1
|
Umar AH, Widuri SA, Caecilia Sulistyaningsih Y, Ratnadewi D. Integrating Metabolomic Analysis, Network Pharmacology, and Molecular Docking to Underlying Pharmacological Mechanism and Ethnobotanical Rationalization for Diabetes Mellitus: Study on Medicinal Plant Fibraurea tinctoria Lour. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 39539006 DOI: 10.1002/pca.3477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Fibraurea tinctoria Lour. has long been used in traditional medicine to treat diabetes mellitus (DM). However, a comprehensive scientific understanding of its potential active compounds and underlying pharmacological mechanisms still needs to be unveiled. OBJECTIVE This study, therefore, presents a novel approach by integrating metabolomic profiling, pharmacological network, and molecular docking analysis to investigate the potential of F. tinctoria as antidiabetes mellitus. METHODS Active compounds were obtained through analysis using ultrahigh-performance liquid chromatography-quadrupole-orbital ion trap-high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) and screening of active compounds using Lipinski rule of five and ADMET parameters. Potential targets of F. tinctoria compounds and DM-related targets were retrieved from public databases, such as DisGeNET, GeneCards, OMIM, PharmaGKB, and TTD. The targets' gene ontology (GO) was created using DAVID and protein-protein interactions using STRING. The plant-organ-compound-target-disease network was constructed using Cytoscape. Then, molecular docking analysis predicted and verified the interactions of essential bioactive compounds of F. tinctoria and DM core targets. RESULTS The network pharmacology approach identified 35 active compounds, 565 compound-related targets, and 17,289 DM-related targets. EGFR, HSP90AA1, ESR1, HSP90AB1, and GSK3B were the core targets, whereas isolariciresinol, cubebin, corypalmine, (-)-8-oxocanadine, and (+)-N-methylcoclaurine were the most active compounds of F. tinctoria with DM potential. GO functional enrichment analysis revealed 483 biological processes, 485 cellular components, and 463 molecular functions. REACTOME pathway enrichment analysis yielded 463 significantly enriched signaling pathways. Of these pathways, the cytokine signaling in the immune system pathway may play a key role in treating DM. The results of molecular docking analysis showed that the core targets of DM, such as 5gnk, 3o0i, 6psj, 5ucj, and 1q5k, bind stably to the analyzed bioactive compounds of F. tinctoria. CONCLUSIONS This study provides significant insights into the potential mechanism of F. tinctoria in treating DM. The main active compounds of F. tinctoria were found to interact with the core targets (EGFR, HSP90AA1, ESR1, HSP90AB1, and GSK3B) through the cytokine signaling pathway in the immune system, suggesting a potential therapeutic pathway for DM. However, it is essential to note that these findings are preliminary, and further research is necessary to validate them. Those research studies could involve in vitro and in vivo studies to confirm the bioactivity of the identified compounds and their interactions with the core targets. When the findings are confirmed, they could have significant clinical implications, potentially leading to developing new therapeutic strategies for DM.
