1
|
Kale MB, Wankhede NL, Bishoyi AK, Ballal S, Kalia R, Arya R, Kumar S, Khalid M, Gulati M, Umare M, Taksande BG, Upaganlawar AB, Umekar MJ, Kopalli SR, Fareed M, Koppula S. Emerging biophysical techniques for probing synaptic transmission in neurodegenerative disorders. Neuroscience 2025; 565:63-79. [PMID: 39608699 DOI: 10.1016/j.neuroscience.2024.11.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Plethora of research has shed light on the critical role of synaptic dysfunction in various neurodegenerative disorders (NDDs), including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). Synapses, the fundamental units for neural communication in the brain, are highly vulnerable to pathological conditions and are central to the progression of neurological diseases. The presynaptic terminal, a key component of synapses responsible for neurotransmitter release and synaptic communication, undergoes structural and functional alterations in these disorders. Understanding synaptic transmission abnormalities is crucial for unravelling the pathophysiological mechanisms underlying neurodegeneration. In the quest to probe synaptic transmission in NDDs, emerging biophysical techniques play a pivotal role. These advanced methods offer insights into the structural and functional changes occurring at nerve terminals in conditions like AD, PD, HD & ALS. By investigating synaptic plasticity and alterations in neurotransmitter release dynamics, researchers can uncover valuable information about disease progression and potential therapeutic targets. The review articles highlighted provide a comprehensive overview of how synaptic vulnerability and pathology are shared mechanisms across a spectrum of neurological disorders. In major neurodegenerative diseases, synaptic dysfunction is a common thread linking these conditions. The intricate molecular machinery involved in neurotransmitter release, synaptic vesicle dynamics, and presynaptic protein regulation are key areas of focus for understanding synaptic alterations in neurodegenerative diseases.
Collapse
Affiliation(s)
- Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Rishiv Kalia
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Mohit Umare
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box- 71666, Riyadh 11597, Saudi Arabia
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
2
|
Rabbitt D, Villapún VM, Carter LN, Man K, Lowther M, O'Kelly P, Knowles AJ, Mottura A, Tang YT, Luerti L, Reed RC, Cox SC. Rethinking Biomedical Titanium Alloy Design: A Review of Challenges from Biological and Manufacturing Perspectives. Adv Healthc Mater 2024:e2403129. [PMID: 39711273 DOI: 10.1002/adhm.202403129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/14/2024] [Indexed: 12/24/2024]
Abstract
Current biomedical titanium alloys have been repurposed from other industries, which has contributed to several biologically driven implant failure mechanisms. This review highlights the added value that may be gained by building an appreciation of implant biological responses at the onset of alloy design. Specifically, the fundamental mechanisms associated with immune response, angiogenesis, osseointegration and the potential threat of infection are discussed, including how elemental selection can modulate these pivotal systems. With a view to expedite inclusion of these interactions in alloy design criteria, methods to analyze these performance characteristics are also summarized. While machine learning techniques are being increasingly used to unearth complex relationships between alloying elements and material properties, much is still unknown about the correlation between composition and some bio-related properties. To bridge this gap, high-throughput methods are also reviewed to validate biological response along with cutting edge manufacturing approaches that may support rapid discovery. Taken together, this review encourages the alloy development community to rethink their approach to enable a new generation of biomedical implants intrinsically designed for a life in the body, including functionality to tackle biological challenges thereby offering improved patient outcomes.
Collapse
Affiliation(s)
- Daisy Rabbitt
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Victor M Villapún
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Luke N Carter
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Kenny Man
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht, 3508 GA, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Morgan Lowther
- Paihau-Robinson Research Institute, Victoria University of Wellington, Wellington, 5010, New Zealand
| | - Paraic O'Kelly
- Center for the Accelerated Maturation of Materials, Department of Materials Science and Engineering, The Ohio State University, 1305 Kinnear Road, Columbus, OH, 43212, USA
| | - Alexander J Knowles
- School of Metallurgy and Materials, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alessandro Mottura
- School of Metallurgy and Materials, University of Birmingham, Birmingham, B15 2TT, UK
| | - Yuanbo T Tang
- School of Metallurgy and Materials, University of Birmingham, Birmingham, B15 2TT, UK
| | - Lorenzo Luerti
- Alloyed Ltd, Unit 15, Oxford Industrial Park, Yarnton, OX5 1QU, UK
| | - Roger C Reed
- School of Metallurgy and Materials, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
3
|
Ropón-Palacios G, Silva JP, Gervacio-Villarreal EA, Galarza JPR, Zuta MC, Otazu K, Del Aguila IN, Wong HD, Amay FS, Camps I. Integrated computational biophysics approach for drug discovery against Nipah virus. Biochem Biophys Res Commun 2024; 745:151140. [PMID: 39729673 DOI: 10.1016/j.bbrc.2024.151140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024]
Abstract
The Nipah virus (NiV) poses a pressing global threat to public health due to its high mortality rate, multiple modes of transmission, and lack of effective treatments. NiV glycoprotein G (NiV-G) emerges as a promising target for the discovery of NiV drugs because of its essential role in viral entry and membrane fusion. Therefore, in this study, we applied an integrated computational and biophysics approach to identify potential inhibitors of NiV-G within a curated dataset of Peruvian phytochemicals. The virtual screening results indicated that these compounds could represent a natural source of potential NiV-G inhibitors with ΔG values ranging from -8 to -11 kcal/mol. Among them, procyanidin B2, B3, B7, and C1 exhibited the highest binding affinities and formed the most molecular interactions with NiV-G. Molecular dynamics simulations revealed the induced-fit mechanism of NiV-G pocket interaction with these procyanidins, primarily driven by its hydrophobic nature. Non-equilibrium free energy calculations were used to determine binding affinities, highlighting Procyanidin B3 and B2 as the ligands with the most substantial interactions. In general, this work underscores the potential of Peruvian phytochemicals, particularly procyanidins B2, B3, B7, and C1, as lead compounds for developing anti-NiV drugs through an integrated computational biophysics approach.
Collapse
Affiliation(s)
- Georcki Ropón-Palacios
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas UNIFAL-MG, 37133-840, Alfenas, Minas Gerais, Brazil
| | - Jhon Pérez Silva
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas UNIFAL-MG, 37133-840, Alfenas, Minas Gerais, Brazil
| | - Edinson Alfonzo Gervacio-Villarreal
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas UNIFAL-MG, 37133-840, Alfenas, Minas Gerais, Brazil
| | - Jean Pierre Ramos Galarza
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas UNIFAL-MG, 37133-840, Alfenas, Minas Gerais, Brazil
| | | | - Kewin Otazu
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas UNIFAL-MG, 37133-840, Alfenas, Minas Gerais, Brazil
| | | | | | - Frida Sosa Amay
- Universidad Nacional de la Amazonía Peruana, 16001, Iquitos, Peru
| | - Ihosvany Camps
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas UNIFAL-MG, 37133-840, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Hashemi S, Vosough P, Taghizadeh S, Savardashtaki A. Therapeutic peptide development revolutionized: Harnessing the power of artificial intelligence for drug discovery. Heliyon 2024; 10:e40265. [PMID: 39605829 PMCID: PMC11600032 DOI: 10.1016/j.heliyon.2024.e40265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 10/07/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Due to the spread of antibiotic resistance, global attention is focused on its inhibition and the expansion of effective medicinal compounds. The novel functional properties of peptides have opened up new horizons in personalized medicine. With artificial intelligence methods combined with therapeutic peptide products, pharmaceuticals and biotechnology advance drug development rapidly and reduce costs. Short-chain peptides inhibit a wide range of pathogens and have great potential for targeting diseases. To address the challenges of synthesis and sustainability, artificial intelligence methods, namely machine learning, must be integrated into their production. Learning methods can use complicated computations to select the active and toxic compounds of the drug and its metabolic activity. Through this comprehensive review, we investigated the artificial intelligence method as a potential tool for finding peptide-based drugs and providing a more accurate analysis of peptides through the introduction of predictable databases for effective selection and development.
Collapse
Affiliation(s)
- Samaneh Hashemi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Vosough
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
van Staalduine SE, Bianco V, Ferraro P, Menzel M. Deciphering Structural Complexity of Brain, Joint, and Muscle Tissues Using Fourier Ptychographic Scattered Light Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.28.625428. [PMID: 39651271 PMCID: PMC11623658 DOI: 10.1101/2024.11.28.625428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Fourier Ptychographic Microscopy (FPM) provides high-resolution imaging and morphological information over large fields of view, while Computational Scattered Light Imaging (ComSLI) excels at mapping interwoven fiber organization in unstained tissue sections. This study introduces Fourier Ptychographic Scattered Light Microscopy (FP-SLM), a new multi-modal approach that combines FPM and ComSLI analyses to create both high-resolution phase-contrast images and fiber orientation maps from a single measurement. The method is demonstrated on brain sections (frog, monkey) and sections from thigh muscle and knee (mouse). FP-SLM delivers high-resolution images while revealing fiber organization in nerve, muscle, tendon, cartilage, and bone tissues. The approach is validated by comparing the computed fiber orientations with those derived from structure tensor analysis of the high-resolution images. The comparison shows that FPM and ComSLI are compatible with each other and yield fully consistent results. Remarkably, this combination surpasses the sum of its parts, so that applying ComSLI analysis to FPM recordings and vice-versa outperforms both methods alone. This cross-analysis approach can be retrospectively applied to analyze any existing FPM or ComSLI dataset (acquired with LED array and low numerical aperture), significantly expanding the application range of both techniques and enhancing the study of complex tissue architectures in biomedical research.
Collapse
|
6
|
Soliman Y, Al-Khodor J, Yildirim Köken G, Mustafaoglu N. A guide for blood-brain barrier models. FEBS Lett 2024. [PMID: 39533665 DOI: 10.1002/1873-3468.15053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Understanding the intricate mechanisms underlying brain-related diseases hinges on unraveling the pivotal role of the blood-brain barrier (BBB), an essential dynamic interface crucial for maintaining brain equilibrium. This review offers a comprehensive analysis of BBB physiology, delving into its cellular and molecular components while exploring a wide range of in vivo and in vitro BBB models. Notably, recent advancements in 3D cell culture techniques are explicitly discussed, as they have significantly improved the fidelity of BBB modeling by enabling the replication of physiologically relevant environments under flow conditions. Special attention is given to the cellular aspects of in vitro BBB models, alongside discussions on advances in stem cell technologies, providing valuable insights into generating robust cellular systems for BBB modeling. The diverse array of cell types used in BBB modeling, depending on their sources, is meticulously examined in this comprehensive review, scrutinizing their respective derivation protocols and implications. By synthesizing diverse approaches, this review sheds light on the improvements of BBB models to capture physiological conditions, aiding in understanding BBB interactions in health and disease conditions to foster clinical developments.
Collapse
Affiliation(s)
- Yomna Soliman
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
- Faculty of Pharmacy, Mansoura University, Egypt
| | - Jana Al-Khodor
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
| | | | - Nur Mustafaoglu
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
- Sabancı University Nanotechnology Research and Application Center, Istanbul, Turkey
| |
Collapse
|
7
|
Ghosh S, Basu S, Anbarasu A, Ramaiah S. A Comprehensive Review of Antimicrobial Agents Against Clinically Important Bacterial Pathogens: Prospects for Phytochemicals. Phytother Res 2024. [PMID: 39496516 DOI: 10.1002/ptr.8365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 11/06/2024]
Abstract
Antimicrobial resistance (AMR) hinders the effective treatment of a range of bacterial infections, posing a serious threat to public health globally, as it challenges the currently available antimicrobial drugs. Among the various modes of antimicrobial action, antimicrobial agents that act on membranes have the most promising efficacy. However, there are no consolidated reports on the shortcomings of these drugs, existing challenges, or the potential applications of phytochemicals that act on membranes. Therefore, in this review, we have addressed the challenges and focused on various phytochemicals as antimicrobial agents acting on the membranes of clinically important bacterial pathogens. Antibacterial phytochemicals comprise diverse group of agents found in a wide range of plants. These compounds have been found to disrupt cell membranes, inhibit enzymes, interfere with protein synthesis, generate reactive oxygen species, modulate quorum sensing, and inhibit bacterial adhesion, making them promising candidates for the development of novel antibacterial therapies. Recently, polyphenolic compounds have been reported to have proven efficacy against nosocomial multidrug-resistant pathogens. However, more high-quality studies, improved standards, and the adoption of rules and regulations are required to firmly confirm the clinical efficacy of phytochemicals derived from plants. Identifying potential challenges, thrust areas of research, and considering viable approaches is essential for the successful clinical translation of these compounds.
