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Ching Wan Chan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Jan Nikolas Iversen
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Kwan Yu Wu
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Charlene Hui Hua Fong
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Joline Si Jing Lim
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; (V.K.S.); (J.S.J.L.)
- Experimental Therapeutics Programme, Cancer Science Institute, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University Singapore, Singapore 119228, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore 119074, Singapore
| | - Alfredo Franco-Obregón
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; (V.K.S.); (J.S.J.L.)
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
2
|
Colciago A, Mohamed T, Colleoni D, Melfi V, Magnaghi V. Electromagnetic field-induced adaptive response in Schwann cells through DNA methylation, histone deacetylation, and oxidative stress. J Cell Physiol 2024; 239:e31365. [PMID: 38946084 DOI: 10.1002/jcp.31365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
Schwannomas are benign tumors of the peripheral nervous system arising from the transformation of Schwann cells (SCs). On the whole, these tumors are related to alterations of the neurofibromin type 2 gene, coding for the oncosuppressor merlin, a cytoskeleton-associated protein belonging to the ezrin-radixin-moesin family. However, the underlying mechanisms of schwannoma onset and progression are not fully elucidated, whereas one of the challenges might be the environment. In this light, the exposure to electromagnetic field (EMF), generated by the use of common electrical devices, has been defiantly suggested as the cause of SCs transformation even if the evidence was mostly epidemiologic. Indeed, insubstantial mechanisms have been so far identified to explain SCs oncotransformation. Recently, some in vitro evidence pointed out alterations in proliferation and migration abilities in SCs exposed to EMF (0.1 T, 50 Hz, 10 min). Here, we used the same experimental paradigma to discuss the involvement of putative epigenetic mechanisms in SCs adaptation to EMF and to explain the occurrence of hypoxic alterations after the exposure. Our findings indicate a set of environmental-induced changes in SCs, toward a less-physiological state, which may be pathologically relevant for the SCs differentiation and the schwannoma development.
Collapse
Affiliation(s)
- Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Tasnim Mohamed
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Deborah Colleoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Melfi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
3
|
Gurhan H, Barnes F. Frequency-Dependent Antioxidant Responses in HT-1080 Human Fibrosarcoma Cells Exposed to Weak Radio Frequency Fields. Antioxidants (Basel) 2024; 13:1237. [PMID: 39456490 PMCID: PMC11504554 DOI: 10.3390/antiox13101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
This study explores the complex relationship between radio frequency (RF) exposure and cancer cells, focusing on the HT-1080 human fibrosarcoma cell line. We investigated the modulation of reactive oxygen species (ROS) and key antioxidant enzymes, including superoxide dismutase (SOD), peroxidase, and glutathione (GSH), as well as mitochondrial superoxide levels and cell viability. Exposure to RF fields in the 2-5 MHz range at very weak intensities (20 nT) over 4 days resulted in distinct, frequency-specific cellular effects. Significant increases in SOD and GSH levels were observed at 4 and 4.5 MHz, accompanied by reduced mitochondrial superoxide levels and enhanced cell viability, suggesting improved mitochondrial function. In contrast, lower frequencies like 2.5 MHz induced oxidative stress, evidenced by GSH depletion and increased mitochondrial superoxide levels. The findings demonstrate that cancer cells exhibit frequency-specific sensitivity to RF fields even at intensities significantly below current safety standards, highlighting the need to reassess exposure limits. Additionally, our analysis of the radical pair mechanism (RPM) offers deeper insight into RF-induced cellular responses. The modulation of ROS and antioxidant enzyme activities is significant for cancer treatment and has broader implications for age-related diseases, where oxidative stress is a central factor in cellular degeneration. The findings propose that RF fields may serve as a therapeutic tool to selectively modulate oxidative stress and mitochondrial function in cancer cells, with antioxidants playing a key role in mitigating potential adverse effects.