Collapse
Affiliation(s)
- Abdul Halim Umar
- Division of Pharmaceutical Biology, Faculty of Health Sciences, Almarisah Madani University, Makassar, South Sulawesi, Indonesia
| | - Septina Asih Widuri
- Center for Implementation of Environmental and Forestry Instrument Standards, Indonesia Ministry of Environment and Forestry, Kutai Kartanegara, East Kalimantan, Indonesia
| | | | - Diah Ratnadewi
- Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, West Java, Indonesia
| |
Collapse
|
2
|
Safavi K, Hajibabaie F, Abedpoor N. Bioinformatics and Chemoinformatics Analysis Explored the Role of Linum usitatissimum in Diabetic Heart Conditions: Experimental Analysis in H9c2 Rat Embryonic Cardiomyocytes Cell Lines. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:27. [PMID: 39380770 PMCID: PMC11460736 DOI: 10.4103/jmss.jmss_4_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/18/2024] [Accepted: 05/27/2024] [Indexed: 10/10/2024]
Abstract
Background Cytokine storms and inflammation lead to heart failure (HF). Bioactive compounds, as complementary medicine, can be the primary source of compounds with anti-inflammatory properties. Linum usitatissimum (LiU) has antioxidant capacity and anti-inflammatory activity. Here, candidate hugeness was selected based on the in silico studies, bio-cheminformatics, and bioinformatic analysis for excremental validation. Methods We selected the vital genes with differential expression from the GSE26887 dataset. Based on the bioinformatics analysis, several parameters are determined to choose switchable genes involved in diabetic HF (DHF). We designed the protein-protein interactions network to consider the nodes' degree, modularity, and betweenness centrality. Hence, we selected the interleukin (IL)-6 protein as a target for drug design and discovery to reduce diabetes complications in the heart. Here, H9c2 cell lines of rat embryonic cardiomyocytes induce HF using hyperglycemic and hyperlipidemic conditions. Real-time polymerase chain reaction evaluated the relative expression of SMAD7/NRF-2/STAT3. Furthermore, we assessed the concentration of IL-6 using the enzyme-linked immunosorbent assay technique. Results Based on the bioinformatic analysis, we found that IL-6 with the highest network parameters score might be presented as a druggable protein in the DHF. Bioactive compounds and phytochemicals have potential strategies to manage DHF. LiUs decreased the expression level of the SMAD7 (P <0.0001) and STAT3 (P < 0.0001), and increased the expression level of the NRF2 (P < 0.0001). In addition, LiUs significantly reduced the concentration of IL-6 (P < 0.0001). Conclusion Our data proposed that LiUs regulated inflammation and triggered the antioxidant defense in HF. Moreover, LiUs could have potential approaches to managing and preventing DHF.
Collapse
Affiliation(s)
- Kamran Safavi
- Department of Plant Biotechnology, Medicinal Plants Research Centre, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Fatemeh Hajibabaie
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Department of Physiology, Medicinal Plants Research Centre, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Navid Abedpoor
- Department of Physiology, Medicinal Plants Research Centre, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
3
|
Bolat E, Sarıtaş S, Duman H, Eker F, Akdaşçi E, Karav S, Witkowska AM. Polyphenols: Secondary Metabolites with a Biological Impression. Nutrients 2024; 16:2550. [PMID: 39125431 PMCID: PMC11314462 DOI: 10.3390/nu16152550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Polyphenols are natural compounds which are plant-based bioactive molecules, and have been the subject of growing interest in recent years. Characterized by multiple varieties, polyphenols are mostly found in fruits and vegetables. Currently, many diseases are waiting for a cure or a solution to reduce their symptoms. However, drug or other chemical strategies have limitations for using a treatment agent or still detection tool of many diseases, and thus researchers still need to investigate preventive or improving treatment. Therefore, it is of interest to elucidate polyphenols, their bioactivity effects, supplementation, and consumption. The disadvantage of polyphenols is that they have a limited bioavailability, although they have multiple beneficial outcomes with their bioactive roles. In this context, several different strategies have been developed to improve bioavailability, particularly liposomal and nanoparticles. As nutrition is one of the most important factors in improving health, the inclusion of plant-based molecules in the daily diet is significant and continues to be enthusiastically researched. Nutrition, which is important for individuals of all ages, is the key to the bioactivity of polyphenols.
Collapse
Affiliation(s)
- Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Bialystok Medical University, 15-089 Bialystok, Poland
| |
Collapse
|
4
|
Zhuo LB, Yang Y, Xiao C, Li F, Lin L, Xi Y, Fu Y, Zheng JS, Chen YM. Gut microbiota-bile acid axis mediated the beneficial associations between dietary lignans and hyperuricemia: a prospective study. Food Funct 2024; 15:6438-6449. [PMID: 38775706 DOI: 10.1039/d4fo00961d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Background: The escalating prevalence of hyperuricemia is emerging as a significant public health concern. The association between dietary lignans and hyperuricemia is yet to be fully elucidated. Our study aims to evaluate the relationships between dietary lignan intake and hyperuricemia among middle-aged and elderly Chinese individuals, with an additional focus on investigating the underlying mechanisms. Methods: Dietary lignan intake was measured using a validated Food Frequency Questionnaire in 3801 participants at the baseline. Among them, 2552 participants were included in the longitudinal study with a median follow-up of 10.5 years. The gut microbiota was analyzed by shotgun metagenome sequencing in 1789 participants, and the targeted fecal metabolome was determined in 987 participants using UPLC-MS/MS at the midpoint of follow-up. Results: The multivariable-adjusted HRs (95% CIs) for hyperuricemia incidence in the highest quartile (vs. the lowest quartile) of dietary intake of total lignans, matairesinol, pinoresinol, and secoisolariciresinol were 0.93 (0.78-1.10), 0.77 (0.66-0.90), 0.83 (0.70-0.97), and 0.85 (0.73-1.00), respectively. The gut microbial and fecal metabolic compositions were significantly different across the dietary lignan groups and the hyperuricemia groups. The beneficial associations between dietary lignans and hyperuricemia might be mediated by several gut microbes (e.g., Fusobacterium mortiferum and Blautia sp. CAG-257) and the downstream bile acid products (e.g., NorCA, glycochenodeoxycholic acid, and glycoursodeoxycholic acid). Conclusion: We found that dietary lignans were inversely associated with hyperuricemia incidence, and the gut microbiota-bile acid axis might mediate this association. Our findings provide new perspectives on precise therapeutic targets and underlying mechanisms for conditions associated with elevated uric acid.