Collapse
Affiliation(s)
- Soumyadip Ghosh
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Bio Sciences, SBST, VIT, Vellore, India
| | - Soumya Basu
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biotechnology, National Institute of Science and Technology (NIST), Berhampur, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Biotechnology, SBST, VIT, Vellore, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Bio Sciences, SBST, VIT, Vellore, India
| |
Collapse
|
8
|
Oyeniran OH, Courage FD, Ademiluyi AO, Oboh G. Sweet basil ( Ocimum basilicum) leaf and seed extracts alleviate neuronal dysfunction in aluminum chloride-induced neurotoxicity in Drosophila melanogaster Meigen model. Drug Chem Toxicol 2024; 47:949-959. [PMID: 38433659 DOI: 10.1080/01480545.2024.2317828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Ocimum basilicum is an important medicinal plant and culinary herb generally known as sweet basil (SB). These plants are effective radical scavengers, that have been employed in treatment of nervous system disorders, and thus, could be beneficial for the management of neurodegenerative diseases (NDs). Current clinical treatments for NDs present several side effects, therefore, there is need to develop new treatments that can mitigate these deadly diseases. Hence, this study investigated the neuroprotective activities of SB leaf and seed in aluminum chloride (AlCl3)-induced toxicity in Drosophila melanogaster. HPLC characterization of the leaves and seeds were carried out. AlCl3-diet was used to induce neurodegeneration and treated flies received SB leaf and seed extracts-supplemented diet. Survival and locomotor performance activities/levels of oxidative biomarkers [reactive oxygen species (ROS), thiobarbituric acid reactive species (TBARS), total thiol, catalase, superoxide dismutase (SOD) and glutathione-S-transferase (GST)], enzymes linked with neurodegeneration (acetylcholinesterase (AChE) and monoamine oxidase (MAO)) were investigated. SB leaf had significantly (p < 0.05) higher polyphenol contents; gallic acid and P-coumaric acid were the most abundant polyphenol in the leaf and seed respectively. Percentage survival and locomotor rates, level/activities of total thiol, catalase, SOD and GST were significantly (p < 0.05) reduced while ROS, TBARS, AChE and MAO activities were significantly (p < 0.05) increased in AlCl3-diet-fed flies. Treatment with SB leaf and seed diet lessened these observed impairments. However, SB leaf had better neuroprotective activities that could be related to the observed higher phenolic constituents. Hence, SB leaf diet may offer improved therapeutic effect in NDs.
Collapse
Affiliation(s)
- Olubukola H Oyeniran
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | - Famusiwa D Courage
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | - Adedayo O Ademiluyi
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
9
|
Martínez-López Y, Phoobane P, Jauriga Y, Castillo-Garit JA, Rodríguez-Gonzalez AY, Martínez-Santiago O, Barigye SJ, Madera J, Rodríguez-Maya NE, Duchowicz P. Exploring blood-brain barrier passage using atomic weighted vector and machine learning. J Mol Model 2024; 30:393. [PMID: 39485560 DOI: 10.1007/s00894-024-06188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
CONTEXT This study investigates the potential of leveraging molecular properties, as determined by MD-LOVIs software and machine learning techniques, to predict the ability of compounds to cross the blood-brain barrier (BBB). Accurate prediction of BBB permeation is critical for the development of central nervous system (CNS) drugs. The study applies various machine learning models, including both classification and regression techniques, to predict BBB passage and molecular activity. Notably, classification models such as GBM-AWV (accuracy = 0.801), GLM-CN (accuracy = 0.808), SVMPoly-means (accuracy = 0.980), SVMPoly-AC (accuracy = 0.980), SVMPoly-MI_TI_SI (accuracy = 0.900), SVMPoly-GI (accuracy = 0.900), RF-means (accuracy = 0.870), and GLM-means (accuracy = 0.818) demonstrate high accuracy in predicting BBB passage. In contrast, regression models like ES-RLM-AG (R2 = 0.902), IB-IBK (R2 = 0.82), IB-Kstar (R2 = 0.834), IB-MLP (R2 = 0.843), and DRF-AWV (R2 = 0.810) exhibit strong performance in predicting molecular activity. The results show that classification models like GBM-AWV, GLM-CN, and SVMPoly variants, as well as regression models like ES-RLM-AG and IB-MLP, achieve high performance, demonstrating the effectiveness of machine learning in predicting BBB permeability. METHODS The computational methods employed in this study include the MD-LOVIs software for generating molecular descriptors and several machine learning algorithms, including gradient boosting machines (GBM), generalized linear models (GLM), support vector machines (SVM) with polynomial kernels, random forests (RF), ensemble regression models, and instance-based learning algorithms. These models were trained and validated using various datasets to predict BBB passage and molecular activity, with the performance metrics reported for each model. Standard computational techniques were employed throughout, ensuring the reliability of the predictions.
Collapse
Affiliation(s)
- Yoan Martínez-López
- Department of Computer Sciences, Faculty of Informatics, Camagüey University, 74650, Camagüey City, Cuba.
| | - Paulina Phoobane
- Walter Sisulu University, Mthatha, Eastern Cape, Republic of South Africa
| | - Yanaima Jauriga
- Department of Computer Sciences, Faculty of Informatics, Camagüey University, 74650, Camagüey City, Cuba
| | - Juan A Castillo-Garit
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago de Chile, Chile
| | - Ansel Y Rodríguez-Gonzalez
- Unidad de Transferencia Tecnológica de Tepic, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Oscar Martínez-Santiago
- Alfa Vitamins Laboratories, Miami, FL, 33166, USA
- Laboratorio de Bioinformática y Química Computacional, Universidad Católica del Maule, Talca, Chile
| | - Stephen J Barigye
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Julio Madera
- Department of Computer Sciences, Faculty of Informatics, Camagüey University, 74650, Camagüey City, Cuba
| | - Noel Enrique Rodríguez-Maya
- División de Estudios de Posgrado E Investigación, Instituto Tecnológico de Zitácuaro, Zitácuaro, Michoacán, Mexico
| | - Pablo Duchowicz
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), La Plata, Argentina
| |
Collapse
|
10
|
Verma VS, Pandey A, Jha AK, Badwaik HKR, Alexander A, Ajazuddin. Polyethylene Glycol-Based Polymer-Drug Conjugates: Novel Design and Synthesis Strategies for Enhanced Therapeutic Efficacy and Targeted Drug Delivery. Appl Biochem Biotechnol 2024; 196:7325-7361. [PMID: 38519751 DOI: 10.1007/s12010-024-04895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
Due to their potential to enhance therapeutic results and enable targeted drug administration, polymer-drug conjugates that use polyethylene glycol (PEG) as both the polymer and the linker for drug conjugation have attracted much research. This study seeks to investigate recent developments in the design and synthesis of PEG-based polymer-drug conjugates, emphasizing fresh ideas that fill in existing knowledge gaps and satisfy the increasing need for more potent drug delivery methods. Through an extensive review of the existing literature, this study identifies key challenges and proposes innovative strategies for future investigations. The paper presents a comprehensive framework for designing and synthesizing PEG-based polymer-drug conjugates, including rational molecular design, linker selection, conjugation methods, and characterization techniques. To further emphasize the importance and adaptability of PEG-based polymer-drug conjugates, prospective applications are highlighted, including cancer treatment, infectious disorders, and chronic ailments.
Collapse
Affiliation(s)
- Vinay Sagar Verma
- Faculty of Pharmaceutical Sciences, Shri Shankaracharya Technical Campus, Junwani, Bhilai, 490020, Chhattisgarh, India
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Bhilai, Durg, Chhattisgarh, 490023, India
| | - Aakansha Pandey
- Faculty of Pharmaceutical Sciences, Shri Shankaracharya Technical Campus, Junwani, Bhilai, 490020, Chhattisgarh, India
| | - Arvind Kumar Jha
- Shri Shankaracharya Professional University, Junwani, Bhilai, 490020, Chhattisgarh, India
| | - Hemant Kumar Ramchandra Badwaik
- Shri Shankaracharya College of Pharmaceutical Sciences, Junwani, Bhilai, 490020, Chhattisgarh, India.
- Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Shri Shankaracharya Technical Campus, Junwani, Bhilai, 490020, Chhattisgarh, India.
| | - Amit Alexander
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research, Ministry of Chemical and Fertilizers, Guwahati, 781101, Assam, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Bhilai, Durg, Chhattisgarh, 490023, India.
| |
Collapse
|
11
|
Vikram A, Patel SK, Singh A, Pathania D, Ray RS, Upadhyay AK, Dwivedi A. Natural autophagy activators: A promising strategy for combating photoaging. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155508. [PMID: 38901286 DOI: 10.1016/j.phymed.2024.155508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Photodamage to the skin stands out as one of the most widespread epidermal challenges globally. Prolonged exposure to sunlight containing ultraviolet radiation (UVR) instigates stress, thereby compromising the skin's functionality and culminating in photoaging. Recent investigations have shed light on the importance of autophagy in shielding the skin from photodamage. Despite the acknowledgment of numerous phytochemicals possessing photoprotective attributes, their potential to induce autophagy remains relatively unexplored. PURPOSE Diminished autophagy activity in photoaged skin underscores the potential benefits of restoring autophagy through natural compounds to enhance photoprotection. Consequently, this study aims to highlight the role of natural compounds in safeguarding against photodamage and to assess their potential to induce autophagy via an in-silico approach. METHODS A thorough search of the literature was done using several databases, including PUBMED, Science Direct, and Google Scholar, to gather relevant studies. Several keywords such as Phytochemical, Photoprotection, mTOR, Ultraviolet Radiation, Reactive oxygen species, Photoaging, and Autophagy were utilized to ensure thorough exploration. To assess the autophagy potential of phytochemicals through virtual screening, computational methodologies such as molecular docking were employed, utilizing tools like AutoDock Vina. Receptor preparation for docking was facilitated using MGLTools. RESULTS The initiation of structural and functional deterioration in the skin due to ultraviolet radiation (UVR) or sunlight-induced reactive oxygen species/reactive nitrogen species (ROS/RNS) involves the modulation of various pathways. Natural compounds like phenolics, flavonoids, flavones, and anthocyanins, among others, possess chromophores capable of absorbing light, thereby offering photoprotection by modulating these pathways. In our molecular docking study, these phytochemicals have shown binding affinity with mTOR, a negative regulator of autophagy, indicating their potential as autophagy modulators. CONCLUSION This integrated review underscores the photoprotective characteristics of natural compounds, while the in-silico analysis reveals their potential to modulate autophagy, which could significantly contribute to their anti-photoaging properties. The findings of this study hold promise for the advancement of cosmeceuticals and therapeutics containing natural compounds aimed at addressing photoaging and various skin-related diseases. By leveraging their dual benefits of photoprotection and autophagy modulation, these natural compounds offer a multifaceted approach to combatting skin aging and related conditions.
Collapse
Affiliation(s)
- Apeksha Vikram
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India
| | - Sunil Kumar Patel
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India
| | - Arshwinder Singh
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala-147004 Punjab, India
| | - Diksha Pathania
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India
| | - Ratan Singh Ray
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India
| | - Atul Kumar Upadhyay
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala-147004 Punjab, India.
| | - Ashish Dwivedi
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India.
| |
Collapse
|
12
|
Xu H, Li H, Zhang P, Gao Y, Ma H, Gao T, Liu H, Hua W, Zhang L, Zhang X, Yang P, Liu J. The functions of exosomes targeting astrocytes and astrocyte-derived exosomes targeting other cell types. Neural Regen Res 2024; 19:1947-1953. [PMID: 38227520 PMCID: PMC11040311 DOI: 10.4103/1673-5374.390961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/20/2023] [Accepted: 09/08/2023] [Indexed: 01/17/2024] Open
Abstract
Astrocytes are the most abundant glial cells in the central nervous system; they participate in crucial biological processes, maintain brain structure, and regulate nervous system function. Exosomes are cell-derived extracellular vesicles containing various bioactive molecules including proteins, peptides, nucleotides, and lipids secreted from their cellular sources. Increasing evidence shows that exosomes participate in a communication network in the nervous system, in which astrocyte-derived exosomes play important roles. In this review, we have summarized the effects of exosomes targeting astrocytes and the astrocyte-derived exosomes targeting other cell types in the central nervous system. We also discuss the potential research directions of the exosome-based communication network in the nervous system. The exosome-based intercellular communication focused on astrocytes is of great significance to the biological and/or pathological processes in different conditions in the brain. New strategies may be developed for the diagnosis and treatment of neurological disorders by focusing on astrocytes as the central cells and utilizing exosomes as communication mediators.
