1
|
Wu KC, Yang HI, Chang YH, Chiang RYS, Ding DC. Extracellular Vesicles Derived from Human Umbilical Mesenchymal Stem Cells Transfected with miR-7704 Improved Damaged Cartilage and Reduced Matrix Metallopeptidase 13. Cells 2025; 14:82. [PMID: 39851510 PMCID: PMC11763736 DOI: 10.3390/cells14020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
We aimed to explore the therapeutic efficacy of miR-7704-modified extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (HUCMSCs) for osteoarthritis (OA) treatment. In vitro experiments demonstrated the successful transfection of miR-7704 into HUCMSCs and the isolation of EVs from these cells. In vivo experiments used an OA mouse model to assess the effects of the injection of miR-7704-modified EVs intra-articularly. Walking capacity (rotarod test), cartilage morphology, histological scores, and the expression of type II collagen, aggrecan, interleukin-1 beta, and matrix metalloproteinase 13 (MMP13) in the cartilage were evaluated. The EVs were characterized to confirm their suitability for therapeutic use. IL-1beta-treated chondrocytes increased type II collagen and decreased MMP13 after treatment with miR-7704-overexpressed EVs. In vivo experiments revealed that an intra-articular injection of miR-7704-overexpressed EVs significantly improved walking capacity, preserved cartilage morphology, and resulted in higher histological scores compared to in the controls. Furthermore, the decreased expression of MMP13 in the cartilage post treatment suggests a potential mechanism for the observed therapeutic effects. Therefore, miR-7704-overexpressed EVs derived from HUCMSCs showed potential as an innovative therapeutic strategy for treating OA. Further investigations should focus on optimizing dosage, understanding mechanisms, ensuring safety and efficacy, developing advanced delivery systems, and conducting early-phase clinical trials to establish the therapeutic potential of HUCMSC-derived EVs for OA management.
Collapse
Affiliation(s)
- Kun-Chi Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan;
| | - Hui-I Yang
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan;
| | - Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan;
| | - Raymond Yuh-Shyan Chiang
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan;
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
2
|
Gristina V, Bazan V, Barraco N, Taverna S, Manno M, Raccosta S, Carreca AP, Bono M, Bazan Russo TD, Pepe F, Pisapia P, Incorvaia L, Badalamenti G, Troncone G, Malapelle U, Santini D, Russo A, Galvano A. On-treatment dynamics of circulating extracellular vesicles in the first-line setting of patients with advanced non-small cell lung cancer: the LEXOVE prospective study. Mol Oncol 2025. [PMID: 39780749 DOI: 10.1002/1878-0261.13737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 01/11/2025] Open
Abstract
Extracellular vesicle (EV) monitoring can complement clinical assessment of cancer response. In this study, patients with advanced non-small cell lung cancer (NSCLC) undergoing osimertinib, alectinib, pembrolizumab or platinum-based chemotherapy ± pembrolizumab were enrolled. EVs were characterized using Bradford assay to quantify the circulating cell-free EV protein content (cfEV), and dynamic light scattering to assess Rayleigh ratio excess at 90°, z-averaged hydrodynamic diameter and polydispersity index. A total of 135 plasma samples from 27 patients were collected at baseline (T0) and at the first radiological restaging (T1). A ∆cfEV < 20% was associated with improved median progression-free survival (mPFS) in responders versus non-responders. Specifically, cfEV responders on pembrolizumab had a significantly better mPFS (25.2 months) compared to those on chemotherapy plus pembrolizumab (6.1 months). EGFR-positive cfEV responders also experienced longer mPFS compared to cfEV non-responders (35.1 months, 95% CI: 14.9-35.5 vs. 20.8 months, 95% CI: 11.2-30.4). This study suggested that monitoring circulating EV could provide valuable insights into treatment efficacy in NSCLC, particularly for patients receiving pembrolizumab or osimertinib.
Collapse
Affiliation(s)
- Valerio Gristina
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Viviana Bazan
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Italy
| | - Nadia Barraco
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Simona Taverna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR) of Italy, Palermo, Italy
| | - Mauro Manno
- Institute of Biophysics (IBF), National Research Council (CNR) of Italy, Palermo, Italy
| | - Samuele Raccosta
- Institute of Biophysics (IBF), National Research Council (CNR) of Italy, Palermo, Italy
| | - Anna Paola Carreca
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
- Ri.MED Foundation, Palermo, Italy
| | - Marco Bono
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Italy
| | - Lorena Incorvaia
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | | | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Italy
| | - Daniele Santini
- Medical Oncology A, Policlinico Umberto 1, La Sapienza Università Di Roma, Italy
| | - Antonio Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Antonio Galvano
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| |
Collapse
|
3
|
Boulestreau J, Molina L, Ouedraogo A, Laramy L, Grich I, Van TNN, Molina F, Kahli M. Salivary extracellular vesicles isolation methods impact the robustness of downstream biomarkers detection. Sci Rep 2024; 14:31233. [PMID: 39732788 DOI: 10.1038/s41598-024-82488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Extracellular vesicles (EVs), crucial mediators in cell-to-cell communication, are implicated in both homeostatic and pathological processes. Their detectability in easily accessible peripheral fluids like saliva positions them as promising candidates for non-invasive biomarker discovery. However, the lack of standardized methods for salivary EVs isolation greatly limits our ability to study them. Therefore, we rigorously compared salivary EVs isolated using two scalable techniques-co-precipitation and immuno-affinity-against the long-established but labor-intensive ultracentrifugation method. Employing Cryo-Electron Microscopy (Cryo-EM), Nanoparticle Tracking Analysis, Western blots (WB), and proteomics, we identified significant method-dependent variances in the size, concentration, and protein content of EVs. Importantly, our study uniquely demonstrates the ability of EV isolation to detect specific biomarkers that remain undetected in whole saliva by WB. RT-qPCR analysis targeting six miRNAs confirmed a consistent enrichment of these miRNAs in EV-derived cargo across all three isolation methods. We also found that pre-filtering saliva samples with 0.22 or 0.45 µm pores adversely affects subsequent analyses. Our findings highlight the untapped potential of salivary EVs in diagnostics and advocate for the co-precipitation method as an efficient, cost-effective, and clinically relevant approach for small-volume saliva samples. This work not only sheds light on a neglected source of EVs but also paves the way for their application in routine clinical diagnostics.
Collapse
Affiliation(s)
- Jérémy Boulestreau
- Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France
- Department of Anatomy, Biochemistry, and Physiology John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo St. BSB 211, Honolulu, HI, 96813, USA
| | - Laurence Molina
- Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France
| | - Alimata Ouedraogo
- Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France
| | - Louën Laramy
- Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France
| | - Ines Grich
- Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France
| | - Thi Nhu Ngoc Van
- Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France
- SkillCell, Montpellier, France
| | - Franck Molina
- Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France.
| | - Malik Kahli
- Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France.
| |
Collapse
|
4
|
Korenjak B, Tratenšek A, Arko M, Romolo A, Hočevar M, Kisovec M, Berry M, Bedina Zavec A, Drobne D, Vovk T, Iglič A, Nemec Svete A, Erjavec V, Kralj-Iglič V. Assessment of Extracellular Particles Directly in Diluted Plasma and Blood by Interferometric Light Microscopy. A Study of 613 Human and 163 Canine Samples. Cells 2024; 13:2054. [PMID: 39768146 PMCID: PMC11674815 DOI: 10.3390/cells13242054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 01/11/2025] Open
Abstract
Extracellular nanoparticles (EPs) are a subject of increasing interest for their biological role as mediators in cell-cell communication; however, their harvesting and assessment from bodily fluids are challenging, as processing can significantly affect samples. With the aim of minimizing processing artifacts, we assessed the number density (n) and hydrodynamic diameter (Dh) of EPs directly in diluted plasma and blood using the following recently developed technique: interferometric light microscopy (ILM). We analyzed 613 blood and plasma samples from human patients with inflammatory bowel disease (IBD), collected in trisodium citrate and ethylenediaminetetraacetic acid (EDTA) anticoagulants, and 163 blood and plasma samples from canine patients with brachycephalic obstructive airway syndrome (BOAS). We found a highly statistically significant correlation between n in the plasma and n in the blood only in the human (i.e., but not canine) blood samples, between the samples with trisodium citrate and EDTA, and between the respective Dh for both species (all p < 10-3). In the human plasma, the average was 139 ± 31 nm; in the human blood, was 158 ± 11 nm; in the canine plasma, was 155 ± 32 nm; and in the canine blood, was 171 ± 33 nm. The differences within species were statistically significant (p < 10-2), with sufficient statistical power (P > 0.8). For , we found no statistically significant differences between the human plasma and blood samples or between the samples with trisodium citrate and EDTA. Our results prove that measuring n and Dh of EPs in minimally processed fresh blood and in diluted fresh plasma by means of ILM is feasible for large populations of samples.
Collapse
Affiliation(s)
- Boštjan Korenjak
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia; (B.K.); (M.A.); (A.R.); (M.B.)
| | - Armando Tratenšek
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (A.T.); (T.V.)
| | - Matevž Arko
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia; (B.K.); (M.A.); (A.R.); (M.B.)
| | - Anna Romolo
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia; (B.K.); (M.A.); (A.R.); (M.B.)
| | - Matej Hočevar
- Institute of Metals and Technology, SI-1000 Ljubljana, Slovenia;
| | - Matic Kisovec
- National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (A.B.Z.)
| | - Maxence Berry
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia; (B.K.); (M.A.); (A.R.); (M.B.)
- College for Basic and Applied Sciences, University of Poitiers, 86000 Poitiers, France
| | | | - David Drobne
- Department of Gastroenterology, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia;
- University of Ljubljana, Faculty of Medicine, SI-1000 Ljubljana, Slovenia
| | - Tomaž Vovk
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (A.T.); (T.V.)
| | - Aleš Iglič
- University of Ljubljana, Faculty of Electrical Engineering, Laboratory of Physics, SI-1000 Ljubljana, Slovenia;
| | - Alenka Nemec Svete
- University of Ljubljana, Veterinary Faculty, Small Animal Clinic, SI-1000 Ljubljana, Slovenia; (A.N.S.); (V.E.)
| | - Vladimira Erjavec
- University of Ljubljana, Veterinary Faculty, Small Animal Clinic, SI-1000 Ljubljana, Slovenia; (A.N.S.); (V.E.)
| | - Veronika Kralj-Iglič
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia; (B.K.); (M.A.); (A.R.); (M.B.)
| |
Collapse
|
5
|
Goodrum R, Li H. Lysis of Extracellular Vesicles and Multiplexed Protein Detection via a Reverse Phase Immunoassay Using a Gold-Nanoparticle-Embedded Membrane Platform. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22177-22189. [PMID: 39388120 DOI: 10.1021/acs.langmuir.4c02696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-bound particles with molecular cargo reflective of their cell of origin. Analysis of disease-related EVs and associated cargo from biofluids is a promising tool for disease management. To facilitate the analysis of intravesicular molecules, EV lysis is needed. Moreover, highly sensitive and multiplexed detection methods are required to achieve early diagnostics. While cell lysis approaches have been well studied, the analysis of EV lysis methods and their effects on downstream molecular detection is lacking. In this work, we analyzed chemical, thermal, and mechanical EV lysis methods and determined their efficiency based on EV particle concentration and immunoassay activity. We, for the first time, discovered that vortex was an efficient EV lysis method and used it for detection of surface and intravesicular markers in a highly sensitive multiplexed reverse phase immunoassay on a gold-nanoparticle-embedded membrane. In phosphate-buffered saline, detection limits up to 3 orders of magnitude lower than enzyme-linked immunosorbent assay were achieved. In spiked human plasma, detection limits as low as 7.27 × 104 EVs/mL were achieved, making it suitable for early diagnostics. These results demonstrated an effective pipeline for lysing and molecular analysis of EVs from complex biofluids, paving the way for their broad applications in biomedicine.
Collapse
Affiliation(s)
- Rebecca Goodrum
- School of Engineering, University of Guelph, Guelph N1G2W1, Ontario, Canada
| | - Huiyan Li
- School of Engineering, University of Guelph, Guelph N1G2W1, Ontario, Canada
| |
Collapse
|
6
|
Torsello M, Animini M, Gualandi C, Perut F, Pollicino A, Boi C, Focarete ML. Nanostructured Affinity Membrane to Isolate Extracellular Vesicles from Body Fluids for Diagnostics and Regenerative Medicine. MEMBRANES 2024; 14:206. [PMID: 39452818 PMCID: PMC11509411 DOI: 10.3390/membranes14100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Electrospun regenerated cellulose (RC) nanofiber membranes were prepared starting from cellulose acetate (CA) with different degrees of substitution. The process was optimized to obtain continuous and uniformly sized CA fibers. After electrospinning, the CA membranes were heat-treated to increase their tensile strength before deacetylation to obtain regenerated cellulose (RC). Affinity membranes were obtained by functionalization, exploiting the hydroxyl groups on the cellulose backbone. 1,4-Butanediol-diglycidyl ether was used to introduce epoxy groups onto the membrane, which was further bioconjugated with the anti-CD63 antibody targeting the tetraspanin CD63 on the extracellular vesicle membrane surface. The highest ligand density was obtained with an anti-CD63 antibody concentration of 6.4 µg/mL when bioconjugation was performed in carbonate buffer. The resulting affinity membrane was tested for the adsorption of extracellular vesicles (EVs) from human platelet lysate, yielding a very promising binding capacity above 10 mg/mL and demonstrating the suitability of this approach.