Collapse
Affiliation(s)
- Lai-Bao Zhuo
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yingdi Yang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Congmei Xiao
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, School of Medicine and School of Life Sciences, Westlake University, Hangzhou 310030, China.
- Shenzhen Bao'an Center for Chronic Diseases Control, Shenzhen, China
| | - Fanqin Li
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Lishan Lin
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yue Xi
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yuanqing Fu
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, School of Medicine and School of Life Sciences, Westlake University, Hangzhou 310030, China.
- Shenzhen Bao'an Center for Chronic Diseases Control, Shenzhen, China
| | - Ju-Sheng Zheng
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, School of Medicine and School of Life Sciences, Westlake University, Hangzhou 310030, China.
| | - Yu-Ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
5
|
Chen Y, Li H, Cai Y, Wang K, Wang Y. Anti-hyperuricemia bioactive peptides: a review on obtaining, activity, and mechanism of action. Food Funct 2024; 15:5714-5736. [PMID: 38752330 DOI: 10.1039/d4fo00760c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Hyperuricemia, a disorder of uric acid metabolism, serves as a significant risk factor for conditions such as hypertension, diabetes mellitus, renal failure, and various metabolic syndromes. The main contributors to hyperuricemia include overproduction of uric acid in the liver or impaired excretion in the kidneys. Despite traditional clinical drugs being employed for its treatment, significant health concerns persist. Recently, there has been growing interest in utilizing protein peptides sourced from diverse food origins to mitigate hyperuricemia. This article provides a comprehensive review of bioactive peptides with anti-hyperuricemia properties derived from animals, plants, and their products. We specifically outline the methods for preparing these peptides from food proteins and elucidate their efficacy and mechanisms in combating hyperuricemia, supported by in vitro and in vivo evidence. Uric acid-lowering peptides offer promising prospects due to their safer profile, enhanced efficacy, and improved bioavailability. Therefore, this review underscores significant advancements and contributions in identifying peptides capable of metabolizing purine and/or uric acid, thereby alleviating hyperuricemia. Moreover, it offers a theoretical foundation for the development of functional foods incorporating uric acid-lowering peptides.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, China
| | - Hongyan Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, China
| | - Yunfei Cai
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, China
| | - Ke Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, China
- Institute of Modern Fermentation Engineering and Future Foods, Guangxi University, Nanning, 530004, China
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
- Rizhao Huawei Institute of Comprehensive Health Industries, Shandong Keepfit Biotech. Co. Ltd., Rizhao, 276800, China
| | - Yousheng Wang
- Institute of Modern Fermentation Engineering and Future Foods, Guangxi University, Nanning, 530004, China
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| |
Collapse
|
6
|
El Oirdi M. Harnessing the Power of Polyphenols: A New Frontier in Disease Prevention and Therapy. Pharmaceuticals (Basel) 2024; 17:692. [PMID: 38931359 PMCID: PMC11206774 DOI: 10.3390/ph17060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
There are a wide variety of phytochemicals collectively known as polyphenols. Their structural diversity results in a broad range of characteristics and biological effects. Polyphenols can be found in a variety of foods and drinks, including fruits, cereals, tea, and coffee. Studies both in vitro and in vivo, as well as clinical trials, have shown that they possess potent antioxidant activities, numerous therapeutic effects, and health advantages. Dietary polyphenols have demonstrated the potential to prevent many health problems, including obesity, atherosclerosis, high blood sugar, diabetes, hypertension, cancer, and neurological diseases. In this paper, the protective effects of polyphenols and the mechanisms behind them are investigated in detail, citing the most recent available literature. This review aims to provide a comprehensive overview of the current knowledge on the role of polyphenols in preventing and managing chronic diseases. The cited publications are derived from in vitro, in vivo, and human-based studies and clinical trials. A more complete understanding of these naturally occurring metabolites will pave the way for the development of novel polyphenol-rich diet and drug development programs. This, in turn, provides further evidence of their health benefits.