Collapse
Affiliation(s)
- Hongye Xu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - He Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Emergency, Naval Hospital of Eastern Theater, Zhoushan, Zhejiang Province, China
| | - Ping Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuan Gao
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hongyu Ma
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tianxiang Gao
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hanchen Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Weilong Hua
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lei Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaoxi Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Pengfei Yang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianmin Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
13
|
Xie L, Merjane J, Bergmann CA, Xu J, Hurtle B, Donnelly CJ. CUTS RNA Biosensor for the Real-Time Detection of TDP-43 Loss-of-Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603231. [PMID: 39026766 PMCID: PMC11257528 DOI: 10.1101/2024.07.12.603231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Given the mounting evidence implicating TDP-43 dysfunction in several neurodegenerative diseases, there is a pressing need to establish accessible tools to sense and quantify TDP-43 loss-of-function (LOF). These tools are crucial for assessing potential disease contributors and exploring therapeutic candidates in TDP-43 proteinopathies. Here, we develop a sensitive and accurate real-time sensor for TDP-43 LOF: the CUTS (CFTR UNC13A TDP-43 Loss-of-Function) system. This system combines previously reported cryptic exons regulated by TDP-43 with a reporter, enabling the tracking of TDP-43 LOF through live microscopy and RNA/protein-based assays. We demonstrate CUTS' effectiveness in detecting LOF caused by TDP-43 mislocalization and RNA binding dysfunction, and pathological aggregation. Our results highlight the sensitivity and accuracy of the CUTS system in detecting and quantifying TDP-43 LOF, opening avenues to explore unknown TDP-43 interactions that regulate its function. In addition, by replacing the fluorescent tag in the CUTS system with the coding sequence for TDP-43, we show significant recovery of its function under TDP-43 LOF conditions, highlighting CUTS' potential for self-regulating gene therapy applications. In summary, CUTS represents a versatile platform for evaluating TDP-43 LOF in real-time and advancing gene-replacement therapies in neurodegenerative diseases associated with TDP-43 dysfunction.
Collapse
Affiliation(s)
- Longxin Xie
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, China
- LiveLikeLou Center for ALS Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jessica Merjane
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cristian A Bergmann
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jiazhen Xu
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Interdisciplinary Biomedical Graduate Program Cellular and Molecular Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bryan Hurtle
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Christopher J Donnelly
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Interdisciplinary Biomedical Graduate Program Cellular and Molecular Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Institute for Neurodegeneration, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Protein Conformational Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Yin X, Wang J, Ge M, Feng X, Zhang G. Designing Small Molecule PI3Kγ Inhibitors: A Review of Structure-Based Methods and Computational Approaches. J Med Chem 2024; 67:10530-10547. [PMID: 38988222 DOI: 10.1021/acs.jmedchem.4c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The PI3K/AKT/mTOR pathway plays critical roles in a wide array of biological processes. Phosphatidylinositol 3-kinase gamma (PI3Kγ), a class IB PI3K family member, represents a potential therapeutic opportunity for the treatment of cancer, inflammation, and autoimmunity. In this Perspective, we provide a comprehensive overview of the structure, biological function, and regulation of PI3Kγ. We also focus on the development of PI3Kγ inhibitors over the past decade and emphasize their binding modes, structure-activity relationships, and pharmacological activities. The application of computational technologies and artificial intelligence in the discovery of novel PI3Kγ inhibitors is also introduced. This review aims to provide a timely and updated overview on the strategies for targeting PI3Kγ.
Collapse
Affiliation(s)
- Xiaoming Yin
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, People's Republic of China
| | - Jiaying Wang
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, People's Republic of China
| | - Minghao Ge
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, People's Republic of China
| | - Xue Feng
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
| | - Guogang Zhang
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, People's Republic of China
| |
Collapse
|
15
|
Carraro C, Montgomery JV, Klimmt J, Paquet D, Schultze JL, Beyer MD. Tackling neurodegeneration in vitro with omics: a path towards new targets and drugs. Front Mol Neurosci 2024; 17:1414886. [PMID: 38952421 PMCID: PMC11215216 DOI: 10.3389/fnmol.2024.1414886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
Drug discovery is a generally inefficient and capital-intensive process. For neurodegenerative diseases (NDDs), the development of novel therapeutics is particularly urgent considering the long list of late-stage drug candidate failures. Although our knowledge on the pathogenic mechanisms driving neurodegeneration is growing, additional efforts are required to achieve a better and ultimately complete understanding of the pathophysiological underpinnings of NDDs. Beyond the etiology of NDDs being heterogeneous and multifactorial, this process is further complicated by the fact that current experimental models only partially recapitulate the major phenotypes observed in humans. In such a scenario, multi-omic approaches have the potential to accelerate the identification of new or repurposed drugs against a multitude of the underlying mechanisms driving NDDs. One major advantage for the implementation of multi-omic approaches in the drug discovery process is that these overarching tools are able to disentangle disease states and model perturbations through the comprehensive characterization of distinct molecular layers (i.e., genome, transcriptome, proteome) up to a single-cell resolution. Because of recent advances increasing their affordability and scalability, the use of omics technologies to drive drug discovery is nascent, but rapidly expanding in the neuroscience field. Combined with increasingly advanced in vitro models, which particularly benefited from the introduction of human iPSCs, multi-omics are shaping a new paradigm in drug discovery for NDDs, from disease characterization to therapeutics prediction and experimental screening. In this review, we discuss examples, main advantages and open challenges in the use of multi-omic approaches for the in vitro discovery of targets and therapies against NDDs.
Collapse
Affiliation(s)
- Caterina Carraro
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jessica V. Montgomery
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Bonn, Germany
| | - Julien Klimmt
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Dominik Paquet
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Joachim L. Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- PRECISE, Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn and West German Genome Center, Bonn, Germany
| | - Marc D. Beyer
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Bonn, Germany
- PRECISE, Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn and West German Genome Center, Bonn, Germany
- Immunogenomics & Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Bonn, Germany
| |
Collapse
|
16
|
Sanil K, Almotairy A, Uttreja P, Ashour EA. Formulation Development and Evaluation of Cannabidiol Hot-Melt Extruded Solid Self-Emulsifying Drug Delivery System for Oral Applications. AAPS PharmSciTech 2024; 25:136. [PMID: 38862810 DOI: 10.1208/s12249-024-02857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
Cannabidiol (CBD) is a highly lipophilic compound with poor oral bioavailability, due to poor aqueous solubility and extensive pre-systemic metabolism. The aim of this study was to explore the potential of employing Hot Melt Extrusion (HME) technology for the continuous production of Self Emulsifying Drug Delivery Systems (SEDDS) to improve the solubility and in vitro dissolution performance of CBD. Accordingly, different placebos were processed through HME in order to obtain a lead CBD loaded solid SEDDS. Two SEDDS were prepared with sesame oil, Poloxamer 188, Gelucire®59/14, PEO N80 and Soluplus®. Moreover, Vitamin E was added as an antioxidant. The SEDDS formulations demonstrated emulsification times of 9.19 and 9.30 min for F1 and F2 respectively. The formed emulsions showed smaller droplet size ranging from 150-400 nm that could improve lymphatic uptake of CBD and reduce first pass metabolism. Both formulations showed significantly faster in vitro dissolution rate (90% for F1 and 83% for F2) compared to 14% for the pure CBD within the first hour, giving an enhanced release profile. The formulations were tested for stability over a 60-day time period at 4°C, 25°C, and 40°C. Formulation F1 was stable over the 60-day time-period at 4°C. Therefore, the continuous HME technology could replace conventional methods for processing SEDDS and improve the oral delivery of CBD for better therapeutic outcomes.
Collapse
Affiliation(s)
- Kavish Sanil
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Ahmed Almotairy
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Al Madinah AlMunawarah, 30001, Saudi Arabia
| | - Prateek Uttreja
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Eman A Ashour
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA.
| |
Collapse
|
17
|
Ihsan MF, Kawashima D, Li S, Ogasawara S, Murata T, Takei M. Non-invasive hERG channel screening based on electrical impedance tomography and extracellular voltage activation (EIT-EVA). LAB ON A CHIP 2024; 24:3183-3190. [PMID: 38828904 DOI: 10.1039/d4lc00230j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
hERG channel screening has been achieved based on electrical impedance tomography and extracellular voltage activation (EIT-EVA) to improve the non-invasive aspect of drug discovery. EIT-EVA screens hERG channels by considering the change in extracellular ion concentration which modifies the extracellular resistance in cell suspension. The rate of ion passing in cell suspension is calculated from the extracellular resistance Rex, which is obtained from the EIT measurement at a frequency of 500 kHz. In the experiment, non-invasive screening is applied by a novel integrated EIT-EVA printed circuit board (PCB) sensor to human embryonic kidney (HEK) 293 cells transfected with the human ether-a-go-go-related gene (hERG) ion channel, while the E-4031 antiarrhythmic drug is used for hERG channel inhibition. The extracellular resistance Rex of the HEK 293 cells suspension is measured by EIT as the hERG channels are activated by EVA over time. The Rex is reconstructed into extracellular conductivity distribution change Δσ to reflect the extracellular K+ ion concentration change Δc resulting from the activated hERG channel. Δc is increased rapidly during the hERG channel non-inhibition state while Δc is increased slower with increasing drug concentration cd. In order to evaluate the EIT-EVA system, the inhibitory ratio index (IR) was calculated based on the rate of Δc over time. Half-maximal inhibitory concentration (IC50) of 2.7 nM is obtained from the cd and IR dose-response relationship. The IR from EIT-EVA is compared with the results from the patch-clamp method, which gives R2 of 0.85. In conclusion, EIT-EVA is successfully applied to non-invasive hERG channel screening.
Collapse
Affiliation(s)
- Muhammad Fathul Ihsan
- Department of Mechanical Engineering, Graduate School of Science and Engineering, Division of Fundamental Engineering, Chiba University, Chiba 263-8522, Japan
| | - Daisuke Kawashima
- Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
- Institute for Advanced Academic Research, Chiba University, Chiba 263-8522, Japan.
| | - Songshi Li
- Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
| | - Satoshi Ogasawara
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
- Molecular Chirality Research Center, Chiba University, Chiba 263-8522, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
- Molecular Chirality Research Center, Chiba University, Chiba 263-8522, Japan
| | - Masahiro Takei
- Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
18
|
Crouzet A, Lopez N, Riss Yaw B, Lepelletier Y, Demange L. The Millennia-Long Development of Drugs Associated with the 80-Year-Old Artificial Intelligence Story: The Therapeutic Big Bang? Molecules 2024; 29:2716. [PMID: 38930784 PMCID: PMC11206022 DOI: 10.3390/molecules29122716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The journey of drug discovery (DD) has evolved from ancient practices to modern technology-driven approaches, with Artificial Intelligence (AI) emerging as a pivotal force in streamlining and accelerating the process. Despite the vital importance of DD, it faces challenges such as high costs and lengthy timelines. This review examines the historical progression and current market of DD alongside the development and integration of AI technologies. We analyse the challenges encountered in applying AI to DD, focusing on drug design and protein-protein interactions. The discussion is enriched by presenting models that put forward the application of AI in DD. Three case studies are highlighted to demonstrate the successful application of AI in DD, including the discovery of a novel class of antibiotics and a small-molecule inhibitor that has progressed to phase II clinical trials. These cases underscore the potential of AI to identify new drug candidates and optimise the development process. The convergence of DD and AI embodies a transformative shift in the field, offering a path to overcome traditional obstacles. By leveraging AI, the future of DD promises enhanced efficiency and novel breakthroughs, heralding a new era of medical innovation even though there is still a long way to go.