Collapse
Affiliation(s)
- Monica Torsello
- Department of Chemistry “G. Ciamician” and INSTM (National Interuniversity Consortium of Materials Science and Technology) UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.T.); (M.A.); (C.G.); (M.L.F.)
| | - Margherita Animini
- Department of Chemistry “G. Ciamician” and INSTM (National Interuniversity Consortium of Materials Science and Technology) UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.T.); (M.A.); (C.G.); (M.L.F.)
| | - Chiara Gualandi
- Department of Chemistry “G. Ciamician” and INSTM (National Interuniversity Consortium of Materials Science and Technology) UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.T.); (M.A.); (C.G.); (M.L.F.)
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology (CIRI-MAM), University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Francesca Perut
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Antonino Pollicino
- Department of Civil Engineering and Architecture, University of Catania, V.le A.Doria 6, 95125 Catania, Italy;
| | - Cristiana Boi
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
- Interdepartmental Center for Industrial Research on Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy
| | - Maria Letizia Focarete
- Department of Chemistry “G. Ciamician” and INSTM (National Interuniversity Consortium of Materials Science and Technology) UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.T.); (M.A.); (C.G.); (M.L.F.)
- Interdepartmental Center for Industrial Research on Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy
| |
Collapse
|
7
|
Küçük BN, Yilmaz EG, Aslan Y, Erdem Ö, Inci F. Shedding Light on Cellular Secrets: A Review of Advanced Optical Biosensing Techniques for Detecting Extracellular Vesicles with a Special Focus on Cancer Diagnosis. ACS APPLIED BIO MATERIALS 2024; 7:5841-5860. [PMID: 39175406 PMCID: PMC11409220 DOI: 10.1021/acsabm.4c00782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
In the relentless pursuit of innovative diagnostic tools for cancer, this review illuminates the cutting-edge realm of extracellular vesicles (EVs) and their biomolecular cargo detection through advanced optical biosensing techniques with a primary emphasis on their significance in cancer diagnosis. From the sophisticated domain of nanomaterials to the precision of surface plasmon resonance, we herein examine the diverse universe of optical biosensors, emphasizing their specified applications in cancer diagnosis. Exploring and understanding the details of EVs, we present innovative applications of enhancing and blending signals, going beyond the limits to sharpen our ability to sense and distinguish with greater sensitivity and specificity. Our special focus on cancer diagnosis underscores the transformative potential of optical biosensors in early detection and personalized medicine. This review aims to help guide researchers, clinicians, and enthusiasts into the captivating domain where light meets cellular secrets, creating innovative opportunities in cancer diagnostics.
Collapse
Affiliation(s)
- Beyza Nur Küçük
- UNAM─National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Eylul Gulsen Yilmaz
- UNAM─National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Yusuf Aslan
- UNAM─National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Özgecan Erdem
- UNAM─National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Fatih Inci
- UNAM─National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
8
|
Kim SY, Lee S, Park JT, Lee SJ, Kim HS. Postmortem-Derived Exosomal MicroRNA 486-5p as Potential Biomarkers for Ischemic Heart Disease Diagnosis. Int J Mol Sci 2024; 25:9619. [PMID: 39273565 PMCID: PMC11395318 DOI: 10.3390/ijms25179619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Exosomes are nanovesicles 30-150 nm in diameter released extracellularly. Those isolated from human body fluids reflect the characteristics of their cells or tissues of origin. Exosomes carry extensive biological information from their parent cells and have significant potential as biomarkers for disease diagnosis and prognosis. However, there are limited studies utilizing exosomes in postmortem diagnostics. In this study, we extended our initial research which identified the presence and established detection methodologies for exosomes in postmortem fluids. We analyzed exosomal miRNA extracted from plasma and pericardial fluid samples of a control group (n = 13) and subjects with acute myocardial infarction (AMI; n = 24). We employed next-generation sequencing (NGS) to investigate whether this miRNA could serve as biomarkers for coronary atherosclerosis leading to acute myocardial infarction. Our analysis revealed 29 miRNAs that were differentially expressed in the AMI group compared to the control group. Among these, five miRNAs exhibited more than a twofold increase in expression across all samples from the AMI group. Specifically, miR-486-5p levels were significantly elevated in patients with high-grade (type VI or above) atherosclerotic plaques, as per the American Heart Association criteria, highlighting its potential as a predictive biomarker for coronary atherosclerosis progression. Our results indicate that postmortem-derived exosomal microRNAs can serve as potential biomarkers for various human diseases, including cardiovascular disorders. This finding has profound implications for forensic diagnostics, a field critically lacking diagnostic markers.
Collapse
Affiliation(s)
- So-Yeon Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; (S.-Y.K.); (J.-T.P.)
| | - Sookyoung Lee
- Department of Forensic Medicine, National Forensic Service, 10, Ipchun-ro, Wonju-si 61469, Republic of Korea;
| | - Jong-Tae Park
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; (S.-Y.K.); (J.-T.P.)
| | - Su-Jin Lee
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; (S.-Y.K.); (J.-T.P.)
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; (S.-Y.K.); (J.-T.P.)
| |
Collapse
|
9
|
Calado MRC, Lage TC, André DAM, Calaza C, Marques C, Herrero C, Piteira J, Montelius L, Petrovykh DY, Diéguez L, Ainla A. Nanofluidic resistive pulse sensing for characterization of extracellular vesicles. LAB ON A CHIP 2024; 24:4028-4038. [PMID: 39051540 DOI: 10.1039/d4lc00364k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
This paper describes the development, design and characterization of a resistive pulse sensing (RPS) system for the analysis of size distributions of extracellular vesicles (EVs). The system is based on microfluidic chips fabricated using soft-lithography and operated in pressure-driven mode. This fabrication approach provided reproducible pore dimensions and the best performing chip design enabled, without calibration, sizing of both 252 nm and 460 nm test particles within 8% of theoretically calculated values, based on the size specifications provided by suppliers. The number concentration measurement had higher variations and without calibration provided estimates within an order of magnitude, for sample concentrations across 4 orders of magnitude. The RPS chips could also measure successfully EVs and other biological nanoparticles in purified samples from cell culture media and human serum. A compact, fast and inexpensive RPS system based on this design could be an attractive alternative to current gold-standard techniques for routine characterization of EV samples.
Collapse
Affiliation(s)
| | - Teresa C Lage
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal.
| | - Daniel A M André
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal.
| | - Carlos Calaza
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal.
| | - Carlos Marques
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal.
| | - Carolina Herrero
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Nasasbiotech, S.L., A Coruña, Spain
| | - João Piteira
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal.
| | - Lars Montelius
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal.
| | | | - Lorena Diéguez
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal.
| | - Alar Ainla
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal.
| |
Collapse
|
10
|
Yang Y, Chen H, Li Y, Liang J, Huang F, Wang L, Miao H, Nanda HS, Wu J, Peng X, Zhou Y. Hydrogel Loaded with Extracellular Vesicles: An Emerging Strategy for Wound Healing. Pharmaceuticals (Basel) 2024; 17:923. [PMID: 39065772 PMCID: PMC11280375 DOI: 10.3390/ph17070923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
An increasing number of novel biomaterials have been applied in wound healing therapy. Creating beneficial environments and containing various bioactive molecules, hydrogel- and extracellular vesicle (EV)-based therapies have respectively emerged as effective approaches for wound healing. Moreover, the synergistic combination of these two components demonstrates more favorable outcomes in both chronic and acute wound healing. This review provides a comprehensive discussion and summary of the combined application of EVs and hydrogels to address the intricate scenario of wounds. The wound healing process and related biological mechanisms are outlined in the first section. Subsequently, the utilization of EV-loaded hydrogels during the wound healing process is evaluated and discussed. The moist environment created by hydrogels is conducive to wound tissue regeneration. Additionally, the continuous and controlled release of EVs from various origins could be achieved by hydrogel encapsulation. Finally, recent in vitro and in vivo studies reported on hydrogel dressings loaded with EVs are summarized and challenges and opportunities for the future clinical application of this therapeutic approach are outlined.
Collapse
Affiliation(s)
- Yucan Yang
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Huizhi Chen
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Yunjie Li
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Junting Liang
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Feng Huang
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Liyan Wang
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Huilai Miao
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
| | - Himansu Sekhar Nanda
- Biomaterials and Biomanufacturing Laboratory, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482005, Madhya Pradesh, India;
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China;
| | - Xinsheng Peng
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Yubin Zhou
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
11
|
Badhwar A, Hirschberg Y, Valle‐Tamayo N, Iulita MF, Udeh‐Momoh CT, Matton A, Tarawneh RM, Rissman RA, Ledreux A, Winston CN, Haqqani AS. Assessment of brain-derived extracellular vesicle enrichment for blood biomarker analysis in age-related neurodegenerative diseases: An international overview. Alzheimers Dement 2024; 20:4411-4422. [PMID: 38864416 PMCID: PMC11247682 DOI: 10.1002/alz.13823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 06/13/2024]
Abstract
INTRODUCTION Brain-derived extracellular vesicles (BEVs) in blood allows for minimally-invasive investigations of central nervous system (CNS) -specific markers of age-related neurodegenerative diseases (NDDs). Polymer-based EV- and immunoprecipitation (IP)-based BEV-enrichment protocols from blood have gained popularity. We systematically investigated protocol consistency across studies, and determined CNS-specificity of proteins associated with these protocols. METHODS NDD articles investigating BEVs in blood using polymer-based and/or IP-based BEV enrichment protocols were systematically identified, and protocols compared. Proteins used for BEV-enrichment and/or post-enrichment were assessed for CNS- and brain-cell-type-specificity, extracellular domains (ECD+), and presence in EV-databases. RESULTS A total of 82.1% of studies used polymer-based (ExoQuick) EV-enrichment, and 92.3% used L1CAM for IP-based BEV-enrichment. Centrifugation times differed across studies. A total of 26.8% of 82 proteins systematically identified were CNS-specific: 50% ECD+, 77.3% were listed in EV-databases. CONCLUSIONS We identified protocol steps requiring standardization, and recommend additional CNS-specific proteins that can be used for BEV-enrichment or as BEV-biomarkers. HIGHLIGHTS Across NDDs, we identified protocols commonly used for EV/BEV enrichment from blood. We identified protocol steps showing variability that require harmonization. We assessed CNS-specificity of proteins used for BEV-enrichment or found in BEV cargo. CNS-specific EV proteins with ECD+ or without were identified. We recommend evaluation of blood-BEV enrichment using these additional ECD+ proteins.