Collapse
Affiliation(s)
- Mohamed El Oirdi
- Department of Life Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
7
|
Arabshomali A, Bazzazzadehgan S, Mahdi F, Shariat-Madar Z. Potential Benefits of Antioxidant Phytochemicals in Type 2 Diabetes. Molecules 2023; 28:7209. [PMID: 37894687 PMCID: PMC10609456 DOI: 10.3390/molecules28207209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The clinical relationship between diabetes and inflammation is well established. Evidence clearly indicates that disrupting oxidant-antioxidant equilibrium and elevated lipid peroxidation could be a potential mechanism for chronic kidney disease associated with type 2 diabetes mellitus (T2DM). Under diabetic conditions, hyperglycemia, especially inflammation, and increased reactive oxygen species generation are bidirectionally associated. Inflammation, oxidative stress, and tissue damage are believed to play a role in the development of diabetes. Although the exact mechanism underlying oxidative stress and its impact on diabetes progression remains uncertain, the hyperglycemia-inflammation-oxidative stress interaction clearly plays a significant role in the onset and progression of vascular disease, kidney disease, hepatic injury, and pancreas damage and, therefore, holds promise as a therapeutic target. Evidence strongly indicates that the use of multiple antidiabetic medications fails to achieve the normal range for glycated hemoglobin targets, signifying treatment-resistant diabetes. Antioxidants with polyphenols are considered useful as adjuvant therapy for their potential anti-inflammatory effect and antioxidant activity. We aimed to analyze the current major points reported in preclinical, in vivo, and clinical studies of antioxidants in the prevention or treatment of inflammation in T2DM. Then, we will share our speculative vision for future diabetes clinical trials.
Collapse
Affiliation(s)
- Arman Arabshomali
- Department of Pharmacy Administration, School of Pharmacy, University of Mississippi, University, MS 38677, USA; (A.A.); (S.B.)
| | - Shadi Bazzazzadehgan
- Department of Pharmacy Administration, School of Pharmacy, University of Mississippi, University, MS 38677, USA; (A.A.); (S.B.)
| | - Fakhri Mahdi
- Department of BioMolecular Sciences, Division of Pharmacology, School of Pharmacy, University of Mississippi, University, MS 38677, USA;
| | - Zia Shariat-Madar
- Department of BioMolecular Sciences, Division of Pharmacology, School of Pharmacy, University of Mississippi, University, MS 38677, USA;
| |
Collapse
|
8
|
Singh S, Gaur S. Virtually selected phytochemicals from edible seeds as possible potential medicaments for hypercholesterolemia: an in silico approach. J Biomol Struct Dyn 2023; 41:8690-8700. [PMID: 36259535 DOI: 10.1080/07391102.2022.2135604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 10/08/2022] [Indexed: 10/24/2022]
Abstract
Hypercholesterolemia is one of the major health concerns in today's time. Bioactive compounds from various sources have been implicated in managing the conditions of Hypercholesterolemia. With advancements in research, several edible seeds have been explored in managing the disease. This study employs in silico approach to gain insights into the binding interactions of the bioactive compounds which are reportedly present in Edible seeds, against the protein HMG-CoA reductase, which plays a crucial role in cholesterol metabolism. The bioactive compounds were virtually screened and selected based on molecular docking studies which revealed the strong binding interactions of HMG-CoA reductase with Acacetin (-7.6 kcal/mol), Irilone (-7.5 kcal/mol), Orobanchol (-7.5 kcal/mol), Diadzein (-7.4 kcal/mol) and Malvidin (-7.4 kcal/mol). These compounds largely conformed to drug likeliness criteria and ADME properties with lesser mutagenic, hepatotoxic effects and higher absorption percentage in human intestine. Moreover, we performed molecular dynamics simulation studies for docked complexes to explore their stability under simulated conditions. Data gathered from this study will support the future in vitro and in vivo research in development of potential medicaments using the bioactive compounds from edible seeds for management of hypercholesterolemia.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shubhi Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Smriti Gaur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
9
|