Collapse
Affiliation(s)
- Aurore Crouzet
- UMR 8038 CNRS CiTCoM, Team PNAS, Faculté de Pharmacie, Université Paris Cité, 4 Avenue de l’Observatoire, 75006 Paris, France
- W-MedPhys, 128 Rue la Boétie, 75008 Paris, France
| | - Nicolas Lopez
- W-MedPhys, 128 Rue la Boétie, 75008 Paris, France
- ENOES, 62 Rue de Miromesnil, 75008 Paris, France
- Unité Mixte de Recherche «Institut de Physique Théorique (IPhT)» CEA-CNRS, UMR 3681, Bat 774, Route de l’Orme des Merisiers, 91191 St Aubin-Gif-sur-Yvette, France
| | - Benjamin Riss Yaw
- UMR 8038 CNRS CiTCoM, Team PNAS, Faculté de Pharmacie, Université Paris Cité, 4 Avenue de l’Observatoire, 75006 Paris, France
| | - Yves Lepelletier
- W-MedPhys, 128 Rue la Boétie, 75008 Paris, France
- Université Paris Cité, Imagine Institute, 24 Boulevard Montparnasse, 75015 Paris, France
- INSERM UMR 1163, Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders: Therapeutical Implications, 24 Boulevard Montparnasse, 75015 Paris, France
| | - Luc Demange
- UMR 8038 CNRS CiTCoM, Team PNAS, Faculté de Pharmacie, Université Paris Cité, 4 Avenue de l’Observatoire, 75006 Paris, France
| |
Collapse
|
19
|
Alshehri MM, Kumar N, Kuthi NA, Olaide Z, Alshammari MK, Bello RO, Alghazwni MK, Alshehri AM, Alshlali OM, Ashimiyu-Abdusalam Z, Umar HI. Computer-aided drug discovery of c-Abl kinase inhibitors from plant compounds against chronic myeloid leukemia. J Biomol Struct Dyn 2024:1-21. [PMID: 38517058 DOI: 10.1080/07391102.2024.2329297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
Chronic myeloid leukemia (CML) is a hematological malignancy characterized by the neoplastic transformation of hematopoietic stem cells, driven by the Philadelphia (Ph) chromosome resulting from a translocation between chromosomes 9 and 22. This Ph chromosome harbors the breakpoint cluster region (BCR) and the Abelson (ABL) oncogene (BCR-ABL1) which have a constitutive tyrosine kinase activity. However, the tyrosine kinase activity of BCR-ABL1 have been identified as a key player in CML initiation and maintenance through c-Abl kinase. Despite advancements in tyrosine kinase inhibitors, challenges such as efficacy, safety concerns, and recurring drug resistance persist. This study aims to discover potential c-Abl kinase inhibitors from plant compounds with anti-leukemic properties, employing drug-likeness assessment, molecular docking, in silico pharmacokinetics (ADMET) screening, density function theory (DFT), and molecular dynamics simulations (MDS). Out of 58 screened compounds for drug-likeness, 44 were docked against c-Abl kinase. The top hit compound (isovitexin) and nilotinib (control drug) were subjected to rigorous analyses, including ADMET profiling, DFT evaluation, and MDS for 100 ns. Isovitexin demonstrated a notable binding affinity (-15.492 kcal/mol), closely comparable to nilotinib (-16.826 kcal/mol), showcasing a similar binding pose and superior structural stability and reactivity. While these findings suggest isovitexin as a potential c-Abl kinase inhibitor, further validation through urgent in vitro and in vivo experiments is imperative. This research holds promise for providing an alternative avenue to address existing CML treatment and management challenges.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammed M Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Neeraj Kumar
- Department of Pharmaceutical Chemistry, Bhupal Nobles' College of Pharmacy, Udaipur, India
| | - Najwa Ahmad Kuthi
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor, Malaysia
| | - Zainab Olaide
- Department of Biochemistry, Ibrahim Badamasi Babangida University, Lapai, Nigeria
| | | | - Ridwan Opeyemi Bello
- Computer-Aided Therapeutic Discovery and Design Platform, Federal University of Technology, Akure, Nigeria
| | | | | | | | - Zainab Ashimiyu-Abdusalam
- Computer-Aided Therapeutic Discovery and Design Platform, Federal University of Technology, Akure, Nigeria
- Department of Biochemistry and Nutrition, Nigerian Institute of Medical Research, Yaba, Nigeria
| | - Haruna Isiyaku Umar
- Computer-Aided Therapeutic Discovery and Design Platform, Federal University of Technology, Akure, Nigeria
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
20
|
Yaghoobi Z, Seyed Bagher Nazeri SS, Asadi A, Derafsh E, Talebi Taheri A, Tamtaji Z, Dadgostar E, Rahmati-Dehkordi F, Aschner M, Mirzaei H, Tamtaji OR, Nabavizadeh F. Non-coding RNAs and Aquaporin 4: Their Role in the Pathogenesis of Neurological Disorders. Neurochem Res 2024; 49:583-596. [PMID: 38114727 DOI: 10.1007/s11064-023-04067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
Neurological disorders are a major group of non-communicable diseases affecting quality of life. Non-Coding RNAs (ncRNAs) have an important role in the etiology of neurological disorders. In studies on the genesis of neurological diseases, aquaporin 4 (AQP4) expression and activity have both been linked to ncRNAs. The upregulation or downregulation of several ncRNAs leads to neurological disorder progression by targeting AQP4. The role of ncRNAs and AQP4 in neurological disorders is discussed in this review.
Collapse
Affiliation(s)
- Zahra Yaghoobi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran
| | | | - Amir Asadi
- Psychiatry and Behavioral Sciences Research Center, School of Medicine, Addiction Institute, and Department of Psychiatry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Derafsh
- Windsor University School of Medicine, Cayon, St Kitts and Nevis
| | - Abdolkarim Talebi Taheri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
| | - Fatemeh Rahmati-Dehkordi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
| |
Collapse
|
21
|
Bhattacharjee A, Jana A, Bhattacharjee S, Mitra S, De S, Alghamdi BS, Alam MZ, Mahmoud AB, Al Shareef Z, Abdel-Rahman WM, Woon-Khiong C, Alexiou A, Papadakis M, Ashraf GM. The role of Aquaporins in tumorigenesis: implications for therapeutic development. Cell Commun Signal 2024; 22:106. [PMID: 38336645 PMCID: PMC10854195 DOI: 10.1186/s12964-023-01459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/25/2023] [Indexed: 02/12/2024] Open
Abstract
Aquaporins (AQPs) are ubiquitous channel proteins that play a critical role in the homeostasis of the cellular environment by allowing the transit of water, chemicals, and ions. They can be found in many different types of cells and organs, including the lungs, eyes, brain, glands, and blood vessels. By controlling the osmotic water flux in processes like cell growth, energy metabolism, migration, adhesion, and proliferation, AQPs are capable of exerting their regulatory influence over a wide range of cellular processes. Tumour cells of varying sources express AQPs significantly, especially in malignant tumours with a high propensity for metastasis. New insights into the roles of AQPs in cell migration and proliferation reinforce the notion that AQPs are crucial players in tumour biology. AQPs have recently been shown to be a powerful tool in the fight against pathogenic antibodies and metastatic cell migration, despite the fact that the molecular processes of aquaporins in pathology are not entirely established. In this review, we shall discuss the several ways in which AQPs are expressed in the body, the unique roles they play in tumorigenesis, and the novel therapeutic approaches that could be adopted to treat carcinoma.
Collapse
Affiliation(s)
- Arkadyuti Bhattacharjee
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, USA
| | - Ankit Jana
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Swagato Bhattacharjee
- KoshKey Sciences Pvt Ltd, Canara Bank Layout, Karnataka, Bengaluru, Rajiv Gandhi Nagar, Kodigehalli, 560065, India
| | - Sankalan Mitra
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Swagata De
- Department of English, DDE Unit, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Zubair Alam
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Almadinah, Almunwarah, 71491, Saudi Arabia
| | - Zainab Al Shareef
- College of Medicine, and Research Institute for Medical and Health Sciences, Department of Basic Medical Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Wael M Abdel-Rahman
- College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Chan Woon-Khiong
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Wien, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Ghulam Md Ashraf
- College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
22
|
Oselusi SO, Dube P, Odugbemi AI, Akinyede KA, Ilori TL, Egieyeh E, Sibuyi NR, Meyer M, Madiehe AM, Wyckoff GJ, Egieyeh SA. The role and potential of computer-aided drug discovery strategies in the discovery of novel antimicrobials. Comput Biol Med 2024; 169:107927. [PMID: 38184864 DOI: 10.1016/j.compbiomed.2024.107927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/25/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Antimicrobial resistance (AMR) has become more of a concern in recent decades, particularly in infections associated with global public health threats. The development of new antibiotics is crucial to ensuring infection control and eradicating AMR. Although drug discovery and development are essential processes in the transformation of a drug candidate from the laboratory to the bedside, they are often very complicated, expensive, and time-consuming. The pharmaceutical sector is continuously innovating strategies to reduce research costs and accelerate the development of new drug candidates. Computer-aided drug discovery (CADD) has emerged as a powerful and promising technology that renews the hope of researchers for the faster identification, design, and development of cheaper, less resource-intensive, and more efficient drug candidates. In this review, we discuss an overview of AMR, the potential, and limitations of CADD in AMR drug discovery, and case studies of the successful application of this technique in the rapid identification of various drug candidates. This review will aid in achieving a better understanding of available CADD techniques in the discovery of novel drug candidates against resistant pathogens and other infectious agents.
Collapse
Affiliation(s)
- Samson O Oselusi
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa
| | - Phumuzile Dube
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa
| | - Adeshina I Odugbemi
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, 7535, South Africa
| | - Kolajo A Akinyede
- Department of Science Technology, Biochemistry Unit, The Federal Polytechnic P.M.B.5351, Ado Ekiti, 360231, Nigeria
| | - Tosin L Ilori
- School of Pharmacy, University of the Western Cape, Bellville, Cape Town, 7535, South Africa
| | - Elizabeth Egieyeh
- School of Pharmacy, University of the Western Cape, Bellville, Cape Town, 7535, South Africa
| | - Nicole Rs Sibuyi
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa
| | - Mervin Meyer
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa
| | - Abram M Madiehe
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa
| | - Gerald J Wyckoff
- School of Pharmacy, Division of Pharmacology and Pharmaceutical Sciences, University of Missouri, Kansas City, MO, 64110-2446, United States
| | - Samuel A Egieyeh
- School of Pharmacy, University of the Western Cape, Bellville, Cape Town, 7535, South Africa.
| |
Collapse
|
23
|
Halder A, Drummond E. Strategies for translating proteomics discoveries into drug discovery for dementia. Neural Regen Res 2024; 19:132-139. [PMID: 37488854 PMCID: PMC10479849 DOI: 10.4103/1673-5374.373681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 07/26/2023] Open
Abstract
Tauopathies, diseases characterized by neuropathological aggregates of tau including Alzheimer's disease and subtypes of frontotemporal dementia, make up the vast majority of dementia cases. Although there have been recent developments in tauopathy biomarkers and disease-modifying treatments, ongoing progress is required to ensure these are effective, economical, and accessible for the globally ageing population. As such, continued identification of new potential drug targets and biomarkers is critical. "Big data" studies, such as proteomics, can generate information on thousands of possible new targets for dementia diagnostics and therapeutics, but currently remain underutilized due to the lack of a clear process by which targets are selected for future drug development. In this review, we discuss current tauopathy biomarkers and therapeutics, and highlight areas in need of improvement, particularly when addressing the needs of frail, comorbid and cognitively impaired populations. We highlight biomarkers which have been developed from proteomic data, and outline possible future directions in this field. We propose new criteria by which potential targets in proteomics studies can be objectively ranked as favorable for drug development, and demonstrate its application to our group's recent tau interactome dataset as an example.