Collapse
Affiliation(s)
- AmanPreet Badhwar
- Département de pharmacologie et physiologieInstitut de Génie BiomédicalFaculté de Médecine, Université de MontréalMontréalQuebecCanada
- Multiomics Investigation of Neurodegenerative Diseases (MIND) lab, Centre de recherche de l'Institut Universitaire de GériatrieMontréalQuebecCanada
| | - Yael Hirschberg
- Centre for ProteomicsUniversity of AntwerpAntwerpBelgium
- Health Unit, Flemish Institute for Technological Research (VITO)MolBelgium
| | - Natalia Valle‐Tamayo
- Sant Pau Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant PauCalle San QuintíBarcelonaSpain
| | - M. Florencia Iulita
- Sant Pau Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant PauCalle San QuintíBarcelonaSpain
| | - Chinedu T. Udeh‐Momoh
- Ageing Epidemiology research unit, School of Public Health, Imperial College LondonLondonUK
- Division of Clinical GeriatricsDepartment of NeurobiologyCare Sciences and Society, Center for Alzheimer Research, Karolinska InstitutetSolnaSweden
- Global Brain Health InstituteUniversity of San Francisco Joan and Sanford I. Weill Neurosciences buildingSan FranciscoCaliforniaUSA
- Imarisha Centre for Brain Health and AgingBrain and Mind InstituteAga Khan UniversityNairobiKenya
| | - Anna Matton
- Ageing Epidemiology research unit, School of Public Health, Imperial College LondonLondonUK
- Division of Clinical GeriatricsDepartment of NeurobiologyCare Sciences and Society, Center for Alzheimer Research, Karolinska InstitutetSolnaSweden
- Division of NeurogeriatricsDepartment of Neurobiology, Care Sciences and SocietyCenter for Alzheimer Research, Karolinska Institutet, SolnaNobels vägSweden
| | - Rawan M. Tarawneh
- Department of NeurologyCenter for Memory and AgingUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Robert A. Rissman
- VA San Diego Healthcare SystemSan DiegoCaliforniaUSA
- Department of Physiology and NeuroscienceAlzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Aurélie Ledreux
- Department of NeurosurgerySchool of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Charisse N. Winston
- Department of Physiology and NeuroscienceAlzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | | | | |
Collapse
|
12
|
Rahmatinejad F, Kharat Z, Jalili H, Renani MK, Mobasheri H. Comparison of morphology, protein concentration, and size distribution of bone marrow and Wharton's jelly-derived mesenchymal stem cells exosomes isolated by ultracentrifugation and polymer-based precipitation techniques. Tissue Cell 2024; 88:102427. [PMID: 38833940 DOI: 10.1016/j.tice.2024.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/26/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Exosomes which are tiny extracellular vesicles (30-150 nm), transport vital proteins and gene materials such as miRNA, mRNA, or DNA, whose role in cell communication and epithelia regulation is critical. Many techniques have been developed as a result of studying exosomes' biochemical and physicochemical properties, although there is still no standard method to isolate exosomes simply with high yield. Commercial kits have gained popularity for exosome extraction despite concerns about their effectiveness in scientific research. On the other hand, ultracentrifugation remains the gold standard isolation method. This study compares these two common exosome isolation methods to determine their impact on the quality and quantity of exosomes isolated from bone marrow (BM) and Wharton's jelly (WJ)-derived mesenchymal stem cells. Isolated exosomes from the two sources of the cell's conditioned medium by two methods (polymer kit and ultracentrifuge) were characterized using western blotting, scanning electron microscopy (SEM), dynamic light scattering (DLS), and the Bradford assay. Western blot analysis confirmed separation efficiency based on CD81 and CD63 markers, with the absence of calnexin serving as a negative control. The Morphology of exosomes studied by SEM image analysis revealed a similar round shape appearance and their sizes (30-150 nm) were the same in both isolation techniques. The DLS analysis of the sample results was consistent with the SEM ones, showing a similar size range and very low disparity. The exosome protein content concentration analysis revealed that exosomes isolated by the polymer-based kits contained higher protein concentration density and purity (p <0.001). In general, though the protein yield was higher when the polymer-based kits were used, there were no significant differences in morphology, or size between WJ-derived and BM-derived exosomes, regardless of the isolation method employed.
Collapse
Affiliation(s)
- Fatemeh Rahmatinejad
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Zahra Kharat
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Hasan Jalili
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
| | | | - Hamid Mobasheri
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
13
|
Garcia LFC, Wowk PF, Albrecht L. Unraveling the Impact of Extracellular Vesicle-Depleted Serum on Endothelial Cell Characteristics over Time. Int J Mol Sci 2024; 25:4761. [PMID: 38731980 PMCID: PMC11084606 DOI: 10.3390/ijms25094761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024] Open
Abstract
Extracellular vesicles (EVs) are produced by all kinds of cells, including endothelial cells. It has been observed that EVs present in fetal bovine serum (FBS), broadly used in cell culture, can be a confounding factor and lead to misinterpretation of results. To investigate this phenomenon, human brain microvascular endothelial cells (HBMECs) were cultured for 2 or 24 h in the presence of EV-depleted FBS (EVdS). Cell death, gene and protein expression, and the presence of EVs isolated from these cells were evaluated. The uptake of EVs, intercellular adhesion molecule 1 (ICAM-1) expression, and monocyte adhesion to endothelial cells exposed to EVs were also evaluated. Our results revealed higher apoptosis rates in cells cultured with EVdS for 2 and 24 h. There was an increase in interleukin 8 (IL8) expression after 2 h and a decrease in interleukin 6 (IL6) and IL8 expression after 24 h of culture. Among the proteins identified in EVs isolated from cells cultured for 2 h (EV2h), several were related to ribosomes and carbon metabolism. EVs from cells cultured for 24 h (EV24h) presented a protein profile associated with cell adhesion and platelet activation. Additionally, HBMECs exhibited increased uptake of EV2h. Treatment of endothelial cells with EV2h resulted in greater ICAM-1 expression and greater adherence to monocytes than did treatment with EV24h. According to our data, HBMEC cultivated with EVdS produce EVs with different physical characteristics and protein levels that vary over time.
Collapse
Affiliation(s)
| | - Pryscilla Fanini Wowk
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, PR, Brazil;
| | - Letusa Albrecht
- Laboratório de Pesquisa em Apicomplexa, ICC-Fiocruz-PR, Curitiba 81350-010, PR, Brazil;
| |
Collapse
|
14
|
Vychytilova-Faltejskova P, Vilmanova S, Pifkova L, Catela Ivković T, Mᶏdrzyk M, Jugas R, Machackova T, Kotoucek J, Sachlova M, Bohovicova L, Stanek T, Halamkova J, Kiss I, Slaby O. Optimized procedure for high-throughput transcriptome profiling of small extracellular vesicles isolated from low volume serum samples. Clin Chem Lab Med 2024; 62:157-167. [PMID: 37505924 DOI: 10.1515/cclm-2023-0610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
OBJECTIVES Small extracellular vesicles (EVs) contain various signaling molecules, thus playing a crucial role in cell-to-cell communication and emerging as a promising source of biomarkers. However, the lack of standardized procedures impedes their translation to clinical practice. Thus, we compared different approaches for high-throughput analysis of small EVs transcriptome. METHODS Small EVs were isolated from 150 μL of serum. Quality and quantity were assessed by dynamic light scattering, transmission electron microscopy, and Western blot. Comparison of RNA extraction efficiency was performed, and expression of selected genes was analyzed by RT-qPCR. Whole transcriptome analysis was done using microarrays. RESULTS Obtained data confirmed the suitability of size exclusion chromatography for isolation of small EVs. Analyses of gene expression showed the best results in case of samples isolated by Monarch Total RNA Miniprep Kit. Totally, 7,182 transcripts were identified to be deregulated between colorectal cancer patients and healthy controls. The majority of them were non-coding RNAs with more than 70 % being lncRNAs, while protein-coding genes represented the second most common gene biotype. CONCLUSIONS We have optimized the protocol for isolation of small EVs and their RNA from low volume of sera and confirmed the suitability of Clariom D Pico Assays for transcriptome profiling.
Collapse
Affiliation(s)
| | - Sara Vilmanova
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lucie Pifkova
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tina Catela Ivković
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Marie Mᶏdrzyk
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Robin Jugas
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tana Machackova
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Kotoucek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Milana Sachlova
- Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lucia Bohovicova
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Brno, Czech Republic
| | - Teodor Stanek
- Department of Surgical Oncology, Masaryk Memorial Cancer Institute, Faculty of Medicine, Brno, Czech Republic
| | - Jana Halamkova
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Brno, Czech Republic
| | - Igor Kiss
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Brno, Czech Republic
| | - Ondrej Slaby
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
15
|
Veliz L, Cooper TT, Grenier-Pleau I, Abraham SA, Gomes J, Pasternak SH, Dauber B, Postovit LM, Lajoie GA, Lagugné-Labarthet F. Tandem SERS and MS/MS Profiling of Plasma Extracellular Vesicles for Early Ovarian Cancer Biomarker Discovery. ACS Sens 2024; 9:272-282. [PMID: 38214491 DOI: 10.1021/acssensors.3c01908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Extracellular vesicles (EVs) are vectors of biomolecular cargo that play essential roles in intercellular communication across a range of cells. Protein, lipid, and nucleic acid cargo harbored within EVs may serve as biomarkers at all stages of disease; however, the choice of methodology may challenge the specificity and reproducibility of discovery. To address these challenges, the integration of rigorous EV purification methods, cutting-edge spectroscopic technologies, and data analysis are critical to uncover diagnostic signatures of disease. Herein, we demonstrate an EV isolation and analysis pipeline using surface-enhanced Raman spectroscopy (SERS) and mass spectrometry (MS) techniques on plasma samples obtained from umbilical cord blood, healthy donor (HD) plasma, and plasma from women with early stage high-grade serous carcinoma (HGSC). Plasma EVs were purified by size exclusion chromatography and analyzed by surface-enhanced Raman spectroscopy (SERS), mass spectrometry (MS), and atomic force microscopy. After determining the fraction of highest EV purity, SERS and MS were used to characterize EVs from HDs, pooled donors with noncancerous gynecological ailments (n = 6), and donors with early stage [FIGO (I/II)] with HGSC. SERS spectra were subjected to different machine learning algorithms such as PCA, logistic regression, support vector machine, naïve Bayes, random forest, neural network, and k nearest neighbors to differentiate healthy, benign, and HGSC EVs. Collectively, we demonstrate a reproducible workflow with the potential to serve as a diagnostic platform for HGSC.
Collapse
Affiliation(s)
- Lorena Veliz
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Tyler T Cooper
- Department of Biomedical and Molecular Sciences, Queen's University, 99 University Avenue, Kingston, Ontario K7L 3N6, Canada
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Isabelle Grenier-Pleau
- Department of Biomedical and Molecular Sciences, Queen's University, 99 University Avenue, Kingston, Ontario K7L 3N6, Canada
| | - Sheela A Abraham
- Department of Biomedical and Molecular Sciences, Queen's University, 99 University Avenue, Kingston, Ontario K7L 3N6, Canada
| | - Janice Gomes
- Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K5, Canada
| | - Stephen H Pasternak
- Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K5, Canada
| | - Bianca Dauber
- Department of Biomedical and Molecular Sciences, Queen's University, 99 University Avenue, Kingston, Ontario K7L 3N6, Canada
| | - Lynne M Postovit
- Department of Biomedical and Molecular Sciences, Queen's University, 99 University Avenue, Kingston, Ontario K7L 3N6, Canada
| | - Gilles A Lajoie
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - François Lagugné-Labarthet
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| |
Collapse
|
16
|
Guo ZY, Tang Y, Cheng YC. Exosomes as Targeted Delivery Drug System: Advances in Exosome Loading, Surface Functionalization and Potential for Clinical Application. Curr Drug Deliv 2024; 21:473-487. [PMID: 35702803 DOI: 10.2174/1567201819666220613150814] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/22/2022]
Abstract
Exosomes are subtypes of vesicles secreted by almost all cells and can play an important role in intercellular communication. They contain various proteins, lipids, nucleic acids and other natural substances from their metrocytes. Exosomes are expected to be a new generation of drug delivery systems due to their low immunogenicity, high potential to transfer bioactive substances and biocompatibility. However, exosomes themselves are not highly targeted, it is necessary to develop new surface modification techniques and targeted drug delivery strategies, which are the focus of drug delivery research. In this review, we introduced the biogenesis of exosomes and their role in intercellular communication. We listed various advanced exosome drug-loading techniques. Emphatically, we summarized different exosome surface modification techniques and targeted drug delivery strategies. In addition, we discussed the application of exosomes in vaccines and briefly introduced milk exosomes. Finally, we clarified the clinical application prospects and shortcomings of exosomes.
Collapse
Affiliation(s)
- Zun Y Guo
- Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing 211198, P.R. China
| | - Yue Tang
- Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing 211198, P.R. China
| | - Yi C Cheng
- Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing 211198, P.R. China
| |
Collapse
|
17
|
Yates D, Di Maggio LS, Rosa BA, Sprung RW, Erdmann-Gilmore P, Townsend RR, Budge PJ, Kamgno J, Mitreva M, Weil GJ, Fischer PU. Identification of biomarker candidates for filarial parasite infections by analysis of extracellular vesicles. FRONTIERS IN PARASITOLOGY 2023; 2:1281092. [PMID: 39816829 PMCID: PMC11732158 DOI: 10.3389/fpara.2023.1281092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/09/2023] [Indexed: 01/18/2025]
Abstract
Background Improved diagnostic tools are needed for detecting active filarial infections in humans. Tests are available that detect adult W. bancrofti circulating filarial antigen, but there are no sensitive and specific biomarker tests for brugian filariasis or loiasis. Here we explored whether extracellular vesicles released by filarial parasites contain diagnostic biomarker candidates. Methods Vesicles were isolated using VN96-affinity purification from supernatants of short-term in vitro cultured B. malayi microfilariae (Mf) and analyzed by mass spectrometry (Bruker timsTOF). Parasite-specific proteins were identified by bioinformatic analysis and a protein was called present if supported by ≥ 2 spectra. After validation with cultures parasites, this approach was then used to analyze vesicles isolated from plasma of animals infected with B. malayi and from humans with heavy Loa loa infections. Results Vesicles from Mf cultures contained more than 300 B. malayi proteins with high consistency across biological replicates. These included the known Mf excretory antigen BmR1 (AF225296). Over 150 B. malayi proteins were detected in vesicles isolated from plasma samples from two infected animals. Vesicles isolated from plasma from 10 persons with high L. loa Mf densities contained consistently 21 proteins, 9 of them were supported by at least 5 unique peptides and 7 with spectral counts above 10. The protein EN70_10600 (an orthologue of the B. malayi antigen BmR1, GenBank AF225296) was detected in all 10 samples with a total count of 91 spectra and a paralogue (EN70_10598) was detected in 6 samples with a total of 44 spectra. Discussion Extracellular vesicles released by filarial parasites in vitro and in vivo contain parasite proteins which can be reliably detected by mass spectrometry. This research provides the foundation to develop antigen detection assays to improve diagnosis of active filarial infections in humans.