Abdelwahab AH, Negm AM, Mahmoud ES, Salama RM, Schaalan MF, El-Sheikh AAK, Ramadan BK. The cardioprotective effects of secoisolariciresinol diglucoside (flaxseed lignan) against cafeteria diet-induced cardiac fibrosis and vascular injury in rats: an insight into apelin/AMPK/FOXO3a signaling pathways. Front Pharmacol 2023; 14:1199294. [PMID: 37497114 PMCID: PMC10367100 DOI: 10.3389/fphar.2023.1199294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023] Open
Abstract
Introduction: Fast food is a major risk factor for atherosclerosis, a leading cause of morbidity and mortality in the Western world. Apelin, the endogenous adipokine, can protect against cardiovascular disease via activating its receptor, APJ. Concurrently, secoisolariciresinol diglucoside (SDG), a flaxseed lignan extract (FLE), showed a therapeutic impact on atherosclerosis. The current study aimed to examine the effect of SDG on cafeteria diet (CAFD)-induced vascular injury and cardiac fibrosis via tracking the involvement of the apelin/APJ pathway. Methods: Thirty male rats were allocated into control, FLE-, CAFD-, CAFD/FLE-, and CAFD/FLE/F13A-treated rats, where F13A is an APJ blocker. All treatments lasted for 12 weeks. Results and discussion: The CAFD-induced cardiovascular injury was evidenced by histological distortions, dyslipidemia, elevated atherogenic indices, cardiac troponin I, collagen percentage, glycogen content, and apoptotic markers. CAFD increased both the gene and protein expression levels of cardiac APJ, apelin, and FOXO3a, in addition to increasing endothelin-1, VCAM1, and plasminogen activator inhibitor-1 serum levels and upregulating cardiac MMP-9 gene expression. Moreover, CAFD reduced serum paraoxonase 1 and nitric oxide levels, cardiac AMPK, and nuclear Nrf2 expression. FLE attenuated CAFD-induced cardiovascular injury. Such effect was reduced in rats receiving the APJ blocker, implicating the involvement of apelin/APJ in FLE protective mechanisms. Conclusion: FLE supplementation abrogated CAFD-induced cardiac injury and endothelial dysfunction in an apelin/APJ-dependent manner.
Collapse
Affiliation(s)
- Azza H. Abdelwahab
- Physiology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| | - Amira M. Negm
- Physiology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| | - Eman S. Mahmoud
- Histology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| | - Rania M. Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Mona F. Schaalan
- Clinical Pharmacy Department, Clinical and Translational Research Unit, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Azza A. K. El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Basma K. Ramadan
- Physiology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
- Medical Sciences Department, Faculty of Oral and Dental Medicine, Misr International University, Cairo, Egypt
| |
Collapse
|
10
|
Naz S, Imran I, Farooq MA, Shah SAH, Ajmal I, Zahra Z, Aslam A, Sarwar MI, Shah J, Aleem A. Hyperglycemia-associated Alzheimer's-like symptoms and other behavioral effects attenuated by Plumeria obtusa L. Extract in alloxan-induced diabetic rats. Front Pharmacol 2022; 13:1077570. [PMID: 36588726 PMCID: PMC9800837 DOI: 10.3389/fphar.2022.1077570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetes mellitus is a chronic metabolic complaint with numerous short- and long-term complications that harm a person's physical and psychological health. Plumeria obtusa L. is a traditional medicine used in the treatment of diabetes to reduce complications related to behavior. Plumeria is a genus with antipsychotic activities. The objective of this study was to examine the effects of a methanolic extract of Plumeria obtusa L. in the attenuation of diabetes, on symptoms of Alzheimer disease, and on other associated behavioral aspects. A single dose of alloxan was administered to an experimental group of rats to induce development of diabetes (150 mg/kg, intraperitoneal) and the rats were then administered selected doses of methanolic extract of Plumeria obtusa L. (Po.Cr) or glibenclamide (0.6 mg/kg) for 45 consecutive days. Behavioral effects were evaluated using three validated assays of anxiety-related behavior: the open field test, the light and dark test, and the elevated plus maze. Anti-depressant effects of Plumeria obtusa L. were evaluated using the forced swim test (FST) and memory and learning were assessed using the Morris water maze (MWM) task. Po.Cr was also