Collapse
Affiliation(s)
- Aditi Halder
- School of Medical Sciences and Brain & Mind Center, University of Sydney, NSW, Sydney, Australia
- Department of Aged Care, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Eleanor Drummond
- School of Medical Sciences and Brain & Mind Center, University of Sydney, NSW, Sydney, Australia
| |
Collapse
|
24
|
Sharma T, Kumar R, Mukherjee S. Neuronal Vulnerability to Degeneration in Parkinson's Disease and Therapeutic Approaches. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:715-730. [PMID: 37185323 DOI: 10.2174/1871527322666230426155432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 05/17/2023]
Abstract
Parkinson's disease is the second most common neurodegenerative disease affecting millions of people worldwide. Despite the crucial threat it poses, currently, no specific therapy exists that can completely reverse or halt the progression of the disease. Parkinson's disease pathology is driven by neurodegeneration caused by the intraneuronal accumulation of alpha-synuclein (α-syn) aggregates in Lewy bodies in the substantia nigra region of the brain. Parkinson's disease is a multiorgan disease affecting the central nervous system (CNS) as well as the autonomic nervous system. A bidirectional route of spreading α-syn from the gut to CNS through the vagus nerve and vice versa has also been reported. Despite our understanding of the molecular and pathophysiological aspects of Parkinson's disease, many questions remain unanswered regarding the selective vulnerability of neuronal populations, the neuromodulatory role of the locus coeruleus, and alpha-synuclein aggregation. This review article aims to describe the probable factors that contribute to selective neuronal vulnerability in Parkinson's disease, such as genetic predisposition, bioenergetics, and the physiology of neurons, as well as the interplay of environmental and exogenous modulators. This review also highlights various therapeutic strategies with cell transplants, through viral gene delivery, by targeting α-synuclein and aquaporin protein or epidermal growth factor receptors for the treatment of Parkinson's disease. The application of regenerative medicine and patient-specific personalized approaches have also been explored as promising strategies in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Tanushree Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
- Molecular and Human Genetics, Banaras Hindu University Varanasi, Uttar Pradesh, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| |
Collapse
|
25
|
Koh CMM, Ping LSY, Xuan CHH, Theng LB, San HS, Palombo EA, Wezen XC. A data-driven machine learning approach for discovering potent LasR inhibitors. Bioengineered 2023; 14:2243416. [PMID: 37552115 PMCID: PMC10411317 DOI: 10.1080/21655979.2023.2243416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
The rampant spread of multidrug-resistant Pseudomonas aeruginosa strains severely threatens global health. This severity is compounded against the backdrop of a stagnating antibiotics development pipeline. Moreover, with many promising therapeutics falling short of expectations in clinical trials, targeting the las quorum sensing (QS) system remains an attractive therapeutic strategy to combat P. aeruginosa infection. Thus, our primary goal was to develop a drug prediction algorithm using machine learning to identify potent LasR inhibitors. In this work, we demonstrated using a Multilayer Perceptron (MLP) algorithm boosted with AdaBoostM1 to discriminate between active and inactive LasR inhibitors. The optimal model performance was evaluated using 5-fold cross-validation and test sets. Our best model achieved a 90.7% accuracy in distinguishing active from inactive LasR inhibitors, an area under the Receiver Operating Characteristic Curve value of 0.95, and a Matthews correlation coefficient value of 0.81 when evaluated using test sets. Subsequently, we deployed the model against the Enamine database. The top-ranked compounds were further evaluated for their target engagement activity using molecular docking studies, Molecular Dynamics simulations, MM-GBSA analysis, and Free Energy Landscape analysis. Our data indicate that several of our chosen top hits showed better ligand-binding affinities than naringenin, a competitive LasR inhibitor. Among the six top hits, five of these compounds were predicted to be LasR inhibitors that could be used to treat P. aeruginosa-associated infections. To our knowledge, this study provides the first assessment of using an MLP-based QSAR model for discovering potent LasR inhibitors to attenuate P. aeruginosa infections.
Collapse
Affiliation(s)
- Christabel Ming Ming Koh
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology, Sarawak, Malaysia
| | - Lilian Siaw Yung Ping
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology, Sarawak, Malaysia
| | - Christopher Ha Heng Xuan
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology, Sarawak, Malaysia
| | - Lau Bee Theng
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology, Sarawak, Malaysia
| | - Hwang Siaw San
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology, Sarawak, Malaysia
| | - Enzo A. Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Xavier Chee Wezen
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology, Sarawak, Malaysia
| |
Collapse
|
26
|
Zhang Y, Luo F, Dong K. Soluble NKG2D ligands impair CD8 + T cell antitumor function dependent of NKG2D downregulation in neuroblastoma. Oncol Lett 2023; 26:297. [PMID: 37274476 PMCID: PMC10236264 DOI: 10.3892/ol.2023.13883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
T cell-based immunotherapy has achieved remarkable beneficial clinical outcomes. Tumor-derived NKG2D ligands (NKG2DL) allow tumors to escape immunologic surveillance. However, the mechanism underlying NKG2DL-mediated immune escape in neuroblastoma (NB) remains incompletely understood. In the present study, first soluble NKG2DL, soluble major histocompatibility complex (MHC) class-I-related chain A and soluble UL-16 binding proteins expression levels were determined in both the serum from patients with NB and in NB cell line culture supernatants. NB cell-derived sNKG2DL was initially cleaved by ADAM10 and ADAM17. Furthermore, sNKG2DL expression levels were positively correlated with the immunosuppressive microenvironment and poor prognosis. Tumor-derived sNKG2DL induced degradation of NKG2D on CD8+ T cells and impaired CD8+ T cell proliferation, IFN-γ production, and CD107a translocation. More importantly, blockage of sNKG2DL increased the antitumor activity of CD8+ T cells. Thus, the results showed that NB-induced immunosuppression was achieved through tumor-derived sMICA and sULBP-2, and blockage of the tumor-derived sNKG2DLs with sNKG2DL neutralizing antibodies was a novel strategy to recover T-cell function and enhance antitumor immunotherapy.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Feifei Luo
- Biotherapy Research Center, Fudan University, Shanghai 200040, P.R. China
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Kuiran Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| |
Collapse
|
27
|
Sanz FJ, Solana-Manrique C, Paricio N. Disease-Modifying Effects of Vincamine Supplementation in Drosophila and Human Cell Models of Parkinson's Disease Based on DJ-1 Deficiency. ACS Chem Neurosci 2023. [PMID: 37289979 DOI: 10.1021/acschemneuro.3c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Parkinson's disease (PD) is an incurable neurodegenerative disorder caused by the selective loss of dopaminergic neurons in the substantia nigra pars compacta. Current therapies are only symptomatic and are not able to stop or delay its progression. In order to search for new and more effective therapies, our group carried out a high-throughput screening assay, identifying several candidate compounds that are able to improve locomotor ability in DJ-1β mutant flies (a Drosophila model of familial PD) and reduce oxidative stress (OS)-induced lethality in DJ-1-deficient SH-SY5Y human cells. One of them was vincamine (VIN), a natural alkaloid obtained from the leaves of Vinca minor. Our results showed that VIN is able to suppress PD-related phenotypes in both Drosophila and human cell PD models. Specifically, VIN reduced OS levels in PD model flies. Besides, VIN diminished OS-induced lethality by decreasing apoptosis, increased mitochondrial viability, and reduced OS levels in DJ-1-deficient human cells. In addition, our results show that VIN might be exerting its beneficial role, at least partially, by the inhibition of voltage-gated sodium channels. Therefore, we propose that these channels might be a promising target in the search for new compounds to treat PD and that VIN represents a potential therapeutic treatment for the disease.
Collapse
Affiliation(s)
- Francisco José Sanz
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot 46100, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot 46100, Spain
| | - Cristina Solana-Manrique
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot 46100, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot 46100, Spain
- Departamento de Fisioterapia, Facultad de Ciencias de La Salud, Universidad Europea de Valencia, Valencia 46010, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot 46100, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot 46100, Spain
| |
Collapse
|
28
|
Diaz Quiroz JF, Ojha N, Shayhidin EE, De Silva D, Dabney J, Lancaster A, Coull J, Milstein S, Fraley AW, Brown CR, Rosenthal JJC. Development of a selection assay for small guide RNAs that drive efficient site-directed RNA editing. Nucleic Acids Res 2023; 51:e41. [PMID: 36840708 PMCID: PMC10123091 DOI: 10.1093/nar/gkad098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
A major challenge confronting the clinical application of site-directed RNA editing (SDRE) is the design of small guide RNAs (gRNAs) that can drive efficient editing. Although many gRNA designs have effectively recruited endogenous Adenosine Deaminases that Act on RNA (ADARs), most of them exceed the size of currently FDA-approved antisense oligos. We developed an unbiased in vitro selection assay to identify short gRNAs that promote superior RNA editing of a premature termination codon. The selection assay relies on hairpin substrates in which the target sequence is linked to partially randomized gRNAs in the same molecule, so that gRNA sequences that promote editing can be identified by sequencing. These RNA substrates were incubated in vitro with ADAR2 and the edited products were selected using amplification refractory mutation system PCR and used to regenerate the substrates for a new round of selection. After nine repetitions, hairpins which drove superior editing were identified. When gRNAs of these hairpins were delivered in trans, eight of the top ten short gRNAs drove superior editing both in vitro and in cellula. These results show that efficient small gRNAs can be selected using our approach, an important advancement for the clinical application of SDRE.
Collapse
Affiliation(s)
- Juan Felipe Diaz Quiroz
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, The Marine Biological Laboratory, Woods Hole, MA, USA
| | - Namrata Ojha
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, The Marine Biological Laboratory, Woods Hole, MA, USA
| | | | | | | | | | | | | | | | | | - Joshua J C Rosenthal
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, The Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
29
|
Makhdoomi S, Ariafar S, Mirzaei F, Mohammadi M. Aluminum neurotoxicity and autophagy: a mechanistic view. Neurol Res 2023; 45:216-225. [PMID: 36208459 DOI: 10.1080/01616412.2022.2132727] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
It is strongly believed that aluminum is one of the insalubrious agents because of its neurotoxicity effects and influences on amyloid β (Aβ) production and tau protein hyperphosphorylation following oxidative stress, as one of the initial events in neurotoxicity. The autophagy process plays a considerable role in neurons in preserving intracellular homeostasis and recycling organelles and proteins, especially Aβ and soluble tau. Thus, autophagy is suggested to ameliorate aluminum neurotoxicity effects, and dysfunction of this process can lead to an increase in detrimental proteins. However, the relationship between aluminum neurotoxicity and autophagy dysregulation in some dimensions remains unclear. In the present review, we want to give an overview of the autophagy roles in aluminum neurotoxicity and how dysregulation of autophagy can affect aluminum neurotoxicity.
Collapse
Affiliation(s)
- Sajjad Makhdoomi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saba Ariafar
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Mirzaei
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
30
|
Lu J, Zhu Y, Parkington HC, Hussein M, Zhao J, Bergen P, Rudd D, Deane MA, Oberrauch S, Cornthwaite-Duncan L, Allobawi R, Sharma R, Rao G, Li J, Velkov T. Transcriptomic Mapping of Neurotoxicity Pathways in the Rat Brain in Response to Intraventricular Polymyxin B. Mol Neurobiol 2023; 60:1317-1330. [PMID: 36443617 DOI: 10.1007/s12035-022-03140-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
Intraventricular or intrathecal administration of polymyxins are increasingly used to treat multidrug-resistant (MDR) Gram-negative bacteria caused infections in the central nervous system (CNS). However, our limited knowledge of the mechanisms underpinning polymyxin-induced neurotoxicity significantly hinders the development of safe and efficacious polymyxin dosing regimens. To this end, we conducted transcriptomic analyses of the rat brain and spinal cord 1 h following intracerebroventricular administration of polymyxin B into rat lateral ventricle at a clinically relevant dose (0.5 mg/kg). Following the treatment, 66 differentially expressed genes (DEGs) were identified in the brain transcriptome while none for the spinal cord (FDR ≤ 0.05, fold-change ≥ 1.5). DEGs were enriched in signaling pathways associated with hormones and neurotransmitters, including dopamine and (nor)epinephrine. Notably, the expression levels of Slc6a3 and Gabra6 were decreased by 20-fold and 4.3-fold, respectively, likely resulting in major perturbations of dopamine and γ-aminobutyric acid signaling in the brain. Mass spectrometry imaging of brain sections revealed a distinct pattern of polymyxin B distribution with the majority accumulating in the injection-side lateral ventricle and subsequently into third and fourth ventricles. Polymyxin B was not detectable in the left lateral ventricle or brain tissue. Electrophysiological measurements on primary cultured rat neurons revealed a large inward current and significant membrane leakage following polymyxin B treatment. Our work demonstrates, for the first time, the key CNS signaling pathways associated with polymyxin neurotoxicity. This mechanistic insight combined with pharmacokinetic/pharmacodynamic dosing strategies will help guide the design of safe and effective intraventricular/intrathecal polymyxin treatment regimens for CNS infections caused by MDR Gram-negative pathogens.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pharmacology & Biochemistry, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Yan Zhu
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Helena C Parkington
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Maytham Hussein
- Department of Pharmacology & Biochemistry, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Jinxin Zhao
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Phillip Bergen
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - David Rudd
- Drug Delivery, Disposition and Dynamics, Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, 3010, Australia
| | - Mary A Deane
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Sara Oberrauch
- Department of Pharmacology & Biochemistry, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Linda Cornthwaite-Duncan
- Department of Pharmacology & Biochemistry, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Rafah Allobawi
- Department of Pharmacology & Biochemistry, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Rajnikant Sharma
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Gauri Rao
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27514, USA.
