1
|
Ko Y, Uyar T, Hinestroza JP. UiO-66 Inspired Superhydrophobic Coatings Fabricated from Discarded Polyester/Spandex Textiles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53163-53176. [PMID: 39305231 DOI: 10.1021/acsami.4c10459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
We report on a method for synthesizing superhydrophobic coatings using a UiO-66 metal-organic framework (MOF) with discarded polyester/Spandex fabrics as raw materials. Unlike traditional recycling techniques that involve separating non-poly(ethylene terephthalate) (PET) components, our approach directly uses blended polyester/Spandex fibers. Discarded polyester/Spandex fabrics were exposed to an alkaline depolymerization process to produce disodium terephthalate (Na2BDC), which is a known linker for UiO-66 synthesis. We conducted experiments under two different conditions involving different amounts of ethanol. We found that with a small amount of ethanol, the resulting UiO-66 structure, when assembled on top of a polyester/Spandex substrate, exhibited a water contact angle of ≥150°─a superhydrophobic behavior. When using larger amounts of ethanol, we noted a hydrophobic behavior with a water contact angle of ∼139°. As a control, we performed the same experiments but using discarded 100% polyester fabrics as raw materials, which resulted in a superhydrophilic behavior. We attribute the superhydrophobic behavior of the UiO-66 coatings, produced from the polyester/Spandex fabrics, to the presence of hydrophobic compounds generated by the chemical degradation of Spandex. Our approach introduces a pathway for upcycling discarded textiles into superhydrophobic coatings.
Collapse
Affiliation(s)
- Yelin Ko
- Fiber Science Program, Department of Human Centered Design, Cornell University, Ithaca, New York 14853, United States
| | - Tamer Uyar
- Fiber Science Program, Department of Human Centered Design, Cornell University, Ithaca, New York 14853, United States
| | - Juan P Hinestroza
- Fiber Science Program, Department of Human Centered Design, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
2
|
Balasubramanian S, Kulandaisamy AJ, Das A, Rayappan JBB. MOFabric: an effective and wearable protective garment towards CWA detoxification. RSC Adv 2024; 14:20923-20932. [PMID: 38957585 PMCID: PMC11217922 DOI: 10.1039/d4ra03830d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
In current trends, an imminent development of self-detoxification filters is highly desirable against exposure to chemical warfare agents (CWAs). Exploiting protective materials that can be applicable in day-to-day life for instantaneous detoxification will be of immense importance. The available technologies in the current scenario are susceptible to secondary emission and pose a need for an alternate design strategy for effective degradation. In addition, the choice of active material and successful impregnation on a suitable substrate for developing potential barriers requires complex material design. In this context, the developed self-standing UiO-66 and UiO-66-NH2 functionalized fabrics (MOFabrics) present an expeditious detoxification performance against CWA simulant, methyl-paraoxon, with a maximum removal percent conversion of 88.9 and 90.68%. It shows a reduced half-life of approximately 10.16 and 11.23 min, in comparison to an unmodified/carboxymethylated fabric of 462 min.
Collapse
Affiliation(s)
- Selva Balasubramanian
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University Thanjavur Tamil Nadu - 613 401 India +91 4362 264 120 +91 4362 350 009 ext: 2255
- School of Electrical & Electronics Engineering (SEEE), SASTRA Deemed University Thanjavur Tamil Nadu - 613 401 India
| | | | - Apurba Das
- Department of Textile & Fibre Engineering, Indian Institute of Technology Delhi Hauz Khas New Delhi - 110 016 India
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University Thanjavur Tamil Nadu - 613 401 India +91 4362 264 120 +91 4362 350 009 ext: 2255
- School of Electrical & Electronics Engineering (SEEE), SASTRA Deemed University Thanjavur Tamil Nadu - 613 401 India
| |
Collapse
|
3
|
Xie Y, Zhang T, Wang B, Wang W. The Application of Metal-Organic Frameworks in Water Treatment and Their Large-Scale Preparation: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1972. [PMID: 38730779 PMCID: PMC11084628 DOI: 10.3390/ma17091972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024]
Abstract
Over the last few decades, there has been a growing discourse surrounding environmental and health issues stemming from drinking water and the discharge of effluents into the environment. The rapid advancement of various sewage treatment methodologies has prompted a thorough exploration of promising materials to capitalize on their benefits. Metal-organic frameworks (MOFs), as porous materials, have garnered considerable attention from researchers in recent years. These materials boast exceptional properties: unparalleled porosity, expansive specific surface areas, unique electronic characteristics including semi-conductivity, and a versatile affinity for organic molecules. These attributes have fueled a spike in research activity. This paper reviews the current MOF-based wastewater removal technologies, including separation, catalysis, and related pollutant monitoring methods, and briefly introduces the basic mechanism of some methods. The scale production problems faced by MOF in water treatment applications are evaluated, and two pioneering methods for MOF mass production are highlighted. In closing, we propose targeted recommendations and future perspectives to navigate the challenges of MOF implementation in water purification, enhancing the efficiency of material synthesis for environmental stewardship.
Collapse
Affiliation(s)
- Yuhang Xie
- Frontiers Science Center for High Energy Material, Beijing Key Laboratory of Photoelectronic Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Y.X.); (B.W.)
- Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Teng Zhang
- Frontiers Science Center for High Energy Material, Beijing Key Laboratory of Photoelectronic Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Y.X.); (B.W.)
- Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan 250300, China
| | - Bo Wang
- Frontiers Science Center for High Energy Material, Beijing Key Laboratory of Photoelectronic Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Y.X.); (B.W.)
- Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenju Wang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
4
|
Eagleton AM, Ambrogi EK, Miller SA, Vereshchuk N, Mirica KA. Fiber Integrated Metal-Organic Frameworks as Functional Components in Smart Textiles. Angew Chem Int Ed Engl 2023; 62:e202309078. [PMID: 37614205 PMCID: PMC11196116 DOI: 10.1002/anie.202309078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
Owing to high modularity and synthetic tunability, metal-organic frameworks (MOFs) on textiles are poised to contribute to the development of state-of-the-art wearable systems with multifunctional performance. While these composite materials have demonstrated promising functions in sensing, filtration, detoxification, and biomedicine, their applicability in multifunctional systems is only beginning to materialize. This review highlights the multifunctionality and versatility of MOF-integrated textile systems. It summarizes the operational goals of MOF@textile composites, encompassing sensing, filtration, detoxification, drug delivery, UV protection, and photocatalysis. Building upon these recent advances, this review concludes with an outlook on emerging opportunities for the diverse applications of MOF@textile systems in the realm of smart wearables.