evaluated for phytochemicals using total phenolic content (TPC), total flavonoid content (TFC), and high-performance liquid chromatography assays, and antioxidant capability was assessed through assays of DPPH radical scavenging, total oxidation capacity, and total reducing capacity. In the alloxan-induced model of diabetes, the administration of Po.Cr and glibenclamide for 45 days produced a marked decrease (p < 0.001) in hyperglycemia compared to control animals. Po.Cr treatment also resulted in improvement in indicators, such as body weight and lipid profile (p < 0.05), as well as restoration of normal levels of alanine transaminase (ALT) (p < 0.001), a biomarker of liver function. Diabetic rats presented more Alzheimer-like symptoms, with greater impairment of memory and learning, and increased anxiety and depression compared to non-diabetic normal rats, whereas treated diabetic rats showed significant improvements in memory and behavioral outcomes. These results demonstrate that Po.Cr reversed alloxan-induced hyperglycemia and ameliorated Alzheimer-related behavioral changes, which supports additional study and assessment of conventional use of the plant to treat diabetes and associated behavioral complications.
Collapse
Affiliation(s)
- Sumeera Naz
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Asad Farooq
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China,*Correspondence: Muhammad Asad Farooq, ; Jaffer Shah, ; Ambreen Aleem, ,
| | - Syed Adil Hussain Shah
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Iqra Ajmal
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zartash Zahra
- Gujrat Institute of Management Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Gujrat Campus, Gujrat, India
| | - Aqsa Aslam
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Irfan Sarwar
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Jaffer Shah
- Department of Health, New York, NY, United States,*Correspondence: Muhammad Asad Farooq, ; Jaffer Shah, ; Ambreen Aleem, ,
| | - Ambreen Aleem
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan,*Correspondence: Muhammad Asad Farooq, ; Jaffer Shah, ; Ambreen Aleem, ,
| |
Collapse
|
11
|
Hajibabaie F, Abedpoor N, Safavi K, Taghian F. Natural remedies medicine derived from flaxseed (secoisolariciresinol diglucoside, lignans, and α-linolenic acid) improve network targeting efficiency of diabetic heart conditions based on computational chemistry techniques and pharmacophore modeling. J Food Biochem 2022; 46:e14480. [PMID: 36239429 DOI: 10.1111/jfbc.14480] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/31/2022] [Accepted: 09/29/2022] [Indexed: 01/14/2023]
Abstract
Cytokine storms lead to cardiovascular diseases (CVDs). Natural herbal compounds are considered the primary source of active agents with the potential to prevent or treat inflammatory-related pathologies such as CVD and diabetes. Flaxseed contains phytochemicals, including secoisolariciresinol diglucoside (SDG), α-linolenic acid (ALA), and lignans, termed "SAL." Hence, we evaluated the effect of the SAL on the H9c2 cardiac cells in hyperlipidemic and hyperglycemic conditions. Here, candidate hub genes, TNF-α, IL6, SIRT1, NRF1, NPPA, and FGF7, were selected as effective genes in diabetic cardiovascular pathogenesis based on in-silico analysis and chemoinformatic. Myocardial infarction (MI) was induced using H9c2 cardiac cells in hyperlipidemic and hyperglycemic conditions. Real-time qPCR was conducted to assess the expression level of hub genes. This study indicated that SAL compounds bound to the Il-6, SIRT1, and TNF-α active sites as druggable candidate proteins based on the chemoinformatics analysis. This study displayed that the TNF-α, IL6, SIRT1, NRF1, NPPA, and FGF7 network dysfunction in MI models were ameliorated by SAL consumption. Furthermore, SAL compounds improved the function and myogenesis of H9c2 cells in hyperlipidemic and hyperglycemic conditions. Our data suggested that phytochemicals obtained from flaxseed might have proposed potential complementary treatment or preventive strategies for MI. PRACTICAL APPLICATIONS: Phytochemicals obtained from flaxseed (SAL) could reverse diabetic heart dysfunction hallmarks and provide new potential treatment approaches in cardiovascular therapy. SAL could be considered complementary and alternative medicines for treating various disorders/diseases singly or synchronizing with prescription drugs.