| | - Jian Li
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.
| | - Tony Velkov
- Department of Pharmacology & Biochemistry, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia. .,Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
31
|
Bravo-Vázquez LA, Mora-Hernández EO, Rodríguez AL, Sahare P, Bandyopadhyay A, Duttaroy AK, Paul S. Current Advances of Plant-Based Vaccines for Neurodegenerative Diseases. Pharmaceutics 2023; 15:711. [PMID: 36840033 PMCID: PMC9963606 DOI: 10.3390/pharmaceutics15020711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are characterized by the progressive degeneration and/or loss of neurons belonging to the central nervous system, and represent one of the major global health issues. Therefore, a number of immunotherapeutic approaches targeting the non-functional or toxic proteins that induce neurodegeneration in NDDs have been designed in the last decades. In this context, due to unprecedented advances in genetic engineering techniques and molecular farming technology, pioneering plant-based immunogenic antigen expression systems have been developed aiming to offer reliable alternatives to deal with important NDDs, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Diverse reports have evidenced that plant-made vaccines trigger significant immune responses in model animals, supported by the production of antibodies against the aberrant proteins expressed in the aforementioned NDDs. Moreover, these immunogenic tools have various advantages that make them a viable alternative for preventing and treating NDDs, such as high scalability, no risk of contamination with human pathogens, cold chain free production, and lower production costs. Hence, this article presents an overview of the current progress on plant-manufactured vaccines for NDDs and discusses its future prospects.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- School of Engineering and Sciences, Campus Querétaro, Tecnologico de Monterrey, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| | - Erick Octavio Mora-Hernández
- School of Engineering and Sciences, Campus Mexico City, Tecnologico de Monterrey, Calle del Puente, No. 222 Col. Ejidos de Huipulco, Tlalpan, Mexico City 14380, Mexico
| | - Alma L. Rodríguez
- School of Engineering and Sciences, Campus Querétaro, Tecnologico de Monterrey, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| | - Padmavati Sahare
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM 3001, Juriquilla, Querétaro 76230, Mexico
| | - Anindya Bandyopadhyay
- International Rice Research Institute, Manila 4031, Philippines
- Reliance Industries Ltd., Navi Mumbai 400701, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046 Blindern, 0317 Oslo, Norway
| | - Sujay Paul
- School of Engineering and Sciences, Campus Querétaro, Tecnologico de Monterrey, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| |
Collapse
|
32
|
Secondary Degeneration of Oligodendrocyte Precursor Cells Occurs as Early as 24 h after Optic Nerve Injury in Rats. Int J Mol Sci 2023; 24:ijms24043463. [PMID: 36834873 PMCID: PMC9964292 DOI: 10.3390/ijms24043463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Optic nerve injury causes secondary degeneration, a sequela that spreads damage from the primary injury to adjacent tissue, through mechanisms such as oxidative stress, apoptosis, and blood-brain barrier (BBB) dysfunction. Oligodendrocyte precursor cells (OPCs), a key component of the BBB and oligodendrogenesis, are vulnerable to oxidative deoxyribonucleic acid (DNA) damage by 3 days post-injury. However, it is unclear whether oxidative damage in OPCs occurs earlier at 1 day post-injury, or whether a critical 'window-of-opportunity' exists for therapeutic intervention. Here, a partial optic nerve transection rat model of secondary degeneration was used with immunohistochemistry to assess BBB dysfunction, oxidative stress, and proliferation in OPCs vulnerable to secondary degeneration. At 1 day post-injury, BBB breach and oxidative DNA damage were observed, alongside increased density of DNA-damaged proliferating cells. DNA-damaged cells underwent apoptosis (cleaved caspase3+), and apoptosis was associated with BBB breach. OPCs experienced DNA damage and apoptosis and were the major proliferating cell type with DNA damage. However, the majority of caspase3+ cells were not OPCs. These results provide novel insights into acute secondary degeneration mechanisms in the optic nerve, highlighting the need to consider early oxidative damage to OPCs in therapeutic efforts to limit degeneration following optic nerve injury.
Collapse
|
33
|
Long-Term Ingestion of Sicilian Black Bee Chestnut Honey and/or D-Limonene Counteracts Brain Damage Induced by High Fat-Diet in Obese Mice. Int J Mol Sci 2023; 24:ijms24043467. [PMID: 36834882 PMCID: PMC9966634 DOI: 10.3390/ijms24043467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Obesity is linked to neurodegeneration, which is mainly caused by inflammation and oxidative stress. We analyzed whether the long-term intake of honey and/or D-limonene, which are known for their antioxidant and anti-inflammatory actions, when ingested separately or in combination, can counteract the neurodegeneration occurring in high fat diet (HFD)-induced obesity. After 10 weeks of HFD, mice were divided into: HFD-, HFD + honey (HFD-H)-, HFD + D-limonene (HFD-L)-, HFD + honey + D-limonene (HFD-H + L)-fed groups, for another 10 weeks. Another group was fed a standard diet (STD). We analyzed the brain neurodegeneration, inflammation, oxidative stress, and gene expression of Alzheimer's disease (AD) markers. The HFD animals showed higher neuronal apoptosis, upregulation of pro-apoptotic genes Fas-L, Bim P27 and downregulation of anti-apoptotic factors BDNF and BCL2; increased gene expression of the pro-inflammatory IL-1β, IL-6 and TNF-α and elevated oxidative stress markers COX-2, iNOS, ROS and nitrite. The honey and D-limonene intake counteracted these alterations; however, they did so in a stronger manner when in combination. Genes involved in amyloid plaque processing (APP and TAU), synaptic function (Ache) and AD-related hyperphosphorylation were higher in HFD brains, and significantly downregulated in HFD-H, HFD-L and HFD-H + L. These results suggest that honey and limonene ingestion counteract obesity-related neurodegeneration and that joint consumption is more efficacious than a single administration.
Collapse
|
34
|
Endothelial Dysfunction in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24032909. [PMID: 36769234 PMCID: PMC9918222 DOI: 10.3390/ijms24032909] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
The cerebral vascular system stringently regulates cerebral blood flow (CBF). The components of the blood-brain barrier (BBB) protect the brain from pathogenic infections and harmful substances, efflux waste, and exchange substances; however, diseases develop in cases of blood vessel injuries and BBB dysregulation. Vascular pathology is concurrent with the mechanisms underlying aging, Alzheimer's disease (AD), and vascular dementia (VaD), which suggests its involvement in these mechanisms. Therefore, in the present study, we reviewed the role of vascular dysfunction in aging and neurodegenerative diseases, particularly AD and VaD. During the development of the aforementioned diseases, changes occur in the cerebral blood vessel morphology and local cells, which, in turn, alter CBF, fluid dynamics, and vascular integrity. Chronic vascular inflammation and blood vessel dysregulation further exacerbate vascular dysfunction. Multitudinous pathogenic processes affect the cerebrovascular system, whose dysfunction causes cognitive impairment. Knowledge regarding the pathophysiology of vascular dysfunction in neurodegenerative diseases and the underlying molecular mechanisms may lead to the discovery of clinically relevant vascular biomarkers, which may facilitate vascular imaging for disease prevention and treatment.
Collapse
|
35
|
Tang GY, Wang RJ, Guo Y, Liu J. 5-HT 1B receptor-AC-PKA signal pathway in the lateral habenula is involved in the regulation of depressive-like behaviors in 6-hydroxydopamine-induced Parkinson's rats. Neurol Res 2023; 45:127-137. [PMID: 36127643 DOI: 10.1080/01616412.2022.2124797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The aim of the present study was to investigate whether serotonin1B (5-HT1B) receptor-adenylate cyclase (AC)-protein kinase A (PKA) signal pathway in the lateral habenula (LHb) is involved in Parkinson's disease-related depression in sham-lesioned and substantia nigra pars compacta (SNc)-lesioned rats. METHODS The sucrose preference and forced swim tests were used to measure depressive-like behaviors. In vivo electrophysiology and microdialysis were performed to observe the firing activity of LHb neurons and GABA and glutamate release in the LHb, respectively. Western blotting was used to analyze protein expression of 5-HT1B receptors, AC and phosphorylated PKA at threonine 197 site (p-PKA-Thr197) in the LHb. RESULTS Unilateral 6-hydroxydopamine lesions of the SNc in rats induced depressive-like behaviors. Intra-LHb injection of 5-HT1B receptor agonist CP93129 produced antidepressant-like effects and the antagonist SB216641 induced depressive-like behaviors in sham-lesioned and SNc-lesioned rats. Further, pretreatment with AC inhibitor SQ22536 and PKA inhibitor KT5720 blocked the behavioral effects of CP93129 in the two groups of rats, respectively. CP93129 decreased the firing rate of LHb neurons and release of GABA and glutamate, but increased the GABA/glutamate ratio, while SB216641 induced the opposite effects. Compared with sham-lesioned rats, effects of CP93129 and SB216641 on the depressive-like behaviors, electrophysiology, and microdialysis were decreased in SNc-lesioned rats, which were associated with decreased expression of 5-HT1B receptors, AC and p-PKA-Thr197 in the LHb. CONCLUSION 5-HT1B receptor-AC-PKA signal pathway in the LHb is involved in the regulation of depressive-like behaviors, and depletion of DA reduces activity of 5-HT1B receptor-AC-PKA signal pathway.
Collapse
Affiliation(s)
- Guo Yi Tang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Run Jia Wang
- Department of Clinical Medicine, Xi'an Medical University, Xi'an, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
36
|
Kisler K, Sagare AP, Lazic D, Bazzi S, Lawson E, Hsu CJ, Wang Y, Ramanathan A, Nelson AR, Zhao Z, Zlokovic BV. Anti-malaria drug artesunate prevents development of amyloid-β pathology in mice by upregulating PICALM at the blood-brain barrier. Mol Neurodegener 2023; 18:7. [PMID: 36707892 PMCID: PMC9883925 DOI: 10.1186/s13024-023-00597-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND PICALM is one of the most significant susceptibility factors for Alzheimer's disease (AD). In humans and mice, PICALM is highly expressed in brain endothelium. PICALM endothelial levels are reduced in AD brains. PICALM controls several steps in Aβ transcytosis across the blood-brain barrier (BBB). Its loss from brain endothelium in mice diminishes Aβ clearance at the BBB, which worsens Aβ pathology, but is reversible by endothelial PICALM re-expression. Thus, increasing PICALM at the BBB holds potential to slow down development of Aβ pathology. METHODS To identify a drug that could increase PICALM expression, we screened a library of 2007 FDA-approved drugs in HEK293t cells expressing luciferase driven by a human PICALM promoter, followed by a secondary mRNA screen in human Eahy926 endothelial cell line. In vivo studies with the lead hit were carried out in Picalm-deficient (Picalm+/-) mice, Picalm+/-; 5XFAD mice and Picalmlox/lox; Cdh5-Cre; 5XFAD mice with endothelial-specific Picalm knockout. We studied PICALM expression at the BBB, Aβ pathology and clearance from brain to blood, cerebral blood flow (CBF) responses, BBB integrity and behavior. RESULTS Our screen identified anti-malaria drug artesunate as the lead hit. Artesunate elevated PICALM mRNA and protein levels in Eahy926 endothelial cells and in vivo in brain capillaries of Picalm+/- mice by 2-3-fold. Artesunate treatment (32 mg/kg/day for 2 months) of 3-month old Picalm+/-; 5XFAD mice compared to vehicle increased brain capillary PICALM levels by 2-fold, and reduced Aβ42 and Aβ40 levels and Aβ and thioflavin S-load in the cortex and hippocampus, and vascular Aβ load by 34-51%. Artesunate also increased circulating Aβ42 and Aβ40 levels by 2-fold confirming accelerated Aβ clearance from brain to blood. Consistent with reduced Aβ pathology, treatment of Picalm+/-; 5XFAD mice with artesunate improved CBF responses, BBB integrity and behavior on novel object location and recognition, burrowing and nesting. Endothelial-specific knockout of PICALM abolished all beneficial effects of artesunate in 5XFAD mice indicating that endothelial PICALM is required for its therapeutic effects. CONCLUSIONS Artesunate increases PICALM levels and Aβ clearance at the BBB which prevents development of Aβ pathology and functional deficits in mice and holds potential for translation to human AD.