Collapse
Affiliation(s)
- Hakki Gurhan
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, 1111 Engineering Dr 425 UCB, Boulder, CO 80309, USA
| | - Frank Barnes
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, 1111 Engineering Dr 425 UCB, Boulder, CO 80309, USA
| |
Collapse
|
4
|
Tota M, Jonderko L, Witek J, Novickij V, Kulbacka J. Cellular and Molecular Effects of Magnetic Fields. Int J Mol Sci 2024; 25:8973. [PMID: 39201657 PMCID: PMC11354277 DOI: 10.3390/ijms25168973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Recently, magnetic fields (MFs) have received major attention due to their potential therapeutic applications and biological effects. This review provides a comprehensive analysis of the cellular and molecular impacts of MFs, with a focus on both in vitro and in vivo studies. We investigate the mechanisms by which MFs influence cell behavior, including modifications in gene expression, protein synthesis, and cellular signaling pathways. The interaction of MFs with cellular components such as ion channels, membranes, and the cytoskeleton is analyzed, along with their effects on cellular processes like proliferation, differentiation, and apoptosis. Molecular insights are offered into how MFs modulate oxidative stress and inflammatory responses, which are pivotal in various pathological conditions. Furthermore, we explore the therapeutic potential of MFs in regenerative medicine, cancer treatment, and neurodegenerative diseases. By synthesizing current findings, this article aims to elucidate the complex bioeffects of MFs, thereby facilitating their optimized application in medical and biotechnological fields.
Collapse
Affiliation(s)
- Maciej Tota
- Student Research Group № K148, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Laura Jonderko
- Student Research Group № K148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland; (L.J.); (J.W.)
| | - Julia Witek
- Student Research Group № K148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland; (L.J.); (J.W.)
| | - Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, LT-03227 Vilnius, Lithuania;
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, LT-08410 Vilnius, Lithuania
| | - Julita Kulbacka
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, LT-08410 Vilnius, Lithuania
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wrocław, Poland
| |
Collapse
|
5
|
Franco-Obregón A, Tai YK. Are Aminoglycoside Antibiotics TRPing Your Metabolic Switches? Cells 2024; 13:1273. [PMID: 39120305 PMCID: PMC11311832 DOI: 10.3390/cells13151273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
Transient receptor potential (TRP) channels are broadly implicated in the developmental programs of most tissues. Amongst these tissues, skeletal muscle and adipose are noteworthy for being essential in establishing systemic metabolic balance. TRP channels respond to environmental stimuli by supplying intracellular calcium that instigates enzymatic cascades of developmental consequence and often impinge on mitochondrial function and biogenesis. Critically, aminoglycoside antibiotics (AGAs) have been shown to block the capacity of TRP channels to conduct calcium entry into the cell in response to a wide range of developmental stimuli of a biophysical nature, including mechanical, electromagnetic, thermal, and chemical. Paradoxically, in vitro paradigms commonly used to understand organismal muscle and adipose development may have been led astray by the conventional use of streptomycin, an AGA, to help prevent bacterial contamination. Accordingly, streptomycin has been shown to disrupt both in vitro and in vivo myogenesis, as well as the phenotypic switch of white adipose into beige thermogenic status. In vivo, streptomycin has been shown to disrupt TRP-mediated calcium-dependent exercise adaptations of importance to systemic metabolism. Alternatively, streptomycin has also been used to curb detrimental levels of calcium leakage into dystrophic skeletal muscle through aberrantly gated TRPC1 channels that have been shown to be involved in the etiology of X-linked muscular dystrophies. TRP channels susceptible to AGA antagonism are critically involved in modulating the development of muscle and adipose tissues that, if administered to behaving animals, may translate to systemwide metabolic disruption. Regenerative medicine and clinical communities need to be made aware of this caveat of AGA usage and seek viable alternatives, to prevent contamination or infection in in vitro and in vivo paradigms, respectively.