Collapse
Affiliation(s)
- Aileen M Eagleton
- Department of Chemistry, Dartmouth College, Burke Laboratory, 41 College Street, Hanover, NH, 03755, USA
| | - Emma K Ambrogi
- Department of Chemistry, Dartmouth College, Burke Laboratory, 41 College Street, Hanover, NH, 03755, USA
| | - Sophia A Miller
- Department of Chemistry, Dartmouth College, Burke Laboratory, 41 College Street, Hanover, NH, 03755, USA
| | - Nataliia Vereshchuk
- Department of Chemistry, Dartmouth College, Burke Laboratory, 41 College Street, Hanover, NH, 03755, USA
| | - Katherine A Mirica
- Department of Chemistry, Dartmouth College, Burke Laboratory, 41 College Street, Hanover, NH, 03755, USA
| |
Collapse
|
5
|
Wu Q, Lis MJ, Hinestroza JP. Fire Performance of Cotton Fabrics Coated with 10-(2,5-Dihydroxyphenyl)-9,10-dihydro-9-xa-10-phosphaphenanthrene-10-oxide (DOPO-HQ) Zr-Based Metal-Organic Frameworks. Polymers (Basel) 2023; 15:4379. [PMID: 38006103 PMCID: PMC10675809 DOI: 10.3390/polym15224379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
We investigated the performance of cotton fabrics coated with DOPO-HQ and Zr-based Metal-organic Frameworks when exposed to fire. The chemical structure of the cotton fabrics before and after the coating was characterized using FTIR spectroscopy, and the surface morphology of cotton and their combustion residues was probed via scanning electron microscopy. In our experiments, we used flammability tests and thermogravimetric methods to understand the burning behavior of the coated fibers, as well as their thermal stability. The cotton fabrics coated with DOPO-HQ and Zr MOFs exhibited shorter combustion times, had better thermal degradation properties, promoted the creation of heat-insulating layers, and exhibited improved smoke suppression behavior.
Collapse
Affiliation(s)
- Qiuyue Wu
- Institute of Textile Research and Industrial Cooperation of Terrassa (INTEXTER), Polytechnic University of Catalonia, Colón 15, 08222 Barcelona, Spain;
| | - Manuel José Lis
- Department of Chemical Engineering, Polytechnic University of Catalonia, Colón 15, 08222 Barcelona, Spain
| | - Juan P. Hinestroza
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Rego RM, Ajeya KV, Jung HY, Kabiri S, Jafarian M, Kurkuri MD, Kigga M. Nanoarchitectonics of Bimetallic MOF@Lab-Grade Flexible Filter Papers: An Approach Towards Real-Time Water Decontamination and Circular Economy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302692. [PMID: 37469019 DOI: 10.1002/smll.202302692] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/15/2023] [Indexed: 07/21/2023]
Abstract
This study presents a novel approach to decontaminate ferrocyanide-contaminated wastewater. The work effectively demonstrates the use of bimetallic Mo/Zr-UiO-66 as a super-adsorbent for rapid sequestration of Prussian blue, a frequently found iron complex in cyanide-contaminated soils/groundwater. The exceptional performance of Mo/Zr-UiO-66 is attributed to the insertion of secondary metallic sites, which deliver synergistic effects, benefiting the inherent qualities of the framework. Moreover, to extend the industrial applications of metal-organic frameworks (MOFs) in real-world scenarios, an approach is delivered to structure the nanocrystalline powders into MOF-based macrostructures. The work demonstrates an interfacial process to develop continuous MOF nanostructures on ordinary laboratory-grade filter papers. The novelty of the work lies in the development of robust free-standing filtration materials to purify PB dye-contaminated water. Additionally, the work embraces a circular economy concept to address problems related to resource scarcity, excessive waste production, and maintenance of economic benefits. Consequently, the PB dye-loaded adsorbent waste is re-employed for the adsorption of heavy metals (Pb2+ and Cd2+ ). Simultaneously, the study aims to address the problems related to the real-time handling of powdered adsorbents, and the generation of ecologically harmful secondary waste, thereby, progressing toward a more sustainable system.
Collapse
Affiliation(s)
- Richelle M Rego
- Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, Karnataka, 562112, India
| | - Kanalli V Ajeya
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Ho-Young Jung
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Shervin Kabiri
- School of Agriculture, Food and Wine, Faculty of Sciences, Engineering and Technology, The University of Adelaide, PMB 1 Waite Campus, Glen Osmond, SA, 5005, Australia
| | - Mehdi Jafarian
- School of Mechanical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mahaveer D Kurkuri
- Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, Karnataka, 562112, India
| | - Madhuprasad Kigga
- Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, Karnataka, 562112, India
| |
Collapse
|
7
|
Li S, Ma J, Guan J, Li J, Wang X, Sun X, Chen L. Selective cationic covalent organic framework for high throughput rapid extraction of novel polyfluoroalkyl substances. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130125. [PMID: 36303337 DOI: 10.1016/j.jhazmat.2022.130125] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/21/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Novel per- and polyfluoroalkyl substances (PFASs) raise global concerns due to their toxic effects on environment and human health. However, researches on analytical methods of novel PFASs are lacking. Here, a kind of selective cationic covalent organic framework (iCOF) was designed and loaded on the surface of cotton as an adsorbent. Then, a simple solid-phase extraction (SPE) method based on the cotton@iCOF was developed for high throughput rapid extraction of six novel PFASs in water samples, coupled with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) determination. Several important SPE parameters, such as the amount of iCOF, sample pH, desorption conditions and salinity were systematically investigated. Under optimal conditions, the limits of detection and quantification of this SPE-UHPLC-MS/MS method were as low as 0.08-2.14 ng/L and 0.28-7.15 ng/L, respectively. The recoveries were 77.9-117.6 % for the tap water and surface water, and F-53 B in surface water were detected. Notably, this SPE process was rapid (1 h for 500 mL water sample) compared with commercial SPE (normal 2-3 h), owing to little resistance of cotton@iCOF and omission of nitrogen blowing process, and high throughput with 12 samples concurrently extracted. Additionally, various characterization means and density functional theory (DFT) calculations showed that ion-exchange effect, hydrophobic interaction, hydrogen bonding and ordered channel structure synergistically contributed to the PFASs adsorption on cotton@iCOF. The cotton@iCOF-based SPE method with simplicity, rapidity, selectivity and efficiency provided new research ideas for the analysis and control of ionic emerging pollutants in water.