Collapse
Affiliation(s)
- Kassandra Kisler
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Abhay P. Sagare
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Divna Lazic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Sam Bazzi
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Erica Lawson
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Ching-Ju Hsu
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Yaoming Wang
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Anita Ramanathan
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Amy R. Nelson
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Zhen Zhao
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Berislav V. Zlokovic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| |
Collapse
|
37
|
Pérez-Arancibia R, Cisternas-Olmedo M, Sepúlveda D, Troncoso-Escudero P, Vidal RL. Small molecules to perform big roles: The search for Parkinson's and Huntington's disease therapeutics. Front Neurosci 2023; 16:1084493. [PMID: 36699535 PMCID: PMC9868863 DOI: 10.3389/fnins.2022.1084493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Neurological motor disorders (NMDs) such as Parkinson's disease and Huntington's disease are characterized by the accumulation and aggregation of misfolded proteins that trigger cell death of specific neuronal populations in the central nervous system. Differential neuronal loss initiates the impaired motor control and cognitive function in the affected patients. Although major advances have been carried out to understand the molecular basis of these diseases, to date there are no treatments that can prevent, cure, or significantly delay the progression of the disease. In this context, strategies such as gene editing, cellular therapy, among others, have gained attention as they effectively reduce the load of toxic protein aggregates in different models of neurodegeneration. Nevertheless, these strategies are expensive and difficult to deliver into the patients' nervous system. Thus, small molecules and natural products that reduce protein aggregation levels are highly sought after. Numerous drug discovery efforts have analyzed large libraries of synthetic compounds for the treatment of different NMDs, with a few candidates reaching clinical trials. Moreover, the recognition of new druggable targets for NMDs has allowed the discovery of new small molecules that have demonstrated their efficacy in pre-clinical studies. It is also important to recognize the contribution of natural products to the discovery of new candidates that can prevent or cure NMDs. Additionally, the repurposing of drugs for the treatment of NMDs has gained huge attention as they have already been through clinical trials confirming their safety in humans, which can accelerate the development of new treatment. In this review, we will focus on the new advances in the discovery of small molecules for the treatment of Parkinson's and Huntington's disease. We will begin by discussing the available pharmacological treatments to modulate the progression of neurodegeneration and to alleviate the motor symptoms in these diseases. Then, we will analyze those small molecules that have reached or are currently under clinical trials, including natural products and repurposed drugs.
Collapse
Affiliation(s)
- Rodrigo Pérez-Arancibia
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Departamento de Ciencias Básicas, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Marisol Cisternas-Olmedo
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Denisse Sepúlveda
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Paulina Troncoso-Escudero
- Molecular Diagnostic and Biomarkers Laboratory, Department of Pathology, Faculty of Medicine Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Rene L. Vidal
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| |
Collapse
|
38
|
Vashishat A, Gupta GD, Kurmi BD. Revolutionizing Drug Discovery: The Role of AI and Machine Learning. Curr Pharm Des 2023; 29:3087-3088. [PMID: 38083886 DOI: 10.2174/0113816128287941231206050340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Affiliation(s)
- Abhinav Vashishat
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab 142001, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab 142001, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab 142001, India
| |
Collapse
|
39
|
Kasoju N, Remya NS, Sasi R, Sujesh S, Soman B, Kesavadas C, Muraleedharan CV, Varma PRH, Behari S. Digital health: trends, opportunities and challenges in medical devices, pharma and bio-technology. CSI TRANSACTIONS ON ICT 2023; 11:11-30. [PMCID: PMC10089382 DOI: 10.1007/s40012-023-00380-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2024]
Abstract
Digital health interventions refer to the use of digital technology and connected devices to improve health outcomes and healthcare delivery. This includes telemedicine, electronic health records, wearable devices, mobile health applications, and other forms of digital health technology. To this end, several research and developmental activities in various fields are gaining momentum. For instance, in the medical devices sector, several smart biomedical materials and medical devices that are digitally enabled are rapidly being developed and introduced into clinical settings. In the pharma and allied sectors, digital health-focused technologies are widely being used through various stages of drug development, viz. computer-aided drug design, computational modeling for predictive toxicology, and big data analytics for clinical trial management. In the biotechnology and bioengineering fields, investigations are rapidly growing focus on digital health, such as omics biology, synthetic biology, systems biology, big data and personalized medicine. Though digital health-focused innovations are expanding the horizons of health in diverse ways, here the development in the fields of medical devices, pharmaceutical technologies and biotech sectors, with emphasis on trends, opportunities and challenges are reviewed. A perspective on the use of digital health in the Indian context is also included.
Collapse
Affiliation(s)
- Naresh Kasoju
- Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695011 Kerala India
| | - N. S. Remya
- Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695011 Kerala India
| | - Renjith Sasi
- Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695011 Kerala India
| | - S. Sujesh
- Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695011 Kerala India
| | - Biju Soman
- Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695011 Kerala India
| | - C. Kesavadas
- Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695011 Kerala India
| | - C. V. Muraleedharan
- Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695011 Kerala India
| | - P. R. Harikrishna Varma
- Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695011 Kerala India
| | - Sanjay Behari
- Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695011 Kerala India
| |
Collapse
|
40
|
Pahal S, Gupta A, Choudhary P, Chaudhary A, Singh S. Network pharmacological evaluation of Withania somnifera bioactive phytochemicals for identifying novel potential inhibitors against neurodegenerative disorder. J Biomol Struct Dyn 2022; 40:10887-10898. [PMID: 34278961 DOI: 10.1080/07391102.2021.1951355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders are illnesses that are responsible for neuronal cell death and resulting in lifelong cognitive problems. Due to their unclear mechanism, there are no effective drugs available for the treatment. For a long time, herbal drugs have been used as a role model in the field of the drug discovery process. Withania somnifera (Ashwagandha) in the Indian medicinal system (Ayurveda) is used for several neuronal disorders like insomnia and memory loss for decades. This study aims to identify active components of W. somnifera (WS) as potential inhibitors for the treatment of neurodegenerative diseases (ND). To fulfill this objective, Network pharmacology approach, gene ontology, pharmacokinetics analysis, molecular docking, and molecular dynamics simulation (MDS) studies were performed. A total of 77 active components in WS, 175 predicted neurodegenerative targets of WS, and 8085 ND-related targets were identified from different databases. The network analysis showed that the top ten targets APP, EGFR, MAPK1, ESR1, HSPA4, PRKCD, MAPK3, ABL1, JUN, and GSK3B were found as significant target related to ND. On the basis of gene ontology and topology analysis results, APP was found as a significant target related to Alzheimer's disease pathways. Molecular docking results found that Anahygrine, Cuscohygrine, Isopelletierine, and Nicotine showed the best binding affinities -5.55, -4.73, -4.04, and -4.11 Kcal/mol. Further, MDS results suggested that Isopelletierine and Nicotine could be used as potential inhibitors against APP protein and could be useful for the treatment of Alzheimer's disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sonu Pahal
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Ayushi Gupta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Princy Choudhary
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Amit Chaudhary
- Amity Institute of Biotechnology, Amity University, Noida, India
| | | |
Collapse
|
41
|
Cui J, Carey J, Reijo Pera RA. Identification of DOT1L inhibitor in a screen for factors that promote dopaminergic neuron survival. Front Aging Neurosci 2022; 14:1026468. [PMID: 36578445 PMCID: PMC9791259 DOI: 10.3389/fnagi.2022.1026468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra region of the midbrain. Diagnostic criteria for PD require that at least two of three motor signs are observed: tremor, rigidity, and/or bradykinesia. The most common and effective treatment for PD is Levodopa (L-DOPA) which is readily converted to DA and has been the primary treatment since the 1960's. Dopamine agonists have also been developed but are less effective than L-DOPA. Although the lack of a model system to study PD has hampered efforts to identify treatments, diverse screening strategies have been proposed for identification of new pharmaceutical candidates. Here, we describe a pilot screen to identify candidate molecules from a bioactive compound library, that might increase formation, maintenance and/or survival of DA neurons in vitro. The screen used a previously characterized reporter construct consisting of the luciferase gene inserted downstream of the endogenous tyrosine hydroxylase (TH) gene and neurons differentiated from human pluripotent stem cells for 18 days. The reporter mimics expression of TH and includes a secreted luciferase whose activity can be measured non-invasively over multiple timepoints. Screening of the bioactive compound library resulted in the identification of a single molecule, SGC0946, that is an inhibitor of DOT1L (Disruptor Of Telomeric silencing 1-Like) which encodes a widely-conserved histone H3K79 methyltransferase that is able to both activate and repress gene transcription. Our results indicate that SGC0946 increased reporter luciferase activity with a single treatment for 48-h post-plating being equivalent to continuous treatment. Moreover, data suggested that the total number of neurons differentiated in the assays was comparable from experiment to experiment under different SGC0946 treatments over time. In contrast, data suggested that the survival and/or maintenance of DA neurons might be specifically enhanced by SGC0946 treatment. These results document the feasibility of a set of tools for further exploration of small molecules that may impact DA neuron differentiation, maintenance and/or survival. Results provide evidence in support of other reports that indicate inhibition of DOT1L may play an important role in maintenance and survival of neural progenitor cells (NPCs) and their lineage-specific differentiation.
Collapse
Affiliation(s)
- Jun Cui
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, United States
| | - Joseph Carey
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, United States
| | - Renee A. Reijo Pera
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, United States
- McLaughlin Research Institute, Great Falls, MT, United States
| |
Collapse
|
42
|
Akide Ndunge OB, Kilian N, Salman MM. Cerebral Malaria and Neuronal Implications of Plasmodium Falciparum Infection: From Mechanisms to Advanced Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202944. [PMID: 36300890 PMCID: PMC9798991 DOI: 10.1002/advs.202202944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/22/2022] [Indexed: 06/01/2023]
Abstract
Reorganization of host red blood cells by the malaria parasite Plasmodium falciparum enables their sequestration via attachment to the microvasculature. This artificially increases the dwelling time of the infected red blood cells within inner organs such as the brain, which can lead to cerebral malaria. Cerebral malaria is the deadliest complication patients infected with P. falciparum can experience and still remains a major public health concern despite effective antimalarial therapies. Here, the current understanding of the effect of P. falciparum cytoadherence and their secreted proteins on structural features of the human blood-brain barrier and their involvement in the pathogenesis of cerebral malaria are highlighted. Advanced 2D and 3D in vitro models are further assessed to study this devastating interaction between parasite and host. A better understanding of the molecular mechanisms leading to neuronal and cognitive deficits in cerebral malaria will be pivotal in devising new strategies to treat and prevent blood-brain barrier dysfunction and subsequent neurological damage in patients with cerebral malaria.