Collapse
Affiliation(s)
- Fatemeh Hajibabaie
- Department of Physiology, Medicinal Plants Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Navid Abedpoor
- Department of Physiology, Medicinal Plants Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Kamran Safavi
- Department of Plant Biotechnology, Medicinal Plants Research Centre, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Farzaneh Taghian
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
12
|
Deka H, Choudhury A, Dey BK. An Overview on Plant Derived Phenolic Compounds and Their Role in Treatment and Management of Diabetes. J Pharmacopuncture 2022; 25:199-208. [PMID: 36186092 PMCID: PMC9510143 DOI: 10.3831/kpi.2022.25.3.199] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/22/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
Objectives In recent decades, the trend for treating diabetes mellitus (DM) has shifted toward alternative medicines that are obtained from plant sources. Existing literature suggests that phenolic compounds derived from plants possess promising health-promoting properties. This study aimed to discuss the role of plant-derived phenolic compounds in the effective treatment and management of diabetes. Methods Information about plant secondary metabolites, phenolic compounds, and their role in the treatment and management of diabetes was collected from different databases, such as Pubmed, ScienceDirect, Scopus, and Google Scholar. Keywords like secondary metabolites, phenolic compounds, simple phenol, flavonoids, lignans, stilbenes, and diabetes were searched. Research and review articles with relevant information were included in the study. Results Anti-diabetic studies of the four major classes of phenolic compounds were included in this review. The plant-derived phenolic compounds were reported to have potent anti-diabetic activities. However, each class of phenolic compounds was found to behave differently according to various mechanisms. Conclusion The obtained results suggest that phenolic compounds derived from natural sources display promising anti-diabetic activities. Based on the available information, it can be concluded that phenolic compounds obtained from various natural sources play key roles in the treatment and management of diabetes.
Collapse
Affiliation(s)
- Himangshu Deka
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| | - Ananta Choudhury
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| | - Biplab Kumar Dey
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| |
Collapse
|
13
|
Li J, Li J, Fan L. Recent Advances in Alleviating Hyperuricemia Through Dietary Sources: Bioactive Ingredients and Structure–activity Relationships. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2124414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jun Li
- State Key laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
- Institute of Food Processing Technology, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Jinwei Li
- State Key laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Liuping Fan
- State Key laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborat Innovat Ctr Food Safety & Qual Control, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
14
|
Fernandes I, Oliveira J, Pinho A, Carvalho E. The Role of Nutraceutical Containing Polyphenols in Diabetes Prevention. Metabolites 2022; 12:metabo12020184. [PMID: 35208257 PMCID: PMC8878446 DOI: 10.3390/metabo12020184] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Research in pharmacological therapy has led to the availability of many antidiabetic agents. New recommendations for precision medicine and particularly precision nutrition may greatly contribute to the control and especially to the prevention of diabetes. This scenario greatly encourages the search for novel non-pharmaceutical molecules. In line with this, the daily and long-term consumption of diets rich in phenolic compounds, together with a healthy lifestyle, may have a protective role against the development of type 2 diabetes. In the framework of the described studies, there is clear evidence that the bio accessibility, bioavailability, and the gut microbiota are indeed affected by: the way phenolic compounds are consumed (acutely or chronically; as pure compounds, extracts, or in-side a whole meal) and the amount and the type of phenolic compounds (ex-tractable or non-extractable/macromolecular antioxidants, including non-bioavailable polyphenols and plant matrix complexed structures). In this review, we report possible effects of important, commonly consumed, phenolic-based nutraceuticals in pre-clinical and clinical diabetes studies. We highlight their mechanisms of action and their potential effects in health promotion. Translation of this nutraceutical-based approach still requires more and larger clinical trials for better elucidation of the mechanism of action toward clinical applications.