Collapse
Affiliation(s)
- Shuang Li
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China.
| | - Jing Guan
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiyan Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
8
|
Zhang Q, Wang J, Zhang S, Ma J, Cheng J, Zhang Y. Zr-Based Metal-Organic Frameworks for Green Biodiesel Synthesis: A Minireview. Bioengineering (Basel) 2022; 9:700. [PMID: 36421101 PMCID: PMC9687256 DOI: 10.3390/bioengineering9110700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 09/08/2024] Open
Abstract
Metal-organic frameworks (MOFs) have widespread application prospects in the field of catalysis owing to their functionally adjustable metal sites and adjustable structure. In this minireview, we summarize the current advancements in zirconium-based metal-organic framework (Zr-based MOF) catalysts (including single Zr-based MOFs, modified Zr-based MOFs, and Zr-based MOF derivatives) for green biofuel synthesis. Additionally, the yields, conversions, and reusability of Zr-based MOF catalysts for the production of biodiesel are compared. Finally, the challenges and future prospects regarding Zr-based MOFs and their derivatives for catalytic application in the biorefinery field are highlighted.
Collapse
Affiliation(s)
- Qiuyun Zhang
- College Rural Revitalization Research Center of Guizhou, Anshun University, Anshun 561000, China
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Jialu Wang
- College Rural Revitalization Research Center of Guizhou, Anshun University, Anshun 561000, China
- School of Resource and Environmental Engineering, Anshun University, Anshun 561000, China
| | - Shuya Zhang
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Juan Ma
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Jingsong Cheng
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Yutao Zhang
- College Rural Revitalization Research Center of Guizhou, Anshun University, Anshun 561000, China
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| |
Collapse
|
9
|
Zhang S, Lu X, Liu X, Fang K, Gong J, Si J, Gao W, Liu D. In Situ Generated UiO-66/Cotton Fabric Easily Recyclable for Reactive Dye Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12095-12102. [PMID: 36150189 DOI: 10.1021/acs.langmuir.2c01967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In view of the environmental pollution caused by the widespread use of reactive dyes in the printing and dyeing industry, the modified cotton fabric was loaded with the extremely stable metal-organic frame (MOF) material UiO-66 for removing reactive dyes from colored wastewater. UiO-66/cotton fabric was prepared by in situ synthesis, and its surface morphology and structure were analyzed by XRD, SEM, BET, and XPS. The adsorption performance of UiO-66/cotton fabric on reactive dyes was investigated by adsorbent dosage, adsorption time and temperature, dye concentration, pH, and so on. The results indicated that the adsorption equilibrium time of UiO-66/cotton fabric on reactive orange 16 was 120 min, and the removal rate was about 98%. The adsorption process belongs to simple molecular layer chemisorption and can be regarded as a spontaneous heat absorption reaction, which was consistent with the proposed secondary kinetic model and Langmuir isothermal adsorption model. In addition, the reactive dyes with a higher molecular weight of each sulfonic acid group are more hydrophobic, and the dyes are more likely to aggregate and deposit on the adsorbent surface by electrostatic attraction, hydrogen bonding, and π-π accumulation. Therefore, this work provides a potential UiO-66/cotton fabric application for the effective adsorption of reactive dyes in textile wastewater.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Textile Science and Engineering, Tiangong University, 399 Binshui West Road, Tianjin 300387, China
| | - Xue Lu
- School of Textile Science and Engineering, Tiangong University, 399 Binshui West Road, Tianjin 300387, China
| | - Xiuming Liu
- School of Textile Science and Engineering, Tiangong University, 399 Binshui West Road, Tianjin 300387, China
| | - Kuanjun Fang
- School of Textile Science and Engineering, Tiangong University, 399 Binshui West Road, Tianjin 300387, China
- College of Textiles & Clothing, Qingdao University 308 Ningxia Road, Qingdao 266071, China
- State Key Laboratory for Biofibers and Eco-textiles, 308 Ningxia Road, Qingdao 266071, China
- Collaborative Innovation Center for Eco-textiles of Shandong Province, 308 Ningxia Road, Qingdao 266071, China
| | - Jixian Gong
- School of Textile Science and Engineering, Tiangong University, 399 Binshui West Road, Tianjin 300387, China
| | - Junjie Si
- School of Textile Science and Engineering, Tiangong University, 399 Binshui West Road, Tianjin 300387, China
| | - Wenchao Gao
- School of Textile Science and Engineering, Tiangong University, 399 Binshui West Road, Tianjin 300387, China
| | - Dongdong Liu
- School of Textile Science and Engineering, Tiangong University, 399 Binshui West Road, Tianjin 300387, China
| |
Collapse
|
10
|
Effects of carbonization temperature on fabricating carbonized Universitetet i Oslo-66 as active materials for supercapacitors. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Alkas TR, Ediati R, Ersam T, Nawfa R, Purnomo AS. Fabrication of metal-organic framework Universitetet i Oslo-66 (UiO-66) and brown-rot fungus Gloeophyllum trabeum biocomposite (UiO-66@GT) and its application for reactive black 5 decolorization. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
12
|
Ex situ synthesis of MOF@PET/cotton textile fibers as potential antibacterial materials. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03216-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractThere is considerable scientific literature on MOF-based antibacterial textiles, especially with in situ methodologies for their synthesis. On the contrary, the ex situ synthesis of MOFs on fabrics has been little explored. Although, the latter may have more significant advantages when the expectation is to scale up the process industrially. The present study describes the synthesis of ex situ obtained MOF-199 and MOF-UiO-66-NH2 onto carboxylated polyester/cotton (PETco) textile fibers and their preliminary-qualitative analysis as potential antibacterial textiles. For this, free synthesized MOFs were anchored on a previously carboxylated PETco fiber, using conditions that seek the formation of coordination bonds between the carboxyl groups of the fiber and the metal in the MOF. After soxhlet purification with water and methanol for more than 48 h, analysis by FTIR-ATR and XRD shows the superposition of signals typical of the fiber and the MOF, resembling what was previously reported for cotton-MOF systems. XPS showed 4.47% Cu, with Cu–O-C interactions for MOF-199@PETco, and 12.06% Zr, with Zr-O-C interactions for MOF UiO-66-NH2@PETco. Results corroborated by the SEM micrographs, which show the expected morphology for MOF-199, and homogeneously distributed MOF UiO-66-NH2 crystals when they are anchored to the fiber.