Collapse
Affiliation(s)
- Devyn Yates
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Lucia S. Di Maggio
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Bruce A. Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Robert W. Sprung
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Petra Erdmann-Gilmore
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - R. Reid Townsend
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Philip J. Budge
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Joseph Kamgno
- Centre for Research on Filariasis and other Tropical Diseases, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, Department of Public Health, University of Yaoundé I, Yaoundé, Cameroon
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, United States
| | - Gary J. Weil
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Peter U. Fischer
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
18
|
Badhwar A, Hirschberg Y, Tamayo NV, Iulita MF, Udeh-Momoh CT, Matton A, Tarawneh RM, Rissman RA, Ledreux A, Winston CN, Haqqani AS. Assessment of brain-derived extracellular vesicle enrichment for blood biomarker analysis in age-related neurodegenerative diseases: An international overview. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560210. [PMID: 37873207 PMCID: PMC10592861 DOI: 10.1101/2023.10.02.560210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Brain-derived extracellular vesicles (BEVs) in blood allows for minimally- invasive investigations of CNS-specific markers of age-related neurodegenerative diseases (NDDs). Polymer-based EV- and immunoprecipitation (IP)-based BEV-enrichment protocols from blood have gained popularity. We systematically investigated protocol consistency across studies, and determined CNS-specificity of proteins associated with these protocols. METHODS NDD articles investigating BEVs in blood using polymer-based and/or IP-based BEV enrichment protocols were systematically identified, and protocols compared. Proteins used for BEV-enrichment and/or post-enrichment were assessed for CNS- and brain-cell-type- specificity; extracellular domains (ECD+); and presence in EV-databases. RESULTS 82.1% of studies used polymer-based (ExoQuick) EV-enrichment, and 92.3% used L1CAM for IP-based BEV-enrichment. Centrifugation times differed across studies. 26.8% of 82 proteins systematically identified were CNS-specific: 50% ECD+, 77.3% were listed in EV- databases. DISCUSSION We identified protocol steps requiring standardization, and recommend additional CNS-specific proteins that can be used for BEV-enrichment or as BEV-biomarkers.
Collapse
|
19
|
Liu C, Chen X, Liu Y, Sun L, Yu Z, Ren Y, Zeng C, Li Y. Engineering Extracellular Matrix-Bound Nanovesicles Secreted by Three-Dimensional Human Mesenchymal Stem Cells. Adv Healthc Mater 2023; 12:e2301112. [PMID: 37225144 PMCID: PMC10723826 DOI: 10.1002/adhm.202301112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/19/2023] [Indexed: 05/26/2023]
Abstract
Extracellular matrix (ECM) in the human tissue contains vesicles, which are defined as matrix-bound nanovesicles (MBVs). MBVs serve as one of the functional components in ECM, recapitulating part of the regulatory roles and in vivo microenvironment. In this study, extracellular vesicles from culture supernatants (SuEVs) and MBVs are isolated from the conditioned medium or ECM, respectively, of 3D human mesenchymal stem cells. Nanoparticle tracking analysis shows that MBVs are smaller than SuEVs (100-150 nm). Transmission electron microscopy captures the typical cup shape morphology for both SuEVs and MBVs. Western blot reveals that MBVs have low detection of some SuEV markers such as syntenin-1. miRNA analysis of MBVs shows that 3D microenvironment enhances the expression of miRNAs such as miR-19a and miR-21. In vitro functional analysis shows that MBVs can facilitate human pluripotent stem cell-derived forebrain organoid recovery after starvation and promote high passage fibroblast proliferation. In macrophage polarization, 2D MBVs tend to suppress the pro-inflammatory cytokine IL-12β, while 3D MBVs tend to enhance the anti-inflammatory cytokine IL-10. This study has the significance in advancing the understanding of the bio-interface of nanovesicles with human tissue and the design of cell-free therapy for treating neurological disorders such as ischemic stroke.
Collapse
Affiliation(s)
- Chang Liu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University
| | - Yuan Liu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
- Department of Biomedical Sciences, College of Medicine, Florida State University
| | - Zhibin Yu
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University
| | - Yi Ren
- Department of Biomedical Sciences, College of Medicine, Florida State University
| | - Changchun Zeng
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
| |
Collapse
|
20
|
Sangha GS, Weber CM, Sapp RM, Setua S, Thangaraju K, Pettebone M, Rogers SC, Doctor A, Buehler PW, Clyne AM. Mechanical stimuli such as shear stress and piezo1 stimulation generate red blood cell extracellular vesicles. Front Physiol 2023; 14:1246910. [PMID: 37719461 PMCID: PMC10502313 DOI: 10.3389/fphys.2023.1246910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction: Generating physiologically relevant red blood cell extracellular vesicles (RBC-EVs) for mechanistic studies is challenging. Herein, we investigated how to generate and isolate high concentrations of RBC-EVs in vitro via shear stress and mechanosensitive piezo1 ion channel stimulation. Methods: RBC-EVs were generated by applying shear stress or the piezo1-agonist yoda1 to RBCs. We then investigated how piezo1 RBC-EV generation parameters (hematocrit, treatment time, treatment dose), isolation methods (membrane-based affinity, ultrafiltration, ultracentrifugation with and without size exclusion chromatography), and storage conditions impacted RBC-EV yield and purity. Lastly, we used pressure myography to determine how RBC-EVs isolated using different methods affected mouse carotid artery vasodilation. Results: Our results showed that treating RBCs at 6% hematocrit with 10 µM yoda1 for 30 min and isolating RBC-EVs via ultracentrifugation minimized hemolysis, maximized yield and purity, and produced the most consistent RBC-EV preparations. Co-isolated contaminants in impure samples, but not piezo1 RBC-EVs, induced mouse carotid artery vasodilation. Conclusion: This work shows that RBC-EVs can be generated through piezo1 stimulation and may be generated in vivo under physiologic flow conditions. Our studies further emphasize the importance of characterizing EV generation and isolation parameters before using EVs for mechanistic analysis since RBC-EV purity can impact functional outcomes.
Collapse
Affiliation(s)
- Gurneet S Sangha
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Callie M Weber
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Ryan M Sapp
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Saini Setua
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kiruphagaran Thangaraju
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Morgan Pettebone
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Stephen C Rogers
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Allan Doctor
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Paul W Buehler
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alisa M Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| |
Collapse
|
21
|
Das K, Paul S, Mukherjee T, Ghosh A, Sharma A, Shankar P, Gupta S, Keshava S, Parashar D. Beyond Macromolecules: Extracellular Vesicles as Regulators of Inflammatory Diseases. Cells 2023; 12:1963. [PMID: 37566042 PMCID: PMC10417494 DOI: 10.3390/cells12151963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Inflammation is the defense mechanism of the immune system against harmful stimuli such as pathogens, toxic compounds, damaged cells, radiation, etc., and is characterized by tissue redness, swelling, heat generation, pain, and loss of tissue functions. Inflammation is essential in the recruitment of immune cells at the site of infection, which not only aids in the elimination of the cause, but also initiates the healing process. However, prolonged inflammation often brings about several chronic inflammatory disorders; hence, a balance between the pro- and anti-inflammatory responses is essential in order to eliminate the cause while producing the least damage to the host. A growing body of evidence indicates that extracellular vesicles (EVs) play a major role in cell-cell communication via the transfer of bioactive molecules in the form of proteins, lipids, DNA, RNAs, miRNAs, etc., between the cells. The present review provides a brief classification of the EVs followed by a detailed description of how EVs contribute to the pathogenesis of various inflammation-associated diseases and their implications as a therapeutic measure. The latter part of the review also highlights how EVs act as a bridging entity in blood coagulation disorders and associated inflammation. The findings illustrated in the present review may open a new therapeutic window to target EV-associated inflammatory responses, thereby minimizing the negative outcomes.
Collapse
Affiliation(s)
- Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India; (S.P.); (A.G.)
| | - Tanmoy Mukherjee
- School of Medicine, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA;
| | - Arnab Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India; (S.P.); (A.G.)
| | - Anshul Sharma
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA;
| | - Prem Shankar
- Department of Neurobiology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA;
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, India;
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Deepak Parashar
- Department of Medicine, Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
22
|
Małys MS, Köller MC, Papp K, Aigner C, Dioso D, Mucher P, Schachner H, Bonelli M, Haslacher H, Rees AJ, Kain R. Small extracellular vesicles are released ex vivo from platelets into serum and from residual blood cells into stored plasma. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e88. [PMID: 38938276 PMCID: PMC11080719 DOI: 10.1002/jex2.88] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/29/2023] [Accepted: 04/18/2023] [Indexed: 06/29/2024]
Abstract
Small extracellular vesicles (sEV) purified from blood have great potential clinically as biomarkers for systemic disease; however interpretation is complicated by release of sEV ex vivo after blood taking. To quantify the problem and devise ways to minimise it, we characterised sEV in paired serum, plasma and platelet poor plasma (PPP) samples from healthy donors. Immunoblotting showed twofold greater abundance of CD9 in sEV fractions from fresh serum than from fresh plasma or PPP. MACSPlex confirmed this, and showed that proteins expressed on platelet sEV, either exclusively (CD41b, CD42a and CD62P) or more widely (HLA-ABC, CD24, CD29 and CD31) were also twofold more abundant; by contrast non-platelet proteins (including CD81) were no different. Storage of plasma (but not serum) increased abundance of platelet and selected leukocyte sEV proteins to at least that of serum, and this could be recapitulated by activating cells in fresh plasma by Ca2+, an effect abrogated in PPP. This suggests that a substantial proportion of sEV in serum and stored plasma were generated ex vivo, which is not the case for fresh plasma or PPP. Thus we provide strategies to minimise ex vivo sEV generation and criteria for identifying those that were present in vivo.
Collapse
Affiliation(s)
| | | | - Kristin Papp
- Department of PathologyMedical University ViennaViennaAustria
| | - Christof Aigner
- Department of PathologyMedical University ViennaViennaAustria
- Department of Medicine III, Division of Nephrology and DialysisMedical University ViennaViennaAustria
| | - Daffodil Dioso
- Department of Internal Medicine III, Division of RheumatologyMedical University of ViennaViennaAustria
| | - Patrick Mucher
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Helga Schachner
- Department of PathologyMedical University ViennaViennaAustria
| | - Michael Bonelli
- Department of Internal Medicine III, Division of RheumatologyMedical University of ViennaViennaAustria
| | - Helmuth Haslacher
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Andrew J. Rees
- Department of PathologyMedical University ViennaViennaAustria
| | - Renate Kain
- Department of PathologyMedical University ViennaViennaAustria
| |
Collapse
|
23
|
Wen J, Zhang Z, Feng G, Zhang Y, Li H, Lambert C, Mallouk N, Li G. Transmission electron microscopy assessment of a novel method for isolating pure exosomes from serum. Biotech Histochem 2023:1-5. [PMID: 37125533 DOI: 10.1080/10520295.2023.2202415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Serum exosomes frequently are used for liquid biopsy. Serum exosomes normally are isolated using ultracentrifugation; however, ultracentrifugation is time-consuming, labor intensive and requires a high-speed centrifuge. Many commercial kits use a precipitation-based method; however, this process can result in substantial contamination. We developed a new method to isolate pure serum exosomes. We isolated serum exosomes using precipitation, extracted them using acetone, then isolated them again by precipitation. We used transmission electron microscopy (TEM) to examine the morphology of serum exosomes. TEM indicated that our isolated exosomes were pure with typical morphology and with a size ranging from 40 to 150 nm. Flow cytometry revealed expression of exosome markers, CD63, CA81 and CD9. Our double precipitation method enables ready extraction of pure exosomes from serum. Our double precipitation method simplifies detection of serum exosomal biomarkers for diagnosis and prognosis of disease.