Collapse
Affiliation(s)
- Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zürich, 8057 Zürich, Switzerland
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Yee Kit Tai
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
6
|
Chianese D, Bonora M, Sambataro M, Sambato L, Paola LD, Tremoli E, Cappucci IP, Scatto M, Pinton P, Picari M, Ferroni L, Zavan B. Exploring Mitochondrial Interactions with Pulsed Electromagnetic Fields: An Insightful Inquiry into Strategies for Addressing Neuroinflammation and Oxidative Stress in Diabetic Neuropathy. Int J Mol Sci 2024; 25:7783. [PMID: 39063025 PMCID: PMC11277522 DOI: 10.3390/ijms25147783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Pulsed electromagnetic fields (PEMFs) are recognized for their potential in regenerative medicine, offering a non-invasive avenue for tissue rejuvenation. While prior research has mainly focused on their effects on bone and dermo-epidermal tissues, the impact of PEMFs on nervous tissue, particularly in the context of neuropathy associated with the diabetic foot, remains relatively unexplored. Addressing this gap, our preliminary in vitro study investigates the effects of complex magnetic fields (CMFs) on glial-like cells derived from mesenchymal cell differentiation, serving as a model for neuropathy of the diabetic foot. Through assessments of cellular proliferation, hemocompatibility, mutagenicity, and mitochondrial membrane potential, we have established the safety profile of the system. Furthermore, the analysis of microRNAs (miRNAs) suggests that CMFs may exert beneficial effects on cell cycle regulation, as evidenced by the upregulation of the miRNAs within the 121, 127, and 142 families, which are known to be associated with mitochondrial function and cell cycle control. This exploration holds promise for potential applications in mitigating neuropathic complications in diabetic foot conditions.
Collapse
Affiliation(s)
- Diego Chianese
- Medical Sciences Department, University of Ferrara, 44133 Ferrara, Italy; (D.C.); (M.B.); (P.P.)
| | - Massimo Bonora
- Medical Sciences Department, University of Ferrara, 44133 Ferrara, Italy; (D.C.); (M.B.); (P.P.)
| | - Maria Sambataro
- Endocrine, Metabolism and Nutrition Disease Unit, Ca’ Foncello Sant Mary Hospital, 30193 Treviso, Italy (L.S.)
| | - Luisa Sambato
- Endocrine, Metabolism and Nutrition Disease Unit, Ca’ Foncello Sant Mary Hospital, 30193 Treviso, Italy (L.S.)
| | - Luca Dalla Paola
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (L.D.P.); (E.T.); (I.P.C.)
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (L.D.P.); (E.T.); (I.P.C.)
| | - Ilenia Pia Cappucci
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (L.D.P.); (E.T.); (I.P.C.)
| | - Marco Scatto
- Department of Economics, Science, Engineering and Design, San Marino University, 47890 Città di San Marino, San Marino;
| | - Paolo Pinton
- Medical Sciences Department, University of Ferrara, 44133 Ferrara, Italy; (D.C.); (M.B.); (P.P.)
| | - Massimo Picari
- Translational Medicine Department, University of Ferrara, 44133 Ferrara, Italy;
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (L.D.P.); (E.T.); (I.P.C.)