Collapse
|
13
|
Couzon N, Dhainaut J, Campagne C, Royer S, Loiseau T, Volkringer C. Porous textile composites (PTCs) for the removal and the decomposition of chemical warfare agents (CWAs) – A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Barrier Effects of Cellulosic Fibers with Hybrid Coating Based on Zirconium Metal-Organic Framework. Polymers (Basel) 2022; 14:polym14153071. [PMID: 35956585 PMCID: PMC9370460 DOI: 10.3390/polym14153071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Metal-organic frameworks (MOFs) have great potential for the development of fire barriers for flammable materials. Accordingly, zirconium-based metal-organic framework (Zr-MOF), branched polyethyleneimine (BPEI), and vinyltriethoxysilane (VTES) were deposited to produce composites assembled on cellulosic fibers to investigate their barrier effects. The structure, morphology, and thermal properties of the cellulosic fibers were characterized using FTIR spectroscopy, SEM, and TGA. Compared with the untreated cotton sample, the temperature of the maximum rate of weight loss (Tmax) of C-Zr-MOF/BPEI/VTES increased from 479 to 523.3 °C and the maximum weight loss rate (Rmax) at Tmax decreased from 37.6 to 17.2 wt%/min. At 800 °C, the pristine cotton was burned out without residues whereas the residual char content of the C-Zr-MOF/BPEI/VTES sample was 7.2355 wt%. From the vertical burning tests, the results suggested that the C-Zr-MOF/BPEI/VTES sample had better barrier effects by reducing the flame-spread speed and generating more protective char layers.
Collapse
|
15
|
López-R M, Barrios Y, Perez LD, Soto C, Sierra C. Metal-Organic Framework (MOFs) tethered to cotton fibers display antimicrobial activity against relevant nosocomial bacteria. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Lee S, Ahn S, Lee H, Kim J. Layer-by-layer coating of MIL-100(Fe) on a cotton fabric for purification of water-soluble dyes by the combined effect of adsorption and photocatalytic degradation. RSC Adv 2022; 12:17505-17513. [PMID: 35765425 PMCID: PMC9194953 DOI: 10.1039/d2ra02773a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Efforts have been made for sustainable development of adsorbents to purify organic contaminants from wastewater. In this study, a MIL-100(Fe) based textile that acts as a reusable adsorbent and photocatalytic agent was developed by synthesizing MIL-100(Fe) onto a cotton fabric by the layer-by-layer (LBL) process using water-based solutions. As the number of LBL cycles increased, the add-on's of MIL-100(Fe) showed a drastic increase up to 8 cycles, then showed gradual increases with further treatments. The overall adsorption performance was enhanced with the increased MIL-100(Fe) add-on's, but the specific adsorption efficiency per unit mass of MIL-100(Fe) was reduced as the LBL cycles increased, implying the reduced average adsorption efficiency with a thicker coating. To examine the reusability of the adsorbent, desorption efficiency of RhB was measured. The desorption after the first-time adsorption was not efficient due to the strong binding inside the pores. For the later cycles of adsorption–desorption, desorption occurred more efficiently, probably because RhB molecules were adhered mostly at the outer surface of the MOF layer. Simultaneously, MIL-100(Fe)@cotton demonstrated the photocatalytic degradation performance against RhB in the presence of H2O2 by the Fenton reaction. With the combined effect of adsorption and photodegradation, the developed fabric attained 96% removal efficiency for RhB dissolved in water. This study demonstrates an environmentally responsible process of developing a MIL-100(Fe) coated fabric that is readily available for effective removal of organic foulants in water. This fabrication method can be applied as a scalable manufacturing of metal–organic framework-based photocatalytic adsorbent textiles. A MIL-100(Fe)-based water purifying textile that functions by dual action of adsorption and photocatalytic activity is designed via a layer-by-layer process without using toxic organic solvents.![]()
Collapse
Affiliation(s)
- Suhyun Lee
- Department of Fashion Design, Jeonbuk National University Jeonju 54896 Republic of Korea
| | - Soyeon Ahn
- Department of Textiles, Merchandising and Fashion Design, Seoul National University Seoul 08826 Republic of Korea
| | - Halim Lee
- Department of Textiles, Merchandising and Fashion Design, Seoul National University Seoul 08826 Republic of Korea
| | - Jooyoun Kim
- Department of Textiles, Merchandising and Fashion Design, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
17
|
Gouma V, Pournara AD, Manos MJ, Giokas DL. Fabric phase sorpitive extraction and passive sampling of ultraviolet filters from natural waters using a zirconium metal organic framework-cotton composite. J Chromatogr A 2022; 1670:462945. [DOI: 10.1016/j.chroma.2022.462945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022]
|
18
|
Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications: A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214263] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Gorzkowska‐Sobas A, Lausund KB, de Koning MC, Petrovic V, Chavan SM, Smith MW, Nilsen O. Utilizing Zirconium MOF-functionalized Fiber Substrates Prepared by Molecular Layer Deposition for Toxic Gas Capture and Chemical Warfare Agent Degradation. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2100001. [PMID: 34938573 PMCID: PMC8671619 DOI: 10.1002/gch2.202100001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 08/02/2021] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) are a class of porous organic-inorganic solids extensively explored for numerous applications owing to their catalytic activity and high surface area. In this work MOF thin films deposited in a one-step, molecular layer deposition (MLD), an all-gas-phase process, on glass wool fibers are characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and their capabilities towards toxic industrial chemical (TIC) capture and chemical warfare agents (CWA) degradation are investigated. It is shown that despite low volume of the active material used, MOFs thin films are capable of removal of harmful gaseous chemicals from air stream and CWA from neutral aqueous environment. The results confirm that the MLD-deposited MOF thin films, amorphous and crystalline, are suitable materials for use in air filtration, decontamination, and physical protection against CWA and TIC.