Collapse
Affiliation(s)
- Jin Wen
- Department of Urology, Peking Union Medical College Hospital, Beijing, China
| | - Zhijun Zhang
- Department of Urology, Peking Union Medical College Hospital, Beijing, China
| | - Gang Feng
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yang Zhang
- Guangzhou HopeTech Biological Technology Co, LTD, Guangzhou, China
| | - Hanzhong Li
- Department of Urology, Peking Union Medical College Hospital, Beijing, China
| | - Claude Lambert
- Laboratory of Flow Cytometry, Immunology Laboratory, North Hospital, CHU Saint-Etienne, Saint-Etienne, France
| | - Nora Mallouk
- Center of Electronic Microscopy, CMES, Faculty of Medicine, University Jean Monnet, Saint-Etienne, France
| | - Guorong Li
- Department of Urology, North Hospital, CHU Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
24
|
Jalaludin I, Lubman DM, Kim J. A guide to mass spectrometric analysis of extracellular vesicle proteins for biomarker discovery. MASS SPECTROMETRY REVIEWS 2023; 42:844-872. [PMID: 34747512 DOI: 10.1002/mas.21749] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Exosomes (small extracellular vesicles) in living organisms play an important role in processes such as cell proliferation or intercellular communication. Recently, exosomes have been extensively investigated for biomarker discoveries for various diseases. An important aspect of exosome analysis involves the development of enrichment methods that have been introduced for successful isolation of exosomes. These methods include ultracentrifugation, size exclusion chromatography, polyethylene glycol-based precipitation, immunoaffinity-based enrichment, ultrafiltration, and asymmetric flow field-flow fractionation among others. To confirm the presence of exosomes, various characterization methods have been utilized such as Western blot analysis, atomic force microscopy, electron microscopy, optical methods, zeta potential, visual inspection, and mass spectrometry. Recent advances in high-resolution separations, high-performance mass spectrometry and comprehensive proteome databases have all contributed to the successful analysis of exosomes from patient samples. Herein we review various exosome enrichment methods, characterization methods, and recent trends of exosome investigations using mass spectrometry-based approaches for biomarker discovery.
Collapse
Affiliation(s)
- Iqbal Jalaludin
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
25
|
A review on comparative studies addressing exosome isolation methods from body fluids. Anal Bioanal Chem 2023; 415:1239-1263. [PMID: 35838769 DOI: 10.1007/s00216-022-04174-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/17/2022] [Accepted: 06/10/2022] [Indexed: 12/11/2022]
Abstract
Exosomes emerged as valuable sources of disease biomarkers and new therapeutic tools. However, extracellular vesicles isolation with exosome-like characteristics from certain biofluids is still challenging which can limit their potential use in clinical settings. While ultracentrifugation-based procedures are the gold standard for exosome isolation from cell cultures, no unique and standardized method for exosome isolation from distinct body fluids exists. The complexity, specific composition, and physical properties of each biofluid constitute a technical barrier to obtain reproducible and pure exosome preparations, demanding a detailed characterization of both exosome isolation and characterization methods. Moreover, some isolation procedures can affect downstream proteomic or RNA profiling analysis. This review compiles and discussed a set of comparative studies addressing distinct exosome isolation methods from human biofluids, including cerebrospinal fluid, plasma, serum, saliva, and urine, also focusing on body fluid specific challenges, physical properties, and other potential variation sources. This summarized information will facilitate the choice of exosome isolation methods, based on the type of biological samples available, and hopefully encourage the use of exosomes in translational and clinical research.
Collapse
|
26
|
De Sousa KP, Rossi I, Abdullahi M, Ramirez MI, Stratton D, Inal JM. Isolation and characterization of extracellular vesicles and future directions in diagnosis and therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1835. [PMID: 35898167 PMCID: PMC10078256 DOI: 10.1002/wnan.1835] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 01/31/2023]
Abstract
Extracellular vesicles (EVs) are a unique and heterogeneous class of lipid bilayer nanoparticles secreted by most cells. EVs are regarded as important mediators of intercellular communication in both prokaryotic and eukaryotic cells due to their ability to transfer proteins, lipids and nucleic acids to recipient cells. In addition to their physiological role, EVs are recognized as modulators in pathological processes such as cancer, infectious diseases, and neurodegenerative disorders, providing new potential targets for diagnosis and therapeutic intervention. For a complete understanding of EVs as a universal cellular biological system and its translational applications, optimal techniques for their isolation and characterization are required. Here, we review recent progress in those techniques, from isolation methods to characterization techniques. With interest in therapeutic applications of EVs growing, we address fundamental points of EV-related cell biology, such as cellular uptake mechanisms and their biodistribution in tissues as well as challenges to their application as drug carriers or biomarkers for less invasive diagnosis or as immunogens. This article is categorized under: Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Karina P. De Sousa
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
| | - Izadora Rossi
- School of Human SciencesLondon Metropolitan UniversityLondonUK
- Federal University of ParanáCuritibaBrazil
| | | | - Marcel Ivan Ramirez
- Federal University of ParanáCuritibaBrazil
- Carlos Chagas Institute (ICC)CuritibaBrazil
| | - Dan Stratton
- Open UniversityThe School of Life, Health and Chemical SciencesMilton KeynesUK
| | - Jameel Malhador Inal
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
- School of Human SciencesLondon Metropolitan UniversityLondonUK
| |
Collapse
|
27
|
Williams S, Jalal AR, Lewis MP, Davies OG. A survey to evaluate parameters governing the selection and application of extracellular vesicle isolation methods. J Tissue Eng 2023; 14:20417314231155114. [PMID: 36911574 PMCID: PMC9996742 DOI: 10.1177/20417314231155114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/19/2023] [Indexed: 03/11/2023] Open
Abstract
Extracellular vesicles (EVs) continue to gain interest across the scientific community for diagnostic and therapeutic applications. As EV applications diversify, it is essential that researchers are aware of challenges, in particular the compatibility of EV isolation methods with downstream applications and their clinical translation. We report outcomes of the first cross-comparison study looking to determine parameters (EV source, starting volume, operator experience, application and implementation parameters such as cost and scalability) governing the selection of popular EV isolation methods across disciplines. Our findings highlighted an increased clinical focus, with 36% of respondents applying EVs in therapeutics and diagnostics. Data indicated preferential selection of ultracentrifugation for therapeutic applications, precipitation reagents in clinical settings and size exclusion chromatography for diagnostic applications utilising biofluids. Method selection was influenced by operator experience, with increased method diversity when EV research was not the respondents primary focus. Application and implementation criteria were indicated to be major influencers in method selection, with UC and SEC chosen for their abilities to process large and small volumes, respectively. Overall, we identified parameters influencing method selection across the breadth of EV science, providing a valuable overview of practical considerations for the effective translation of research outcomes.
Collapse
Affiliation(s)
- Soraya Williams
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Aveen R Jalal
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Mark P Lewis
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Owen G Davies
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
28
|
Williams S, Fernandez-Rhodes M, Law A, Peacock B, Lewis MP, Davies OG. Comparison of extracellular vesicle isolation processes for therapeutic applications. J Tissue Eng 2023; 14:20417314231174609. [PMID: 37251735 PMCID: PMC10214056 DOI: 10.1177/20417314231174609] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/23/2023] [Indexed: 05/31/2023] Open
Abstract
While extracellular vesicles (EVs) continue to gain interest for therapeutic applications, their clinical translation is limited by a lack of optimal isolation methods. We sought to determine how universally applied isolation methods impact EV purity and yield. EVs were isolated by ultracentrifugation (UC), polyethylene glycol precipitation, Total Exosome Isolation Reagent, an aqueous two-phase system with and without repeat washes or size exclusion chromatography (SEC). EV-like particles could be detected for all isolation methods but varied in their purity and relative expression of surface markers (Alix, Annexin A2, CD9, CD63 and CD81). Assessments of sample purity were dependent on the specificity of characterisation method applied, with total particle counts and particle to protein (PtP) ratios often not aligning with quantitative measures of tetraspanin surface markers obtained using high-resolution nano-flow cytometry. While SEC resulted in the isolation of fewer particles with a relatively low PtP ratio (1.12 × 107 ± 1.43 × 106 vs highest recorded; ATPS/R 2.01 × 108 ± 1.15 × 109, p ⩽ 0.05), EVs isolated using this method displayed a comparatively high level of tetraspanin positivity (e.g. ExoELISA CD63⁺ particles; 1.36 × 1011 ± 1.18 × 1010 vs ATPS/R 2.58 × 1010 ± 1.92 × 109, p ⩽ 0.001). Results originating from an accompanying survey designed to evaluate pragmatic considerations surrounding method implementation (e.g. scalability and cost) identified that SEC and UC were favoured for overall efficiency. However, reservations were highlighted in the scalability of these methods, which could potentially hinder downstream therapeutic applications. In conclusion, variations in sample purity and yield were evident between isolation methods, while standard non-specific assessments of sample purity did not align with advanced quantitative high-resolution analysis of EV surface markers. Reproducible and specific assessments of EV purity will be critical for informing therapeutic studies.
Collapse
Affiliation(s)
- Soraya Williams
- School of Sport, Exercise and Health
Sciences, Loughborough University, Loughborough, UK
| | - Maria Fernandez-Rhodes
- School of Sport, Exercise and Health
Sciences, Loughborough University, Loughborough, UK
| | - Alice Law
- NanoFCM Co., Ltd, Medicity, Nottingham,
UK
| | | | - Mark P. Lewis
- School of Sport, Exercise and Health
Sciences, Loughborough University, Loughborough, UK
| | - Owen G. Davies
- School of Sport, Exercise and Health
Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
29
|
Jafari A, Karimabadi K, Rahimi A, Rostaminasab G, Khazaei M, Rezakhani L, Ahmadi jouybari T. The Emerging Role of Exosomal miRNAs as Biomarkers for Early Cancer Detection: A Comprehensive Literature Review. Technol Cancer Res Treat 2023; 22:15330338231205999. [PMID: 37817634 PMCID: PMC10566290 DOI: 10.1177/15330338231205999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
A significant number of cancer-related deaths are recorded globally each year, despite attempts to cure this illness. Medical science is working to develop new medication therapies as well as to find ways to identify this illness as early as possible, even using noninvasive techniques. Early detection of cancer can greatly aid its treatment. Studies into cancer diagnosis and therapy have recently shifted their focus to exosome (EXO) biomarkers, which comprise numerous RNA and proteins. EXOs are minuscule goblet vesicles that have a width of 30 to 140 nm and are released by a variety of cells, including immune, stem, and tumor cells, as well as bodily fluids. According to a growing body of research, EXOs, and cancer appear to be related. EXOs from tumors play a role in the genetic information transfer between tumor and basal cells, which controls angiogenesis and fosters tumor development and spread. To identify malignant activities early on, microRNAs (miRNAs) from cancers can be extracted from circulatory system EXOs. Specific markers can be used to identify cancer-derived EXOs containing miRNAs, which may be more reliable and precise for early detection. Conventional solid biopsy has become increasingly limited as precision and personalized medicine has advanced, while liquid biopsy offers a viable platform for noninvasive diagnosis and prognosis. Therefore, the use of body fluids such as serum, plasma, urine, and salivary secretions can help find cancer biomarkers using technologies related to EXOs.
Collapse
Affiliation(s)
- Ali Jafari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyvan Karimabadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aso Rahimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Touraj Ahmadi jouybari
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
30
|
From protein biomarkers to proteomics in dementia with Lewy Bodies. Ageing Res Rev 2023; 83:101771. [PMID: 36328346 DOI: 10.1016/j.arr.2022.101771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/15/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Dementia with Lewy Bodies (DLB) is the second most common neurodegenerative dementia. Despite considerable research progress, there remain gaps in our understanding of the pathophysiology and there is no disease-modifying treatment. Proteomics is a powerful tool to elucidate complex biological pathways across heterogenous conditions. This review summarizes the widely used proteomic methods and presents evidence for protein dysregulation in the brain and peripheral tissues in DLB. Proteomics of post-mortem brain tissue shows that DLB shares common features with other dementias, such as synaptic dysfunction, but retains a unique protein signature. Promising diagnostic biomarkers are being identified in cerebrospinal fluid (CSF), blood, and peripheral tissues, such as serum Heart-type fatty acid binding protein. Research is needed to track these changes from the prodromal stage to established dementia, with standardized workflows to ensure replicability. Identifying novel protein targets in causative biological pathways could lead to the development of new targeted therapeutics or the stratification of participants for clinical trials.
Collapse
|
31
|
Otahal A, De Luna A, Mobasheri A, Nehrer S. Extracellular Vesicle Isolation and Characterization for Applications in Cartilage Tissue Engineering and Osteoarthritis Therapy. Methods Mol Biol 2023; 2598:123-140. [PMID: 36355289 DOI: 10.1007/978-1-0716-2839-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Extracellular vesicles (EVs) have the capacity for use in cartilage tissue engineering by stimulating tissue repair and microenvironmental reprogramming. This makes them ideal candidates for treating focal cartilage defects and cartilage degeneration in osteoarthritis (OA). Observational studies have reported beneficial biological effects of EVs, such as inhibition of inflammation, enhanced extracellular matrix deposition, and reduced cartilage degradation. Isolation of EVs derived from different source materials such as conditioned cell culture media or biofluids is essential to attribute observed biological effects to EVs as genuine effectors. This chapter presents a density- and a size-based method as well as a combination of both for isolation of EVs from conditioned cell culture media or biofluids. In addition, three methods for characterization of isolated EVs are suggested based on physical properties, protein profiling, and ultrastructural morphology.