Collapse
Affiliation(s)
- Oscar Bate Akide Ndunge
- Department of Internal MedicineSection of Infectious DiseasesYale University School of Medicine300 Cedar StreetNew HavenCT06510USA
| | - Nicole Kilian
- Centre for Infectious Diseases, ParasitologyHeidelberg University HospitalIm Neuenheimer Feld 32469120HeidelbergGermany
| | - Mootaz M. Salman
- Department of PhysiologyAnatomy and GeneticsUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for NanoScience DiscoveryUniversity of OxfordOxfordUK
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
| |
Collapse
|
43
|
Xue LL, Huangfu LR, Du RL, Chen L, Yu CY, Xiong LL, Wang TH. The age-specific pathological changes of β-amyloid plaques in the cortex and hippocampus of APP/PS1 transgenic AD mice. Neurol Res 2022; 44:1053-1065. [PMID: 35981107 DOI: 10.1080/01616412.2022.2112368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Numerous pathological variations and complex interactions are involved in the long period prior to cognitive decline in brains with Alzheimer's disease (AD). Thus, elucidation of the pathological disorders can facilitate early AD diagnosis. The aim of this study was to investigate the age-specific pathological changes of β-amyloid plaques in brain tissues of AD mice at different ages. METHODS We arranged the most widely available APP/PS1 transgenic AD models into six age groups: 3, 4 and 6 months (these three groups mimicked early-clinical stage AD), 9, 12 and 15 months (these three groups mimicked late-clinical stage AD). Cell morphology and arrangement in the cortex and hippocampus were observed by hematoxylin and eosin (HE) staining. Congo red staining and immunohistochemical staining were performed to exhibit the distribution of β-amyloid plaques in the cortex and hippocampus of AD brains. RESULTS Our results found that as age increased, the nuclei of cortical and hippocampal cells in AD mice were severely damaged. The number and area of β-amyloid plaques increased in AD mice in correspondence with age revealed by histological experiments. Importantly, β-amyloid plaques were detected in the cortex and hippocampus of 6-month-old AD mice shown by Congo red staining while detected in the cortex and hippocampus of 4-month-old AD mice shown by immunohistochemical staining. CONCLUSIONS The current study revealed the age-related pathological changes of β-amyloid plaques in the cortex and hippocampus of AD mice and displayed a higher specificity of immunohistochemical staining than Congo red staining when detecting pathological changes of brain tissues.
Collapse
Affiliation(s)
- Lu-Lu Xue
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Li-Ren Huangfu
- Animal Zoology Department, Institute of Neuroscience, Kunming medical University, Kunming, Yunnan, China
| | - Ruo-Lan Du
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Chen
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chang-Yin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Ting-Hua Wang
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China.,Animal Zoology Department, Institute of Neuroscience, Kunming medical University, Kunming, Yunnan, China.,Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
44
|
Amorphous and Co-Amorphous Olanzapine Stability in Formulations Intended for Wet Granulation and Pelletization. Int J Mol Sci 2022; 23:ijms231810234. [PMID: 36142179 PMCID: PMC9499418 DOI: 10.3390/ijms231810234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
The preparation of amorphous and co-amorphous systems (CAMs) effectively addresses the solubility and bioavailability issues of poorly water-soluble chemical entities. However, stress conditions imposed during common pharmaceutical processing (e.g., tableting) may cause the recrystallization of the systems, warranting close stability monitoring throughout production. This work aimed at assessing the water and heat stability of amorphous olanzapine (OLZ) and OLZ-CAMs when subject to wet granulation and pelletization. Starting materials and products were characterized using calorimetry, diffractometry and spectroscopy, and their performance behavior was evaluated by dissolution testing. The results indicated that amorphous OLZ was reconverted back to a crystalline state after exposure to water and heat; conversely, OLZ-CAMs stabilized with saccharin (SAC), a sulfonic acid, did not show any significant loss of the amorphous content, confirming the higher stability of OLZ in the CAM. Besides resistance under the processing conditions of the dosage forms considered, OLZ-CAMs presented a higher solubility and dissolution rate than the respective crystalline counterpart. Furthermore, in situ co-amorphization of OLZ and SAC during granule production with high fractions of water unveils the possibility of reducing production steps and associated costs.
Collapse
|
45
|
Eide PK. Cellular changes at the glia-neuro-vascular interface in definite idiopathic normal pressure hydrocephalus. Front Cell Neurosci 2022; 16:981399. [PMID: 36119130 PMCID: PMC9478415 DOI: 10.3389/fncel.2022.981399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a subtype of dementia with overlap toward Alzheimer's disease. Both diseases show deposition of the toxic metabolites amyloid-β and tau in brain. A unique feature with iNPH is that a subset of patients may improve clinically following cerebrospinal fluid (CSF) diversion (shunt) surgery. The patients responding clinically to shunting are denoted Definite iNPH, otherwise iNPH is diagnosed as Possible iNPH or Probable iNPH, high-lightening that the clinical phenotype and underlying pathophysiology remain debated. Given the role of CSF disturbance in iNPH, the water channel aquaporin-4 (AQP4) has been suggested a crucial role in iNPH. Altered expression of AQP4 at the astrocytic endfeet facing the capillaries could affect glymphatic function, i.e., the perivascular transport of fluids and solutes, including soluble amyloid-β and tau. This present study asked how altered perivascular expression of AQP4 in subjects with definite iNPH is accompanied with cellular changes at the glia-neuro-vascular interface. For this purpose, information was retrieved from a database established by the author, including prospectively collected management data, physiological data and information from brain biopsy specimens examined with light and electron microscopy. Individuals with definite iNPH were included together with control subjects who matched the definite iNPH cohort closest in gender and age. Patients with definite iNPH presented with abnormally elevated pulsatile intracranial pressure measured overnight. Cortical brain biopsies showed reduced expression of AQP4 at astrocytic endfeet both perivascular and toward neuropil. This was accompanied with reduced expression of the anchor molecule dystrophin (Dp71) at astrocytic perivascular endfeet, evidence of altered cellular metabolic activity in astrocytic endfoot processes (reduced number of normal and increased number of pathological mitochondria), and evidence of reactive changes in astrocytes (astrogliosis). Moreover, the definite iNPH subjects demonstrated in cerebral cortex changes in capillaries (reduced thickness of the basement membrane between astrocytic endfeet and endothelial cells and pericytes, and evidence of impaired blood-brain-barrier integrity). Abnormal changes in neurons were indicated by reduced post-synaptic density length, and reduced number of normal mitochondria in pre-synaptic terminals. In summary, definite iNPH is characterized by profound cellular changes at the glia-neurovascular interface, which probably reflect the underlying pathophysiology.
Collapse
Affiliation(s)
- Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital—Rikshospitalet, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- *Correspondence: Per Kristian Eide
| |
Collapse
|
46
|
Lossouarn A, Puteaux C, Bailly L, Tognetti V, Joubert L, Renard P, Sabot C. Metalloenzyme‐Mediated Thiol‐Yne Addition Towards Photoisomerizable Fluorescent Dyes. Chemistry 2022; 28:e202202180. [DOI: 10.1002/chem.202202180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Alexis Lossouarn
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014) Rouen 76000 France
| | - Chloé Puteaux
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014) Rouen 76000 France
| | - Laetitia Bailly
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014) Rouen 76000 France
| | - Vincent Tognetti
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014) Rouen 76000 France
| | - Laurent Joubert
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014) Rouen 76000 France
| | - Pierre‐Yves Renard
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014) Rouen 76000 France
| | - Cyrille Sabot
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014) Rouen 76000 France
| |
Collapse
|
47
|
Morimoto M, Toyoda H, Niwa K, Hanaki R, Okuda T, Nakato D, Amano K, Iwamoto S, Hirayama M. Nafamostat mesylate prevents metastasis and dissemination of neuroblastoma through vascular endothelial growth factor inhibition. Mol Clin Oncol 2022; 17:138. [PMID: 35949892 PMCID: PMC9353881 DOI: 10.3892/mco.2022.2571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022] Open
Abstract
Neuroblastoma is a highly malignant disease with a poor prognosis and few treatment options. Despite conventional chemotherapy for neuroblastoma, resistance, invasiveness, and metastatic mobility limit the treatment efficacy. Therefore, it is necessary to develop new strategies for treating neuroblastoma. The present study aimed to evaluate the anticancer effects of nafamostat mesylate, a previously known serine protease inhibitor, on neuroblastoma cells. Effects of nafamostat mesylate on neuroblastoma cell migration and proliferation were analyzed by wound healing assay and WST-8 assay, respectively. To elucidate the mechanisms underlying the effects of nafamostat mesylate on neuroblastoma, the expression levels of NF-κB were measured via western blotting, and the production of the cytokine vascular endothelial growth factor (VEGF) in the cell culture supernatants was determined via ELISA. In addition, a mouse model of hematogenous metastasis was used to investigate the effects of nafamostat mesylate on neuroblastoma. It was determined that nafamostat mesylate significantly inhibited migration and invasion of Neuro-2a cells, but it had no effect on cell proliferation at 24 h after treatment. Exposure of Neuro-2a cells to nafamostat mesylate resulted in decreased vascular endothelial growth factor production, which could be a pivotal mechanism underlying the inhibitory effects of neuroblastoma metastasis. The results of the present study suggest that nafamostat mesylate may be an effective treatment against neuroblastoma invasion and metastasis.
Collapse
Affiliation(s)
- Mari Morimoto
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Hidemi Toyoda
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Kaori Niwa
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Ryo Hanaki
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Taro Okuda
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Daisuke Nakato
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Keishiro Amano
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Masahiro Hirayama
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| |
Collapse
|
48
|
Wang Y, Hu X, Sun Y, Huang Y. The Role of ASIC1a in Inflammatory Immune Diseases: A Potential Therapeutic Target. Front Pharmacol 2022; 13:942209. [PMID: 35873582 PMCID: PMC9304623 DOI: 10.3389/fphar.2022.942209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
It is acknowledged that chronic inflammation is associated with a rise in extracellular proton concentrations. The acid-sensing ion channel 1a (ASIC1a) belongs to the extracellular H+-activated cation channel family. Recently, many studies have been conducted on ASIC1a and inflammatory immune diseases. Here, in this review, we will focus on the role of ASIC1a in several inflammatory immune diseases so as to provide new perspectives for clinical treatment.
Collapse
Affiliation(s)
- Yinghong Wang
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaojie Hu
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yancai Sun
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Yancai Sun, ; Yan Huang,
| | - Yan Huang
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- *Correspondence: Yancai Sun, ; Yan Huang,
| |
Collapse
|
49
|
Ribeiro TC, Sábio RM, Carvalho GC, Fonseca-Santos B, Chorilli M. Exploiting Mesoporous Silica, Silver And Gold Nanoparticles For Neurodegenerative Diseases Treatment. Int J Pharm 2022; 624:121978. [DOI: 10.1016/j.ijpharm.2022.121978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
|
50
|
Lohrasbi M, Taghian F, Jalali Dehkordi K, Hosseini SA. The functional mechanisms of synchronizing royal jelly consumption and physical activity on rat with multiple sclerosis-like behaviors hallmarks based on bioinformatics analysis, and experimental survey. BMC Neurosci 2022; 23:34. [PMID: 35676653 PMCID: PMC9175490 DOI: 10.1186/s12868-022-00720-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022] Open
Abstract
Background Natural nutrition and physical training have been defined as non-pharmacochemical complementary and alternative medicines to prevent and treat various pathogenesis. Royal jelly possesses various pharmacological properties and is an effective therapeutic supplement for halting neurodegeneration. Multiple sclerosis is a prevalent neurodegenerative disorder that manifests as a progressive neurological condition. Inflammation, hypoxia, and oxidative stress have been identified as significant hallmarks of multiple sclerosis pathology. Results In the present study, based on artificial intelligence and bioinformatics algorithms, we marked hub genes, molecular signaling pathways, and molecular regulators such as non-coding RNAs involved in multiple sclerosis. Also, microRNAs as regulators can affect gene expression in many processes. Numerous pathomechanisms, including immunodeficiency, hypoxia, oxidative stress, neuroinflammation, and mitochondrial dysfunction, can play a significant role in the MSc pathogenesis that results in demyelination. Furthermore, we computed the binding affinity of bioactive compounds presented in Royal Jelly on macromolecules surfaces. Also, we predicted the alignment score of bioactive compounds over the pharmacophore model of candidate protein as a novel therapeutic approach. Based on the q-RT-PCR analysis, the expression of the Dnajb1/Dnajb1/Foxp1/Tnfsf14 and Hspa4 networks as well as miR-34a-5p and miR155-3p were regulated by the interaction of exercise training and 100 mg/kg Royal Jelly (ET-100RJ). Interestingly, characteristics, motor function, a proinflammatory cytokine, and demyelination were ameliorated by ET-100RJ. Discussion Here, we indicated that interaction between exercise training and 100 mg/kg Royal jelly had a more effect on regulating the microRNA profiles and hub genes in rats with Multiple sclerosis.
Collapse
Affiliation(s)
- Maryam Lohrasbi
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Farzaneh Taghian
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Khosro Jalali Dehkordi
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Seyed Ali Hosseini
- Department of Sport Physiology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|