Collapse
Affiliation(s)
| | - Kristian Blindheim Lausund
- Centre for Materials Science and NanotechnologyDepartment of ChemistryUniversity of OsloSem Sælands vei 26Oslo0371Norway
- TNOLange Kleiweg 1372288GJ, RijswijkThe Netherlands
| | | | - Veljko Petrovic
- Centre for Materials Science and NanotechnologyDepartment of ChemistryUniversity of OsloSem Sælands vei 26Oslo0371Norway
| | - Sachin M. Chavan
- Department of ChemistryBioscience and Environmental EngineeringUniversity of StavangerStavanger4036Norway
| | - Martin W. Smith
- CBR DivisionDefence Science & Technology LaboratoryPorton DownSalisburySP4 0JQUK
| | - Ola Nilsen
- Centre for Materials Science and NanotechnologyDepartment of ChemistryUniversity of OsloSem Sælands vei 26Oslo0371Norway
| |
Collapse
|
20
|
Liu X, Xiao Y, Zhang Z, You Z, Li J, Ma D, Li B. Recent Progress in
Metal‐Organic
Frameworks@Cellulose Hybrids and Their Applications. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xiongli Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Yun Xiao
- General English Department, College of Foreign Languages Nankai University Tianjin 300071 China
| | - Zhiyuan Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Zifeng You
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Jinli Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Dingxuan Ma
- College of Chemistry and Molecular Engineering, Laboratory of Eco‐chemical Engineering, Ministry of Education Qingdao University of Science and Technology Qingdao 266042 China
| | - Baiyan Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| |
Collapse
|
21
|
De-Doped Polyaniline as a Mediating Layer Promoting In-Situ Growth of Metal-Organic Frameworks on Cellulose Fiber and Enhancing Adsorptive-Photocatalytic Removal of Ciprofloxacin. Polymers (Basel) 2021; 13:polym13193298. [PMID: 34641114 PMCID: PMC8512102 DOI: 10.3390/polym13193298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/26/2022] Open
Abstract
New kinds of inorganic–organic hybrid porous materials, metal–organic frameworks (MOFs), have shown great application potential in various fields, but their powdery nature limits their application to a certain extent. As a green and renewable biomass material in nature, cellulose fiber (CelF) has the advantages of biodegradability, recyclability and easy processing, and can be used as an excellent flexible substrate for MOFs. However, the efficient deposition of MOFs on CelF is still a great challenge for the development of this new material. Herein, polyaniline (PANI) and de-doped PANI (DPANI) with rich functional groups as a mediating layer was proposed to promote the in-situ growth and immobilization of some MOFs on CelF. The PANI (especially DPANI) layer greatly promoted the deposition of the four MOFs, and more encouragingly, significantly promoted the in-situ growth and nanocrystallization of MIL-100(Fe). MIL-100(Fe)@DPANI@CelF was selected as an adsorbent-photocatalyst to be used for the adsorptive-photocatalytic removal of ciprofloxacin (CIP) in water. The removal efficiency of CIP by MIL-100(Fe)@DPANI@CelF reached 82.78%, and the removal capacity of CIP was as high as 105.96 mg g−1. The study found that DPANI had a synergistic effect on both the in-situ growth of MIL-100(Fe) on CelF and the adsorption-photocatalysis of CIP in water. The universal platform of PANI-mediated in-situ growth and immobilization of MOFs on CelF constructed in this study widens the road for the development of MOF@CelF composites.
Collapse
|
22
|
Trinh DX, Pham NN, Chammingkwan P, Taniike T. Preparation and Desalination Performance of PA/UiO-66/PES Composite Membranes. MEMBRANES 2021; 11:628. [PMID: 34436391 PMCID: PMC8399680 DOI: 10.3390/membranes11080628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022]
Abstract
UiO-66 nanoparticles are considered highly potential fillers for the application in desalination membranes. In this study, UiO-66 nanoparticles were anchored to PES membrane substrates, which were subsequently subjected to the interfacial polymerization reaction to coat a layer of polyamide (PA) on their surface. For comparison, a blank membrane incorporating no UiO-66 and a reference membrane incorporating ZrO2 (instead of UiO-66) were prepared. All prepared membranes were tested for their desalination performance. The membranes containing UiO-66 were found to outperform the blank and the reference counterparts. The reason for this outperformance is possibly attributed to the hydrophilicity of UiO-66 nanoparticles and the presence of nanochannels in their structure.
Collapse
Affiliation(s)
- Dai Xuan Trinh
- Faculty of Chemistry, VNU University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam; or
| | - Ngo Nghia Pham
- Faculty of Chemistry, VNU University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam; or
- Institute of Environmental Engineering and Management, University of Witten/Herdecke, Alfred-Herrhausen-Straße 44, 58455 Witten, Germany
| | - Patchanee Chammingkwan
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan; (P.C.); (T.T.)
| | - Toshiaki Taniike
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan; (P.C.); (T.T.)
| |
Collapse
|
23
|
Otal EH, Kim ML, Hinestroza JP, Kimura M. A Solid-State Pathway towards the Tunable Carboxylation of Cellulosic Fabrics: Controlling the Surface's Acidity. MEMBRANES 2021; 11:membranes11070514. [PMID: 34357164 PMCID: PMC8303120 DOI: 10.3390/membranes11070514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022]
Abstract
We report on a tunable solid-state approach to modify the acidity of cotton substrates using citric, oxalic, and fumaric acids. The first stage of the method involves soaking the cotton swatches in an ethanolic saturated solution of the corresponding acid. After drying, the carboxylation reaction proceeds at high temperature (T > 100 °C) and in solid state. We quantified the effect of temperature and reaction time on the solid-state carboxylation reaction, which allowed us to tune the carboxylation degree and the acidity of the surface. We characterized the modified cotton by performing adsorption isotherms and by determining the kinetics of adsorption of a cationic dye: methylene blue (MB). We found that the MB uptake kinetics varied as a function of the acidic strength of the surface, which is closely related to the strength of the acid used for surface modification. The proposed solid-state cotton carboxylation procedure allows us to achieve sustainable cotton modification, which constitutes a starting point for several applications using cotton as the substrate.