Collapse
Affiliation(s)
- Alexander Otahal
- Center for Regenerative Medicine, University For Continuing Education, Krems, Austria
| | - Andrea De Luna
- Center for Regenerative Medicine, University For Continuing Education, Krems, Austria
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium.
| | - Stefan Nehrer
- Center for Regenerative Medicine, University For Continuing Education, Krems, Austria.
| |
Collapse
|
32
|
Paget D, Checa A, Zöhrer B, Heilig R, Shanmuganathan M, Dhaliwal R, Johnson E, Jørgensen MM, Bæk R, Wheelock CE, Channon KM, Fischer R, Anthony DC, Choudhury RP, Akbar N. Comparative and integrated analysis of plasma extracellular vesicle isolation methods in healthy volunteers and patients following myocardial infarction. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e66. [PMID: 38939906 PMCID: PMC11080728 DOI: 10.1002/jex2.66] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/22/2022] [Accepted: 10/08/2022] [Indexed: 06/29/2024]
Abstract
Plasma extracellular vesicle (EV) number and composition are altered following myocardial infarction (MI), but to properly understand the significance of these changes it is essential to appreciate how the different isolation methods affect EV characteristics, proteome and sphingolipidome. Here, we compared plasma EV isolated from platelet-poor plasma from four healthy donors and six MI patients at presentation and 1-month post-MI using ultracentrifugation (UC), polyethylene glycol precipitation, acoustic trapping, size-exclusion chromatography (SEC) and immunoaffinity capture. The isolated EV were evaluated by Nanoparticle Tracking Analysis (NTA), Western blot, transmission electron microscopy (TEM), an EV-protein array, untargeted proteomics (LC-MS/MS) and targeted sphingolipidomics (LC-MS/MS). The application of the five different plasma EV isolation methods in patients presenting with MI showed that the choice of plasma EV isolation method influenced the ability to distinguish elevations in plasma EV concentration following MI, enrichment of EV-cargo (EV-proteins and sphingolipidomics) and associations with the size of the infarct determined by cardiac magnetic resonance imaging 6 months post-MI. Despite the selection bias imposed by each method, a core of EV-associated proteins and lipids was detectable using all approaches. However, this study highlights how each isolation method comes with its own idiosyncrasies and makes the comparison of data acquired by different techniques in clinical studies problematic.
Collapse
Affiliation(s)
- Daan Paget
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- Department of PharmacologyUniversity of OxfordOxfordUK
| | - Antonio Checa
- Unit of Integrative Metabolomics, Institute of Environmental MedicineKarolinska InstituteStockholmSweden
| | - Benedikt Zöhrer
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular MedicineKarolinska InstitutetStockholmSweden
- Department of Respiratory Medicine and AllergyKarolinska University HospitalStockholmSweden
| | - Raphael Heilig
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Mayooran Shanmuganathan
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- Acute Vascular Imaging Centre, Radcliffe Department of MedicineUniversity of OxfordUK
| | - Raman Dhaliwal
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Errin Johnson
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Maléne Møller Jørgensen
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
- Department of Clinical ImmunologyAalborg University HospitalAalborgDenmark
| | - Rikke Bæk
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
| | | | - Craig E. Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental MedicineKarolinska InstituteStockholmSweden
- Department of Respiratory Medicine and AllergyKarolinska University HospitalStockholmSweden
- Gunma University Initiative for Advanced Research (GIAR)Gunma UniversityShowa‐machiMaebashiGunmaJapan
| | - Keith M. Channon
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- Acute Vascular Imaging Centre, Radcliffe Department of MedicineUniversity of OxfordUK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | | | - Robin P. Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- Acute Vascular Imaging Centre, Radcliffe Department of MedicineUniversity of OxfordUK
| | - Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
33
|
Kim SY, Jang S, Lee S, Park JT, Lee SJ, Kim HS. Characterization of Exosomes and Exosomal RNAs Isolated from Post-Mortem Body Fluids for Molecular Forensic Diagnosis. Diagnostics (Basel) 2022; 12:2153. [PMID: 36140554 PMCID: PMC9498102 DOI: 10.3390/diagnostics12092153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/25/2022] Open
Abstract
Exosomes have been mainly studied for their potential applications in biomarker detection and drug delivery for diagnosis and treatment. However, in the field of forensic research, the potential value of exosomes derived from post-mortem body fluids has not been investigated to date. Here, we isolated the exosomes and exosomal RNAs from post-mortem body fluids, including cardiac blood, pericardial fluid, and urine. We also compared commercial exosome isolation kits to determine the optimal method for post-mortem exosome isolation. Transmission electron microscopy (TEM), the Agilent bioanalyzer system, and western blotting were used to evaluate the efficiencies of alternative isolation methods and the characteristics of isolated exosomes. There were no significant differences between exosomes obtained from post-mortem and ante-mortem body fluids in the expression of exosome surface markers or morphology. The exosomes were well-preserved even under simulated post-mortem conditions. Among the isolation procedures tested, the membrane affinity column-based method was the most suitable for post-mortem exosomal RNA isolation. These results suggest that exosomes are well-preserved in post-mortem body fluids and could be utilized for forensic diagnosis.
Collapse
Affiliation(s)
- So-Yeon Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Sinae Jang
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Korea
- Brain Korea 21 Plus Program, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Sookyoung Lee
- Division of Forensic Medical Examination, National Forensic Service, Wonju 26460, Korea
| | - Jong-Tae Park
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Su-Jin Lee
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Korea
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Korea
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Korea
| |
Collapse
|
34
|
Activation of Inflammation by MCF-7 Cells-Derived Small Extracellular Vesicles (sEV): Comparison of Three Different Isolation Methods of sEV. Pharm Res 2022; 40:863-871. [PMID: 36002612 DOI: 10.1007/s11095-022-03368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE Small extracellular vesicles (sEV) containing proteins and RNAs play important roles as intercellular signal mediators. A critical issue is that there are multiple methods to prepare sEV fractions. The purpose of this study was to examine whether cancer cell-derived sEV fractions prepared by different isolation methods show similar responses for the induction of inflammatory cytokines in macrophages. METHODS sEV fractions from the conditioned medium of MCF-7 cells were prepared by ultracentrifugation (UC), the MagCapture Exosome Isolation Kit PS (PS), or the ExoQuick-TC kit (EQ). The mRNA levels of inflammatory cytokines in differentiated THP-1 cells treated with the sEV fractions were evaluated. RESULTS The yields of sEV fractions obtained from 1 mL conditioned medium by UC, PS, or EQ were 3.2×108 particles (0.27 μg protein), 12.8×108 particles (0.87 μg protein) and 23.5 ×108 particles (4.50 μg protein), respectively. The average particle sizes in the UC, PS, and EQ fractions were 184.8 ± 1.8 nm, 157.8 ± 1.3 nm and 165.8 ± 1.1 nm, respectively. CD9 and CD81, markers of sEV, were most highly detected in the PS fraction, followed by the EQ and UC fractions. These results suggest that PS gave sEV with relatively high purity, and many protein contaminants appear to be included in the EQ fraction. The mRNA levels of inflammatory cytokines in THP-1 macrophages were most prominently increased by treatment with the UC fraction, followed by the EQ and PS fractions, suggesting that contaminants rather than sEV may largely induce an inflammatory response. CONCLUSION The isolation method affects the evaluation of sEV function.
Collapse
|
35
|
Chernyshev VS, Chuprov‐Netochin RN, Tsydenzhapova E, Svirshchevskaya EV, Poltavtseva RA, Merdalimova A, Yashchenok A, Keshelava A, Sorokin K, Keshelava V, Sukhikh GT, Gorin D, Leonov S, Skliar M. Asymmetric depth-filtration: A versatile and scalable method for high-yield isolation of extracellular vesicles with low contamination. J Extracell Vesicles 2022; 11:e12256. [PMID: 35942823 PMCID: PMC9451526 DOI: 10.1002/jev2.12256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/19/2022] [Accepted: 04/30/2022] [Indexed: 11/24/2022] Open
Abstract
We developed a novel asymmetric depth filtration (DF) approach to isolate extracellular vesicles (EVs) from biological fluids that outperforms ultracentrifugation and size-exclusion chromatography in purity and yield of isolated EVs. By these metrics, a single-step DF matches or exceeds the performance of multistep protocols with dedicated purification procedures in the isolation of plasma EVs. We demonstrate the selective transit and capture of biological nanoparticles in asymmetric pores by size and elasticity, low surface binding to the filtration medium, and the ability to cleanse EVs held by the filter before their recovery with the reversed flow all contribute to the achieved purity and yield of preparations. We further demonstrate the method's versatility by applying it to isolate EVs from different biofluids (plasma, urine, and cell culture growth medium). The DF workflow is simple, fast, and inexpensive. Only standard laboratory equipment is required for its implementation, making DF suitable for low-resource and point-of-use locations. The method may be used for EV isolation from small biological samples in diagnostic and treatment guidance applications. It can also be scaled up to harvest therapeutic EVs from large volumes of cell culture medium.
Collapse
Affiliation(s)
- Vasiliy S. Chernyshev
- Skolkovo Institute of Science and TechnologyMoscowRussian Federation
- School of Biological and Medical PhysicsMoscow Institute of Physics and TechnologyDolgoprudnyMoscow RegionRussian Federation
| | - Roman N. Chuprov‐Netochin
- School of Biological and Medical PhysicsMoscow Institute of Physics and TechnologyDolgoprudnyMoscow RegionRussian Federation
| | - Ekaterina Tsydenzhapova
- School of Biological and Medical PhysicsMoscow Institute of Physics and TechnologyDolgoprudnyMoscow RegionRussian Federation
| | | | - Rimma A. Poltavtseva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. KulakovMinistry of Healthcare of the Russian FederationMoscowRussian Federation
| | | | - Alexey Yashchenok
- Skolkovo Institute of Science and TechnologyMoscowRussian Federation
| | | | | | - Varlam Keshelava
- Institute for Biological Instrumentation RASPushchinoRussian Federation
| | - Gennadiy T. Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. KulakovMinistry of Healthcare of the Russian FederationMoscowRussian Federation
| | - Dmitry Gorin
- Skolkovo Institute of Science and TechnologyMoscowRussian Federation
| | - Sergey Leonov
- School of Biological and Medical PhysicsMoscow Institute of Physics and TechnologyDolgoprudnyMoscow RegionRussian Federation
| | - Mikhail Skliar
- Department of Chemical EngineeringUniversity of UtahSalt Lake CityUTUSA
- The Nano Institute of UtahUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
36
|
Millar‐Haskell CS, Sperduto JL, Slater JH, Thorpe C, Gleghorn JP. Secretion of the disulfide bond generating catalyst QSOX1 from pancreatic tumor cells into the extracellular matrix: association with extracellular vesicles and matrix proteins. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e48. [PMID: 36590238 PMCID: PMC9797115 DOI: 10.1002/jex2.48] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/21/2022] [Accepted: 06/12/2022] [Indexed: 01/05/2023]
Abstract
Quiescin sulfhydryl oxidase 1 (QSOX1) is a disulfide bond generating catalyst that is overexpressed in solid tumors. Expression of QSOX1 is linked to cancer cell invasion, tumor grade, and extracellular matrix (ECM) protein deposition. While the secreted version of QSOX1 is known to be present in various fluids and secretory tissues, its presence in the ECM of cancer is less understood. To characterize secreted QSOX1, we separated conditioned media based on size and density. We discovered that the majority of secreted QSOX1 resides in the EV-depleted fraction and in the soluble protein fraction. Very little QSOX1 could be detected in the EVP fraction. We used immunofluorescence to image subpopulations of EVs and found QSOX1 in Golgi-derived vesicles and medium/large vesicles, but in general, most extracellular QSOX1 was not attributed to these vesicles. Next, we quantified QSOX1 co-localization with the EV marker Alix. For the medium/large EVs, ~98% contained QSOX1 when fibronectin was used as a coating. However, on collagen coatings, only ~60% of these vesicles contained QSOX1, suggesting differences in EV cargo based on ECM coated surfaces. About 10% of small EVs co-localized with QSOX1 on every ECM protein surface except for collagen (0.64%). We next investigated adhesion of QSOX1 to ECM proteins in vitro and in situ and found that QSOX1 preferentially adheres to fibronectin, laminins, and Matrigel compared to gelatin and collagen. This mechanism was found to be, in part, mediated by the formation of mixed disulfides between QSOX1 and cysteine-rich ECM proteins. In summary, we found that QSOX1 (1) is in subpopulations of medium/large EVs, (2) seems to interact with small Alix+ EVs, and (3) adheres to cysteine-rich ECM proteins, potentially through the formation of intermediate disulfides. These observations offer significant insight into how enzymes, such as QSOX1, can facilitate matrix remodeling events in solid tumor progression.