| | - Barbara Zavan
- Translational Medicine Department, University of Ferrara, 44133 Ferrara, Italy;
| |
Collapse
|
7
|
Iversen JN, Fröhlich J, Tai YK, Franco-Obregón A. Synergistic Cellular Responses Conferred by Concurrent Optical and Magnetic Stimulation Are Attenuated by Simultaneous Exposure to Streptomycin: An Antibiotic Dilemma. Bioengineering (Basel) 2024; 11:637. [PMID: 39061719 PMCID: PMC11274164 DOI: 10.3390/bioengineering11070637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Concurrent optical and magnetic stimulation (COMS) combines extremely low-frequency electromagnetic and light exposure for enhanced wound healing. We investigated the potential mechanistic synergism between the magnetic and light components of COMS by comparing their individual and combined cellular responses. Lone magnetic field exposure produced greater enhancements in cell proliferation than light alone, yet the combined effects of magnetic fields and light were supra-additive of the individual responses. Reactive oxygen species were incrementally reduced by exposure to light, magnetics fields, and their combination, wherein statistical significance was only achieved by the combined COMS modality. By contrast, ATP production was most greatly enhanced by magnetic exposure in combination with light, indicating that mitochondrial respiratory efficiency was improved by the combination of magnetic fields plus light. Protein expression pertaining to cell proliferation was preferentially enhanced by the COMS modality, as were the protein levels of the TRPC1 cation channel that had been previously implicated as part of a calcium-mitochondrial signaling axis invoked by electromagnetic exposure and necessary for proliferation. These results indicate that light facilitates functional synergism with magnetic fields that ultimately impinge on mitochondria-dependent developmental responses. Aminoglycoside antibiotics (AGAs) have been previously shown to inhibit TRPC1-mediated magnetotransduction, whereas their influence over photomodulation has not been explored. Streptomycin applied during exposure to light, magnetic fields, or COMS reduced their respective proliferation enhancements, whereas streptomycin added after the exposure did not. Magnetic field exposure and the COMS modality were capable of partially overcoming the antagonism of proliferation produced by streptomycin treatment, whereas light alone was not. The antagonism of photon-electromagnetic effects by streptomycin implicates TRPC1-mediated calcium entry in both magnetotransduction and photomodulation. Avoiding the prophylactic use of AGAs during COMS therapy will be crucial for maintaining clinical efficacy and is a common concern in most other electromagnetic regenerative paradigms.
Collapse
Affiliation(s)
- Jan Nikolas Iversen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore
| | - Jürg Fröhlich
- Fields at Work GmbH, Hegibachstrasse 41, 8032 Zurich, Switzerland;
- Piomic Medical AG, Reitergasse 6, 8004 Zürich, Switzerland
| | - Yee Kit Tai
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zürich, 8057 Zürich, Switzerland
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
8
|
Austvold CK, Keable SM, Procopio M, Usselman RJ. Quantitative measurements of reactive oxygen species partitioning in electron transfer flavoenzyme magnetic field sensing. Front Physiol 2024; 15:1348395. [PMID: 38370016 PMCID: PMC10869518 DOI: 10.3389/fphys.2024.1348395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Biological magnetic field sensing that gives rise to physiological responses is of considerable importance in quantum biology. The radical pair mechanism (RPM) is a fundamental quantum process that can explain some of the observed biological magnetic effects. In magnetically sensitive radical pair (RP) reactions, coherent spin dynamics between singlet and triplet pairs are modulated by weak magnetic fields. The resulting singlet and triplet reaction products lead to distinct biological signaling channels and cellular outcomes. A prevalent RP in biology is between flavin semiquinone and superoxide (O2 •-) in the biological activation of molecular oxygen. This RP can result in a partitioning of reactive oxygen species (ROS) products to form either O2 •- or hydrogen peroxide (H2O2). Here, we examine magnetic sensing of recombinant human electron transfer flavoenzyme (ETF) reoxidation by selectively measuring O2 •- and H2O2 product distributions. ROS partitioning was observed between two static magnetic fields at 20 nT and 50 μT, with a 13% decrease in H2O2 singlet products and a 10% increase in O2 •- triplet products relative to 50 µT. RPM product yields were calculated for a realistic flavin/superoxide RP across the range of static magnetic fields, in agreement with experimental results. For a triplet born RP, the RPM also predicts about three times more O2 •- than H2O2, with experimental results exhibiting about four time more O2 •- produced by ETF. The method presented here illustrates the potential of a novel magnetic flavoprotein biological sensor that is directly linked to mitochondria bioenergetics and can be used as a target to study cell physiology.
Collapse
Affiliation(s)
- Chase K. Austvold
- Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Stephen M. Keable
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Maria Procopio
- Biophysics, Johns Hopkins University, Baltimore, MD, United States
| | - Robert J. Usselman
- Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, United States
- Computational Research At Florida Tech, Melbourne, FL, United States
| |
Collapse
|