Collapse
Affiliation(s)
- Eugenio H. Otal
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda Campus, Ueda, Nagano 386-8567, Japan;
- Correspondence: (E.H.O.); (M.K.)
| | - Manuela L. Kim
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda Campus, Ueda, Nagano 386-8567, Japan;
| | - Juan P. Hinestroza
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, USA;
| | - Mutsumi Kimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda Campus, Ueda, Nagano 386-8567, Japan;
- COI Aqua-Innovation Center, Shinshu University, Ueda Campus, Ueda, Nagano 386-8567, Japan
- Research Initiative for Supra-Materials, Shinshu University, Ueda Campus, Ueda, Nagano 386-8567, Japan
- Correspondence: (E.H.O.); (M.K.)
| |
Collapse
|
24
|
Otal EH, Tanaka H, Kim ML, Hinestroza JP, Kimura M. The Long and Bright Path of a Lanthanide MOF: From Basics towards the Application. Chemistry 2021; 27:7376-7382. [PMID: 33533104 DOI: 10.1002/chem.202005222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/11/2021] [Indexed: 11/10/2022]
Abstract
The development of portable, reliable, and low-cost sensors for assessing the quality of natural water sources is of high relevance in developing countries as they can serve as an intermediate solution prior to the building of permanent potable water distribution infrastructure. These sensors should be simple to operate by non-trained operators and easy to manufacture locally. Lanthanide-based metal-organic frameworks (MOFs) offer a trustable platform due to their intense emission in regions of the visible spectra and their high sensitivity to fluorides in water. Cotton was chosen as a substrate due to its high hydrophilicity which, together with the highly porous nature of the MOF, allows for shorter reaction times. The modified cotton was characterized by XRD, SEM as well as XAFS, hence probing the presence of [Tb(BTC)6 (H2 O)] (Tb-BTC) attachment to cotton. Changes in the emission when Tb-BTC modified cotton was exposed to water and aqueous fluoride solutions were monitored as a function of time. Crystalline phase changes were identified that correlated to structural information. Finally, the Tb-BTC modified cotton was used to build a fluoride demonstrator sensor with a linear response of up to 10 mg L-1 and a limit of detection of 0.8 mg L-1 , making it suitable for drinking water analysis under international regulations.
Collapse
Affiliation(s)
- Eugenio Hernán Otal
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda, 386-8567, Japan
| | - Hideki Tanaka
- Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan
| | - Manuela Leticia Kim
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda, 386-8567, Japan
| | - Juan Paulo Hinestroza
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, New York, USA
| | - Mutsumi Kimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda, 386-8567, Japan.,Research Initiatives for Supra-Materials (RISM), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Ueda, 386-8567, Japan.,Global Aqua Innovation Center, Shinshu University, Nagano, 386-8553, Japan
| |
Collapse
|
25
|
Balasubramanian S, Kulandaisamy AJ, Babu KJ, Das A, Balaguru Rayappan JB. Metal Organic Framework Functionalized Textiles as Protective Clothing for the Detection and Detoxification of Chemical Warfare Agents—A Review. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c06096] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Selva Balasubramanian
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
- School of Electrical & Electronics Engineering (SEEE), SASTRA Deemed University Thanjavur, Tamil Nadu 613 401, India
| | | | - K. Jayanth Babu
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
- School of Electrical & Electronics Engineering (SEEE), SASTRA Deemed University Thanjavur, Tamil Nadu 613 401, India
| | - Apurba Das
- Department of Textile & Fibre Engineering, Indian Institute of Technology Delhi New Delhi, 110 016, India
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
- School of Electrical & Electronics Engineering (SEEE), SASTRA Deemed University Thanjavur, Tamil Nadu 613 401, India
| |
Collapse
|
26
|
Mallakpour S, Sirous F, Hussain CM. Metal–organic frameworks/biopolymer nanocomposites: from fundamentals toward recent applications in modern technology. NEW J CHEM 2021. [DOI: 10.1039/d1nj01302e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bio–nanocomposite compounds based on biopolymers and MOFs have presented great potential in various applications for modern technology.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | - Fariba Sirous
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | | |
Collapse
|
27
|
Conformal Functionalization of Cotton Fibers via Isoreticular Expansion of UiO-66 Metal-Organic Frameworks. COATINGS 2020. [DOI: 10.3390/coatings10121172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report on the growing of metal-organic frameworks that are isoreticular and isostructural to UiO-66, onto cotton fabrics via a solvothermal method. Four different metal-organic frameworks (MOFs) (UiO-66, UiO-66-NH2, UiO-66-NDC, and UiO-67) were chosen as a case study. The presence of the UiO-based MOFs was confirmed through X-ray diffraction and Scanning Electron Microscopy. We used thermogravimetric analysis to quantify the amount of the MOF loading, which ranged from 0.8% to 2.6% m/m. We also explored the role of ligand size, growth time, and reaction temperature on the conformal coating of cotton fibers with these Zr-based MOFs. Cotton fabrics coated with Zr-based MOFs can find applications as selective filters in aggressive environments due to their enhanced chemical and thermal stabilities.
Collapse
|
28
|
Bunge MA, Pasciak E, Choi J, Haverhals L, Reichert WM, Glover TG. Ionic Liquid Welding of the UIO-66-NH2 MOF to Cotton Textiles. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Meagan A. Bunge
- University of South Alabama, Mobile, Alabama 36688, United States
| | - Erick Pasciak
- Natural Fiber Welding, Inc., Peoria, Illinois 61614, United States
| | - Jonglak Choi
- Natural Fiber Welding, Inc., Peoria, Illinois 61614, United States
| | - Luke Haverhals
- Natural Fiber Welding, Inc., Peoria, Illinois 61614, United States
| | | | - T. Grant Glover
- University of South Alabama, Mobile, Alabama 36688, United States
| |
Collapse
|
29
|
Li L, Han S, Zhao S, Li X, Liu B, Liu Y. Chitosan modified metal–organic frameworks as a promising carrier for oral drug delivery. RSC Adv 2020; 10:45130-45138. [PMID: 35516251 PMCID: PMC9058666 DOI: 10.1039/d0ra08459j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
The drug delivery system of CS-MOF@5-FU was developed to achieve oral administration of 5-FU.