Collapse
Affiliation(s)
| | - John L. Sperduto
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| | - John H. Slater
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Colin Thorpe
- Department of Chemistry & BiochemistryUniversity of DelawareNewarkDelawareUSA
| | - Jason P. Gleghorn
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| |
Collapse
|
37
|
Abstract
Extracellular vesicles (EVs) are membranous nanoparticles secreted by nearly all cell types and play a critical role in cell-to-cell crosstalk. EVs can be categorized based on their size, surface markers, or the cell type from which they originate. EVs carry "cargo," including but not limited to, RNA, DNA, proteins, and small signaling molecules. To date, many methods have been developed to isolate EVs from biological fluids, such as blood plasma, urine, bronchoalveolar lavage fluid, and urine. Once isolated, EVs can be characterized by dynamic light scattering, nanotracking analysis, nanoscale flow cytometry, and transmission electron microscopy. Given the ability of EVs to transport cargo between cells, research has recently focused on understanding their role in various human diseases. As understanding of their significance to disease processes grows, insight into the mechanisms behind the physiological role of their cargo in target cells can facilitate the development of a new type of biomarker and therapeutic target for diseases in future. In addition, their ability to deliver their cargo selectively to target cells within the human body means that they could serve as therapeutic agents or methods of drug delivery. In this review, we will first introduce EVs and the cargo they carry, outline current methods for EV isolation and characterization, and discuss their potential use as biomarkers and therapeutic agents in the near future.
Collapse
Affiliation(s)
- Jonathan M Carnino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA, United States
| | - Heedoo Lee
- Department of Biology and Chemistry, Changwon National University, Changwon, South Korea.
| |
Collapse
|
38
|
Methods for Collection of Extracellular Vesicles and Their Content RNA as Liquid Biopsy for Lung Cancer Detection: Application of Differential Centrifugation and Annexin A5 Coated Beads. Curr Issues Mol Biol 2022; 44:2374-2386. [PMID: 35678691 PMCID: PMC9164077 DOI: 10.3390/cimb44050162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/09/2022] Open
Abstract
Extracellular vesicles (EVs) contain abundant extracellular RNA (exRNA), which can be a valuable source of liquid biopsy. However, as various RNA species exist in different types of EVs, lack of detailed characterization of these RNA species and efficient collection methods limits the clinical application of exRNA. In the present study, we measured two mRNAs, CK19 and PCTK1; one lncRNA, MALAT1; and two miRNAs, miR21 and miR155, in different EV fractions separated by differential centrifugation or captured by magnetic beads coated with annexin A5 (ANX beads). The results showed that in a cultured medium, the majority of mRNA and lncRNA exist in larger EVs, whereas miRNA exist in both large and small EVs from the differential centrifugation fractions. All these RNA species exist in ANX beads captured EVs. We then used ANX beads to capture EVs in plasma samples from non-small-cell lung cancer patients and age-matched healthy volunteers. We found that the ANX bead capturing could efficiently improve RNA detection from human plasma, compared with direct extraction of RNA from plasma. Using ANX-bead capturing and reverse transcription and quantitative PCR, we detected significantly higher levels of CK19 mRNA, MALAT1 lncRNA, and miR155 miRNA in the plasma of lung cancer patients. These facts suggested the collection methods strongly affect the results of exRNA measurement from EVs, and that ANX beads can be a useful tool for detecting exRNA from plasma samples in clinical application.
Collapse
|
39
|
Pathological Contribution of Extracellular Vesicles and Their MicroRNAs to Progression of Chronic Liver Disease. BIOLOGY 2022; 11:biology11050637. [PMID: 35625364 PMCID: PMC9137620 DOI: 10.3390/biology11050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Extracellular vesicles (EVs) are membrane-enclosed vesicles secreted from most types of cells. EVs encapsulate many diverse bioactive cargoes, such as proteins and nucleic acid, of parental cells and delivers them to recipient cells. Upon injury, the contents altered by cellular stress are delivered into target cells and affect their physiological properties, spreading the disease microenvironment to exacerbate disease progression. Therefore, EVs are emerging as good resources for studying the pathophysiological mechanisms of diseases because they reflect the characteristics of donor cells and play a central role in intercellular communication. Chronic liver disease affects millions of people worldwide and has a high mortality rate. In chronic liver disease, the production and secretion of EVs are significantly elevated, and increased and altered cargoes are packed into EVs, enhancing inflammation, fibrosis, and angiogenesis. Herein, we review EVs released under specific chronic liver disease and explain how EVs are involved in intercellular communication to aggravate liver disease. Abstract Extracellular vesicles (EVs) are membrane-bound endogenous nanoparticles released by the majority of cells into the extracellular space. Because EVs carry various cargo (protein, lipid, and nucleic acids), they transfer bioinformation that reflects the state of donor cells to recipient cells both in healthy and pathologic conditions, such as liver disease. Chronic liver disease (CLD) affects numerous people worldwide and has a high mortality rate. EVs released from damaged hepatic cells are involved in CLD progression by impacting intercellular communication between EV-producing and EV-receiving cells, thereby inducing a disease-favorable microenvironment. In patients with CLD, as well as in the animal models of CLD, the levels of released EVs are elevated. Furthermore, these EVs contain high levels of factors that accelerate disease progression. Therefore, it is important to understand the diverse roles of EVs and their cargoes to treat CLD. Herein, we briefly explain the biogenesis and types of EVs and summarize current findings presenting the role of EVs in the pathogenesis of CLD. As the role of microRNAs (miRNAs) within EVs in liver disease is well documented, the effects of miRNAs detected in EVs on CLD are reviewed. In addition, we discuss the therapeutic potential of EVs to treat CLD.
Collapse
|
40
|
Yi C, Ni Y, Sun P, Gao T, Li K. Differential Size Distribution and Estrogen Receptor Cargo of Oviductal Extracellular Vesicles at Various Stages of Estrous Cycle in Mice. Reprod Sci 2022; 29:2847-2858. [PMID: 35137347 PMCID: PMC9537198 DOI: 10.1007/s43032-022-00862-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/20/2022] [Indexed: 11/30/2022]
Abstract
Oviductal extracellular vesicles (OEVs) play an important role in fertilization and embryo development. However, it remains largely unknown whether the size and protein cargo of OEVs change during the estrous cycle in mice. This study analyzed the changes in the size distribution and protein cargo of OEVs at four stages of the estrous cycle in mice. The distribution widths of OEVs according to the estrous cycle stage were as follows: proestrus, 20–690 nm in diameter, with two peaks at 50 and 250 nm; estrus, 22–420 nm in diameter, with two peaks at 40 and 200 nm; metestrus, 30–70 nm diameter, with a single peak at 40 nm; and diestrus, 10–26 nm diameter, with a single peak at 20 nm. The estrogen receptor (ER) level in OEVs at the proestrus stage differed significantly from that at estrus (P = 0.013) and diestrus (P = 0.005). The levels of CD9 and Hsc70 fluctuated across the four stages, although with no significant differences. Furthermore, OEVs were observed among the cilia and microvilli of epithelial cells at the proestrus, estrus, and diestrus stages, but not at the metestrus stage. The number of observed OEVs was the highest at the proestrus stage, followed by the estrus, and the diestrus stage. Endosomes were also observed at the estrus and diestrus stages. The change of the OEV size and ER cargo is associated with the estrous cycle in mice. Our findings increase the understanding of the physiological characteristics of OEVs, which may have clinical applications.
Collapse
Affiliation(s)
- Chenchen Yi
- Institute for Reproductive Health, Hang Medical College, Hangzhou, 310013, Zhejiang, China
| | - Ya Ni
- Institute for Reproductive Health, Hang Medical College, Hangzhou, 310013, Zhejiang, China
| | - Peibei Sun
- Institute for Reproductive Health, Hang Medical College, Hangzhou, 310013, Zhejiang, China
| | - Tian Gao
- Institute for Reproductive Health, Hang Medical College, Hangzhou, 310013, Zhejiang, China
| | - Kun Li
- Institute for Reproductive Health, Hang Medical College, Hangzhou, 310013, Zhejiang, China.
| |
Collapse
|
41
|
Mkrtchian S, Ebberyd A, Veerman RE, Méndez-Lago M, Gabrielsson S, Eriksson LI, Gómez-Galán M. Surgical Trauma in Mice Modifies the Content of Circulating Extracellular Vesicles. Front Immunol 2022; 12:824696. [PMID: 35116043 PMCID: PMC8804340 DOI: 10.3389/fimmu.2021.824696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Surgical interventions rapidly trigger a cascade of molecular, cellular, and neural signaling responses that ultimately reach remote organs, including the brain. Using a mouse model of orthopedic surgery, we have previously demonstrated hippocampal metabolic, structural, and functional changes associated with cognitive impairment. However, the nature of the underlying signals responsible for such periphery-to-brain communication remains hitherto elusive. Here we present the first exploratory study that tests the hypothesis of extracellular vesicles (EVs) as potential mediators carrying information from the injured tissue to the distal organs including the brain. The primary goal was to investigate whether the cargo of circulating EVs after surgery can undergo quantitative changes that could potentially trigger phenotypic modifications in the target tissues. EVs were isolated from the serum of the mice subjected to a tibia surgery after 6, 24, and 72 h, and the proteome and miRNAome were investigated using mass spectrometry and RNA-seq approaches. We found substantial differential expression of proteins and miRNAs starting at 6 h post-surgery and peaking at 24 h. Interestingly, one of the up-regulated proteins at 24 h was α-synuclein, a pathogenic hallmark of certain neurodegenerative syndromes. Analysis of miRNA target mRNA and corresponding biological pathways indicate the potential of post-surgery EVs to modify the extracellular matrix of the recipient cells and regulate metabolic processes including fatty acid metabolism. We conclude that surgery alters the cargo of circulating EVs in the blood, and our results suggest EVs as potential systemic signal carriers mediating remote effects of surgery on the brain.
Collapse
Affiliation(s)
- Souren Mkrtchian
- Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anette Ebberyd
- Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rosanne E. Veerman
- Department of Clinical Immunology and Transfusion Medicine and Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - María Méndez-Lago
- Genomics Core Facility, Institute of Molecular Biology gGmbH (IMB), Mainz, Germany
| | - Susanne Gabrielsson
- Department of Clinical Immunology and Transfusion Medicine and Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Lars I. Eriksson
- Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden
- Function Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Marta Gómez-Galán
- Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Marta Gómez-Galán,
| |
Collapse
|
42
|
Akbar A, Malekian F, Baghban N, Kodam SP, Ullah M. Methodologies to Isolate and Purify Clinical Grade Extracellular Vesicles for Medical Applications. Cells 2022; 11:186. [PMID: 35053301 PMCID: PMC8774122 DOI: 10.3390/cells11020186] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
The use of extracellular vesicles (EV) in nano drug delivery has been demonstrated in many previous studies. In this study, we discuss the sources of extracellular vesicles, including plant, salivary and urinary sources which are easily available but less sought after compared with blood and tissue. Extensive research in the past decade has established that the breadth of EV applications is wide. However, the efforts on standardizing the isolation and purification methods have not brought us to a point that can match the potential of extracellular vesicles for clinical use. The standardization can open doors for many researchers and clinicians alike to experiment with the proposed clinical uses with lesser concerns regarding untraceable side effects. It can make it easier to identify the mechanism of therapeutic benefits and to track the mechanism of any unforeseen effects observed.
Collapse
Affiliation(s)
- Asma Akbar
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Farzaneh Malekian
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Neda Baghban
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Sai Priyanka Kodam
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA 94080, USA
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
43
|
Camino T, Lago-Baameiro N, Bravo SB, Molares-Vila A, Sueiro A, Couto I, Baltar J, Casanueva EF, Pardo M. Human obese white adipose tissue sheds depot-specific extracellular vesicles and reveals candidate biomarkers for monitoring obesity and its comorbidities. Transl Res 2022; 239:85-102. [PMID: 33465489 DOI: 10.1016/j.trsl.2021.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 12/16/2020] [Accepted: 01/12/2021] [Indexed: 12/23/2022]
Abstract
Extracellular vesicles (EVs) have been recently postulated as key players in metabolic disorders emerging as an alternative way of paracrine/endocrine communication. However, the nature of EVs shed by adipose tissue (AT) and their role in obesity is still very limited. Here, we isolated human morbid obese visceral (VAT) and subcutaneous (SAT) whole AT shed EVs from donors submitted to bariatric surgery to characterize their protein cargo by qualitative and quantitative/SWATH mass spectrometry analysis. We identified 574 different proteins shed by morbid obese VAT and 401 proteins in those from SAT, establishing the first obese AT EV proteome reference map. Only 50% of identified proteins in VAT vesicles were common to those in SAT; additionally, EVs shed by obese VAT showed more AT and obesity-related adipokines than SAT. Functional classification shows that obese VAT vesicles exhibit an enrichment of proteins implicated in AT inflammation and insulin resistance such as TGFBI, CAVN1, CD14, mimecan, thrombospondin-1, FABP-4 or AHNAK. Selected candidate biomarkers from the quantitative-SWATH analysis were validated in EVs from independent morbid obese and from moderate obese to lean individuals showing that morbid obese VAT vesicles are characterized by a diminution of syntenin 1 and the elevation of TGFBI and mimecan. Interestingly, TGFBI and mimecan containing vesicles could be detected and quantified at circulating level in plasma. Thus, a significant elevation of -TGFBI-EVs was detected on those obese patients with a history of T2D compared to nondiabetic, and an augmentation of mimecan-EVs in obese plasma compared to those in healthy lean individuals. Thus, we conclude that obese AT release functional EVs carrying AT and obesity candidate biomarkers which vary regarding the AT of origin. Our findings suggest that circulating EV-TGFBI may facilitate monitoring T2D status in obese patients, and EV-mimecan may be useful to track adiposity, and more precisely, visceral obesity.