Collapse
Affiliation(s)
- Li Li
- School of Pharmacy
- Liaoning University
- Shenyang
- China
- Judicial Expertise Center
| | - Shasha Han
- School of Pharmacy
- Liaoning University
- Shenyang
- China
| | - Sengqun Zhao
- School of Pharmacy
- Liaoning University
- Shenyang
- China
| | - Xurui Li
- School of Pharmacy
- Liaoning University
- Shenyang
- China
| | - Bingmi Liu
- School of Pharmacy
- Liaoning University
- Shenyang
- China
- Judicial Expertise Center
| | - Yu Liu
- School of Pharmacy
- Liaoning University
- Shenyang
- China
- Judicial Expertise Center
| |
Collapse
|
30
|
Bao T, Su Y, Zhang N, Gao Y, Wang S. Hydrophilic Carboxyl Cotton for in Situ Growth of UiO-66 and Its Application as Adsorbents. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05172] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Tao Bao
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi’an 710061, China
| | - Ying Su
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi’an 710061, China
| | - Nan Zhang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi’an 710061, China
| | - Yan Gao
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi’an 710061, China
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi’an 710061, China
| |
Collapse
|
31
|
Zhuang S, Liu Y, Wang J. Mechanistic insight into the adsorption of diclofenac by MIL-100: Experiments and theoretical calculations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:616-624. [PMID: 31330353 DOI: 10.1016/j.envpol.2019.07.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
The development of high-efficiency adsorbents and the exploration of their adsorption mechanisms are major challenges in environmental remediation. Herein, MIL-100 was prepared, characterized, and utilized for the adsorptive removal of diclofenac sodium (DCF) from aqueous solutions. A high monolayer adsorption capacity of 773 mg g-1 was recorded. The adsorption mechanism was proposed based on different contributions of two types of pore structure of MIL-100 to the adsorption of DCF from aqueous solutions according to the experimental results and theoretical calculation. During adsorption process, DCF (5.2 × 7.4 × 10.3 Å) diffused through the free area of hexagonal pores (8.6 × 8.6 Å) into the cages of MIL-100, whilst it was adsorbed by the pentagonal pores (4.8 × 5.8 Å) preferentially. Internal mass transfer resistance, which was identified as one of the dominant rate-limiting steps by the mass transfer resistance kinetic models based on the Sips model, will be derived from the diffusion process, which was affected by the size-sieving effect of the pore structure of MIL-100. The successful diffusion of DCF into the interior of MIL-100 and the stable configuration between MIL-100 and DCF accounted for the high adsorption capacity. The capture of DCF into MIL-100 also resulted in the pore size distribution variation of adsorbent, which provided vital experimental evidence for the proposed mechanism. This study may offer deeper insights into other pollutants removal by metal-organic frameworks type adsorbents.
Collapse
Affiliation(s)
- Shuting Zhuang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, PR China
| | - Yong Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
32
|
Ma K, Wang Y, Chen Z, Islamoglu T, Lai C, Wang X, Fei B, Farha OK, Xin JH. Facile and Scalable Coating of Metal-Organic Frameworks on Fibrous Substrates by a Coordination Replication Method at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22714-22721. [PMID: 31188551 DOI: 10.1021/acsami.9b04780] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Coating of metal-organic frameworks (MOFs) on flexible substrates is a crucial technology for applications such as purification/separation, sensing, and catalysis. In this work, a facile coordination replication strategy was developed to coat various MOFs onto flexible fibrous materials where a dense layer of an insoluble precursor template, such as a layered hydroxide salt, was first deposited onto a fiber substrate via a mild interfacial reaction and then rapidly transformed into a MOF coating in a ligand solution at room temperature. Spatiotemporal harmonization of solid precursor dissolution and MOF crystallization enabled precise replication of the precursor layer morphology to form a continuous MOF coating composed of intergrown crystals. The resulting flexible, highly robust, and processable fibrous MOF/textile composites demonstrated tremendous potential for industrially relevant applications such as continuous removal of the organosulfur compound dibenzothiophene from simulated gasoline and ammonia capture. This rapid, versatile, eco-friendly, and scalable MOF coating process at room temperature gives rise to new possibilities for preparing MOF-coated functional materials.
Collapse
Affiliation(s)
- Kaikai Ma
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing , The Hong Kong Polytechnic University , Hong Kong SAR 999077 , China
- International Institute of Nanotechnology, Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Yuanfeng Wang
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing , The Hong Kong Polytechnic University , Hong Kong SAR 999077 , China
| | - Zhijie Chen
- International Institute of Nanotechnology, Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Timur Islamoglu
- International Institute of Nanotechnology, Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Chuilin Lai
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing , The Hong Kong Polytechnic University , Hong Kong SAR 999077 , China
| | - Xiaowen Wang
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing , The Hong Kong Polytechnic University , Hong Kong SAR 999077 , China
| | - Bin Fei
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing , The Hong Kong Polytechnic University , Hong Kong SAR 999077 , China
| | - Omar K Farha
- International Institute of Nanotechnology, Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - John H Xin
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing , The Hong Kong Polytechnic University , Hong Kong SAR 999077 , China
| |
Collapse
|
33
|
Yu C, Liu H, Lyu J, Xiao Z, Bai P, Guo X. Tuning Adsorption Capacity by Alkoxy Groups: A Study on Acetic Acid Adsorption on UiO-66 Analogues from Aqueous Solution. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chuan Yu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Hongxu Liu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Jiafei Lyu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Zixing Xiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Peng Bai
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Xianghai Guo
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| |
Collapse
|
34
|
Dhaka S, Kumar R, Deep A, Kurade MB, Ji SW, Jeon BH. Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.10.003] [Citation(s) in RCA: 310] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
35
|
Orderly-designed Ni2P nanoparticles on g-C3N4 and UiO-66 for efficient solar water splitting. J Colloid Interface Sci 2018; 532:287-299. [DOI: 10.1016/j.jcis.2018.07.138] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 11/17/2022]
|
36
|
Dwyer DB, Dugan N, Hoffman N, Cooke DJ, Hall MG, Tovar TM, Bernier WE, DeCoste J, Pomerantz NL, Jones WE. Chemical Protective Textiles of UiO-66-Integrated PVDF Composite Fibers with Rapid Heterogeneous Decontamination of Toxic Organophosphates. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34585-34591. [PMID: 30207449 DOI: 10.1021/acsami.8b11290] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Metal-organic frameworks (MOFs) are a new and growing area of materials with high porosity and customizability. UiO-66, a zirconium-based MOF, has shown much interest to the military because of the ability of the MOF to catalytically decontaminate chemical warfare agents (CWAs). Unfortunately, the applications for MOFs are limited because of their powder form, which is difficult to incorporate into protective clothing. As a result, a new area of research has developed to functionalize fabrics with MOFs to make a wearable multifunctional fabric that retains the desired properties of the MOF. In this work, UiO-66 was incorporated into poly(vinylidene) fluoride/Ti(OH)4 composite fabric using electrospinning and evaluated for its use in chemical protective clothing. The base triethanolamine (TEA) was added to the composite fabric to create a self-buffering system that would allow for catalytic decontamination of CWAs without the need for a buffer solution. The fabrics were tested against the simulants methyl-paraoxon (dimethyl (4-nitrophenyl) phosphate, DMNP), diisopropyl fluorophosphate (DFP), and the nerve agent soman (GD). The results show that all of the samples have high moisture vapor transport and filtration efficiency, which are desirable for protective clothing. The incorporation of TEA decreased air permeation of the fabric, but increased the catalytic activity of the composite fabric against DMNP and DFP. Samples with and without TEA have rapid half-lives ( t1/2) as short as 35 min against GD agent. These new catalytically active self-buffering multifunctional fabrics have great potential for application in chemical protective clothings.
Collapse
Affiliation(s)
- Derek B Dwyer
- Binghamton University State University of New York , 4400 Vestal Parkway East , Binghamton , New York 13902 , United States
| | - Nicholas Dugan
- U.S. Army Natick Soldier Research, Development and Engineering Center , 10 General Greene Avenue , Natick , Massachusetts 01760 , United States
| | - Nicole Hoffman
- U.S. Army Natick Soldier Research, Development and Engineering Center , 10 General Greene Avenue , Natick , Massachusetts 01760 , United States
| | - Daniel J Cooke
- Binghamton University State University of New York , 4400 Vestal Parkway East , Binghamton , New York 13902 , United States
| | - Morgan G Hall
- Edgewood Chemical Biological Center, Research, Development, and Engineering Command , 5183 Blackhawk Road , Aberdeen Proving Ground , Maryland 21010 , United States
| | - Trenton M Tovar
- Edgewood Chemical Biological Center, Research, Development, and Engineering Command , 5183 Blackhawk Road , Aberdeen Proving Ground , Maryland 21010 , United States
| | - William E Bernier
- Binghamton University State University of New York , 4400 Vestal Parkway East , Binghamton , New York 13902 , United States
| | - Jared DeCoste
- Edgewood Chemical Biological Center, Research, Development, and Engineering Command , 5183 Blackhawk Road , Aberdeen Proving Ground , Maryland 21010 , United States
| | - Natalie L Pomerantz
- U.S. Army Natick Soldier Research, Development and Engineering Center , 10 General Greene Avenue , Natick , Massachusetts 01760 , United States
| | - Wayne E Jones
- Binghamton University State University of New York , 4400 Vestal Parkway East , Binghamton , New York 13902 , United States
- University of New Hampshire , 105 Main Street , Durham , New Hampshire 03824 , United States
| |
Collapse
|
37
|
Novel Biocomposite Engineering and Bio-Applications. BIOENGINEERING (BASEL, SWITZERLAND) 2018; 5:bioengineering5040080. [PMID: 30274156 PMCID: PMC6316439 DOI: 10.3390/bioengineering5040080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/25/2018] [Indexed: 01/08/2023]
|
38
|
Bunge MA, Davis AB, West KN, West CW, Glover TG. Synthesis and Characterization of UiO-66-NH2 Metal–Organic Framework Cotton Composite Textiles. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01010] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Meagan A. Bunge
- Department of Chemical and Biomolecular Engineering, University of South Alabama, 150 Jaguar Dr., SH4136, Mobile, Alabama 36688, United States
| | - Aaron B. Davis
- Department of Chemical and Biomolecular Engineering, University of South Alabama, 150 Jaguar Dr., SH4136, Mobile, Alabama 36688, United States
| | - Kevin N. West
- Department of Chemical and Biomolecular Engineering, University of South Alabama, 150 Jaguar Dr., SH4136, Mobile, Alabama 36688, United States
| | - Christy Wheeler West
- Department of Chemical and Biomolecular Engineering, University of South Alabama, 150 Jaguar Dr., SH4136, Mobile, Alabama 36688, United States
| | - T. Grant Glover
- Department of Chemical and Biomolecular Engineering, University of South Alabama, 150 Jaguar Dr., SH4136, Mobile, Alabama 36688, United States
| |
Collapse
|
39
|
Kim MK, Kim SH, Park M, Ryu SG, Jung H. Degradation of chemical warfare agents over cotton fabric functionalized with UiO-66-NH2. RSC Adv 2018; 8:41633-41638. [PMID: 35559276 PMCID: PMC9091930 DOI: 10.1039/c8ra06805d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/05/2018] [Indexed: 11/29/2022] Open
Abstract
Herein, cotton fabric was treated with an alkaline solution to increase the content of surface hydroxyl groups and then functionalized with UiO-66-NH2, a nanoporous metal–organic framework. Instrumental analysis of the thus treated fabric revealed that its surface was covered with UiO-66-NH2 crystals in a uniform manner. The ability of the functionalized fabric to degrade two chemical warfare agents (soman and sulfur mustard) was probed by testing its permeability to these two agents (swatch testing), and the excellent degradation performance was concluded to be well suited for a broad range of filtration and decontamination applications. We develop a very efficient modification method of cotton fabric to be functionalized with a MOF via mercerization.![]()
Collapse
Affiliation(s)
- Min-Kun Kim
- Agency for Defense Development
- Daejeon 34186
- Republic of Korea
| | - Sung Hun Kim
- Agency for Defense Development
- Daejeon 34186
- Republic of Korea
| | - Myungkyu Park
- Agency for Defense Development
- Daejeon 34186
- Republic of Korea
| | - Sam Gon Ryu
- Agency for Defense Development
- Daejeon 34186
- Republic of Korea
| | - Hyunsook Jung
- Agency for Defense Development
- Daejeon 34186
- Republic of Korea
| |
Collapse
|