Collapse
Affiliation(s)
- Tamara Camino
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Nerea Lago-Baameiro
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Susana Belén Bravo
- Unidad de Proteómica, Instituto de Investigación Sanitaria de Santiago (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Alberto Molares-Vila
- Bioinformatics Platform, Instituto de Investigación Sanitaria de Santiago (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Aurelio Sueiro
- Grupo Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Spain
| | - Iván Couto
- Servicio de Cirugía Plástica y Reparadora, Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Javier Baltar
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain; Servicio de Cirugía General, Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Eelipe F Casanueva
- Grupo Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Spain; CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Spain
| | - Maria Pardo
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain; CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
44
|
Boireau W, Elie-Caille C. [Extracellular vesicles: Definition, isolation and characterization]. Med Sci (Paris) 2021; 37:1092-1100. [PMID: 34928211 DOI: 10.1051/medsci/2021201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Extracellular vesicles (EVs) originate from eukaryotic and prokaryotic cells and play a crucial role in intercellular communications. They are found in the environment of cells and tissues, and contribute to the complexity of different biological media, in particular biofluids. Due to their high diversity of cell origin, size range, concentration and composition, EVs offer some of the most important challenges in (pre-)analytical fields. To tackle these challenges, many works deal with the development and implementation of a wide variety of approaches, technologies and methodologies to enrich, isolate, quantify and characterize EVs and their subsets. Nevertheless, other components such as lipoproteins or viruses in complex samples, can interfere with EVs qualification, and make difficult, even today, to standardize biochemical and physical approaches for this purpose. The present chapter presents EVs and the mostly used technics for their isolation and characterization. Performances of methods in terms of resolution, discrimination, throughput and also ability to be or not applied in clinics, are also discussed.
Collapse
Affiliation(s)
- Wilfrid Boireau
- Institut FEMTO-ST, UMR 6174 CNRS-Université de Bourgogne Franche-Comté, 25030 Besançon, France
| | - Céline Elie-Caille
- Institut FEMTO-ST, UMR 6174 CNRS-Université de Bourgogne Franche-Comté, 25030 Besançon, France
| |
Collapse
|
45
|
Small Extracellular Vesicles Derived from Human Chorionic MSCs as Modern Perspective towards Cell-Free Therapy. Int J Mol Sci 2021; 22:ijms222413581. [PMID: 34948379 PMCID: PMC8706681 DOI: 10.3390/ijms222413581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are of great interest to scientists due to their application in cell therapy of many diseases, as well as regenerative medicine and tissue engineering. Recently, there has been growing evidence surrounding the research based on extracellular vesicles (EVs), especially small EVs (sEVs)/exosomes derived from MSCs. EVs/exosomes can be secreted by almost all cell types and various types of EVs show multiple functions. In addition, MSCs-derived exosomes have similar characteristics and biological activities to MSCs and their therapeutic applications are considered as a safe strategy in cell-free therapy. The aim of this study was the characterization of MSCs isolated from the chorion (CHo-MSCs) of human full-term placenta, as well as the isolation and analysis of small EVs obtained from these cells. Accordingly, in this study, the ability of small EVs' uptake is indicated by synovial fibroblasts, osteoblasts and periosteum-derived MSCs. Improvement in the understanding of the structure, characteristics, mechanism of action and potential application of MSCs-derived small EVs can provide new insight into improved therapeutic strategies.
Collapse
|
46
|
Ter-Ovanesyan D, Norman M, Lazarovits R, Trieu W, Lee JH, Church GM, Walt DR. Framework for rapid comparison of extracellular vesicle isolation methods. eLife 2021; 10:70725. [PMID: 34783650 PMCID: PMC8651285 DOI: 10.7554/elife.70725] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/14/2021] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs) are released by all cells into biofluids and hold great promise as reservoirs of disease biomarkers. One of the main challenges in studying EVs is a lack of methods to quantify EVs that are sensitive enough and can differentiate EVs from similarly sized lipoproteins and protein aggregates. We demonstrate the use of ultrasensitive, single-molecule array (Simoa) assays for the quantification of EVs using three widely expressed transmembrane proteins: the tetraspanins CD9, CD63, and CD81. Using Simoa to measure these three EV markers, as well as albumin to measure protein contamination, we were able to compare the relative efficiency and purity of several commonly used EV isolation methods in plasma and cerebrospinal fluid (CSF): ultracentrifugation, precipitation, and size exclusion chromatography (SEC). We further used these assays, all on one platform, to improve SEC isolation from plasma and CSF. Our results highlight the utility of quantifying EV proteins using Simoa and provide a rapid framework for comparing and improving EV isolation methods from biofluids.
Collapse
Affiliation(s)
| | - Maia Norman
- Wyss Institute for Biologically Inspired Engineering, Boston, United States.,Tufts University School of Medicine, Boston, United States.,Department of Pathology, Brigham and Women's Hospital, Boston, United States
| | - Roey Lazarovits
- Wyss Institute for Biologically Inspired Engineering, Boston, United States
| | - Wendy Trieu
- Wyss Institute for Biologically Inspired Engineering, Boston, United States
| | - Ju-Hyun Lee
- Wyss Institute for Biologically Inspired Engineering, Boston, United States
| | - George M Church
- Wyss Institute for Biologically Inspired Engineering, Boston, United States.,Harvard Medical School, Boston, United States
| | - David R Walt
- Wyss Institute for Biologically Inspired Engineering, Boston, United States.,Department of Pathology, Brigham and Women's Hospital, Boston, United States.,Harvard Medical School, Boston, United States
| |
Collapse
|
47
|
Chen C, Wang J, Sun M, Li J, Wang HMD. Toward the next-generation phyto-nanomedicines: cell-derived nanovesicles (CDNs) for natural product delivery. Biomed Pharmacother 2021; 145:112416. [PMID: 34781147 DOI: 10.1016/j.biopha.2021.112416] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 02/08/2023] Open
Abstract
Phytochemicals are plant-derived bioactive compounds, which have been widely used for therapeutic purposes. Due to the poor water-solubility, low bioavailability and non-specific targeting characteristic, diverse classes of nanocarriers are utilized for encapsulation and delivery of bio-effective agents. Cell-derived nanovesicles (CDNs), known for exosomes or extracellular vesicles (EVs), are biological nanoparticles with multiple functions. Compared to the artificial counterpart, CDNs hold great potential in drug delivery given the higher stability, superior biocompatibility and the lager capability of encapsulating bioactive molecules. Here, we provide a bench-to-bedside review of CDNs-based nanoplatform, including the bio-origin, preparation, characterization and functionalization. Beyond that, the focus is laid on the therapeutic effect of CDNs-mediated drug delivery for natural products. The state-of-art development as well as some pre-clinical applications of using CDNs for disease treatment is also summarized. It is highly expected that the continuing development of CDNs-based delivery systems will further promote the clinical utilization and translation of phyto-nanomedicines.
Collapse
Affiliation(s)
- Chaoxiang Chen
- College of Food and Biological Engineering, Jimei University, China
| | - Jialin Wang
- College of Food and Biological Engineering, Jimei University, China
| | - Mengdi Sun
- College of Food and Biological Engineering, Jimei University, China
| | - Jian Li
- College of Food and Biological Engineering, Jimei University, China.
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
48
|
Elucidating the Role of Extracellular Vesicles in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13225669. [PMID: 34830825 PMCID: PMC8616095 DOI: 10.3390/cancers13225669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Pancreatic cancer is one of the deadliest cancers worldwide. The chance of surviving more than 5 years after initial diagnosis is less than 10%. This is due to a lack of early diagnostics, where often at the time of initial detection the tumour has already spread to different parts of the body and has developed a propensity to develop drug resistance. Therefore, to tackle this devastating disease, it is necessary to identify the key players responsible for driving pancreatic cancer. Numerous studies have found that small bubble-like packages shed by cancer cells, called extracellular vesicles, play an important role in the progression of the disease. Our knowledge on how extracellular vesicles aid in the progression, spread and chemoresistance of pancreatic cancer is the focus of this review. Of note, these extracellular vesicles may serve as biomarkers for earlier detection of pancreatic cancer and could represent drug targets or drug delivery agents for the treatment of pancreatic cancer. Abstract Pancreatic cancer is one of the deadliest cancers worldwide, with a 5-year survival rate of less than 10%. This dismal survival rate can be attributed to several factors including insufficient diagnostics, rapid metastasis and chemoresistance. To identify new treatment options for improved patient outcomes, it is crucial to investigate the underlying mechanisms that contribute to pancreatic cancer progression. Accumulating evidence suggests that extracellular vesicles, including exosomes and microvesicles, are critical players in pancreatic cancer progression and chemoresistance. In addition, extracellular vesicles also have the potential to serve as promising biomarkers, therapeutic targets and drug delivery tools for the treatment of pancreatic cancer. In this review, we aim to summarise the current knowledge on the role of extracellular vesicles in pancreatic cancer progression, metastasis, immunity, metabolic dysfunction and chemoresistance, and discuss their potential roles as biomarkers for early diagnosis and drug delivery vehicles for treatment of pancreatic cancer.
Collapse
|
49
|
Alternative Method for HDL and Exosome Isolation with Small Serum Volumes and Their Characterizations. SEPARATIONS 2021. [DOI: 10.3390/separations8110204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
High-density lipoprotein (HDL) and exosomes are promising sources of biomarkers. However, the limited sample volume and access to the ultracentrifuge equipment are still an issue during HDL and exosome isolation. This study aimed to isolate HDL and exosomes using an ultracentrifugation-free method with various small serum volumes. HDL was isolated from 200 µL (HDL200) and 500 µL (HDL500) of sera. Three different volumes: 50 µL (Exo50), 100 µL (Exo100), and 250 µL (Exo250) were used for exosome isolation. HDL and exosomes were isolated using commercial kits with the modified method and characterized by multiple approaches. The HDL levels of HDL200 and HDL500 were not significantly different (p > 0.05), with percent recoveries of >90%. HDL200 and HDL500 had the same protein pattern with a biochemical similarity of 99.60 ± 0.10%. The particle sizes of Exo50, Exo100, and Exo250 were in the expected range. All isolated exosomes exhibited a similar protein pattern with a biochemical similarity of >99%. In conclusion, two different serum volumes (200 and 500 µL) and three different serum volumes (50, 100, and 250 µL) can be employed for HDL and exosome isolation, respectively. The possibility of HDL and exosome isolation with small volumes will accelerate biomarker discoveries with various molecular diagnostic approaches.
Collapse
|
50
|
The Immunomodulation Potential of Exosomes in Tumor Microenvironment. J Immunol Res 2021; 2021:3710372. [PMID: 34616851 PMCID: PMC8490057 DOI: 10.1155/2021/3710372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Exosomes are lipid bilayer particles that originated from almost all types of cells and play an important role in intercellular communication. Tumor-derived exosomes contain large amounts of noncoding RNA, DNA, and proteins, which can be transferred into recipient cells as functional components in exosomes. These exosomal functional constituents depend on the originating cells, and it has been proved that types and numbers of exosomal components differ in cancer patients and healthy individuals. This review summarizes the role of tumor-derived exosomes in immunomodulation and discusses the application of exosomes in immunotherapy in cancers. Overall, exosomes isolated from cancer cells are turned out to promote immune evasion and interfere with immune responses in tumors through inducing apoptosis of CD8+ T cells, facilitating generation of Tregs, suppressing natural killer (NK) cell cytotoxicity, inhibiting maturation and differentiation of monocyte, and enhancing suppressive function of myeloid-derived suppressor cells (MDSCs). Mechanistically, exosomal functional components play a significant role in the immunomodulation in cancers. Moreover, based on the existing studies, exosomes could potentially serve as therapeutic delivery vehicles, noninvasive biomarkers, and immunotherapeutic vaccines for various types of cancers.
Collapse
|