Collapse
Affiliation(s)
- Iva Fernandes
- Laboratório Associado para a Química Verde—REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal;
| | - Joana Oliveira
- Laboratório Associado para a Química Verde—REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal;
- Correspondence: (J.O.); (E.C.)
| | - Aryane Pinho
- Center for Neuroscience and Cell Biology, Faculdade de Medicina, University of Coimbra, Rua Larga, Polo I, 1º Andar, 3004-504 Coimbra, Portugal; or
- Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, Faculdade de Medicina, University of Coimbra, Rua Larga, Polo I, 1º Andar, 3004-504 Coimbra, Portugal; or
- Instituto de Investigação Interdisciplinar, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
- APDP—Portuguese Diabetes Association, 1250-189 Lisbon, Portugal
- Correspondence: (J.O.); (E.C.)
| |
Collapse
|
15
|
Evaluation of Antidiabetic Activity of Sargassum tenerrimum in Streptozotocin-Induced Diabetic Mice. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diabetes mellitus has become the most predominant disease in most of the developing and developed countries. Diabetes could occur at any stage of life for which a change in sedentary life style is the possible solution. Despite the introduction of several medications, to curtail the side effects associated with diabetes mellitus, there is no medication or treatment for complete cure. Existing medications and treatments are targeted to mitigate the intensity of the disease which abruptly could result in organ failure. Rather than the available types of treatments, natural medication is reported to produce commendable results. Extracts of many medicinal plants and seaweeds have been documented to possess anti-diabetic properties. A brown alga, S. tenerrimum, found on the west coast of India, is chosen in this study to analyse the anti-diabetic property of its methanolic extract. This extract was used to treat streptozotocin-induced diabetic mice. An experimental design was framed based on acute toxicity studies to determine the change in blood glucose level, body weight, lipid profile, liver enzymes (SGPT and SGOT) and the renal function markers (urea and creatinine). After 15 days of treatment, an increase in body weight and HDL cholesterol was observed while the total cholesterol, VLDL, LDL, serum triglyceride, SGOT, SGPT, creatinine and urea decreased with 250 mg/Kg.bw of S. tenerrimum methanolic extract in Streptozotocin-induced diabetic mice group. This difference is significant (p<0.05) when compared with a healthy non-diabetic mice group and a treated diabetic mice group. This proves that the methanolic extract of S. tenerrimum possess anti-diabetic property. Further research could explore the active compounds that can be used in the formulation of herbal medicine for diabetes mellitus.
Collapse
|
16
|
Lee D, Kim YM, Kim HW, Choi YK, Park BJ, Joo SH, Kang KS. Schisandrin C Affects Glucose-Stimulated Insulin Secretion in Pancreatic β-Cells and Glucose Uptake in Skeletal Muscle Cells. Molecules 2021; 26:molecules26216509. [PMID: 34770916 PMCID: PMC8587027 DOI: 10.3390/molecules26216509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/20/2023] Open
Abstract
The aim of our study was to investigate the effect of three lignans (schisandrol A, schisandrol B, and schisandrin C) on insulin secretion in rat INS-1 pancreatic β-cells and glucose uptake in mouse C2C12 skeletal muscle cells. Schisandrol A and schisandrin C enhanced insulin secretion in response to high glucose levels with no toxic effects on INS-1 cells. The effect of schisandrin C was superior to that of gliclazide (positive control), a drug commonly used to treat type 2 diabetes (T2D). In addition, western blot analysis showed that the expression of associated proteins, including peroxisome proliferator-activated receptor γ (PPARγ), pancreatic and duodenal homeobox 1 (PDX-1), phosphatidylinositol 3-kinase (PI3K), Akt, and insulin receptor substrate-2 (IRS-2), was increased in INS-1 cells after treatment with schisandrin C. In addition, insulin secretion effect of schisandrin C were enhanced by the Bay K 8644 (L-type Ca2+ channel agonist) and glibenclamide (K+ channel blocker), were abolished by the nifedipine (L-type Ca2+ channel blocker) and diazoxide (K+ channel activator). Moreover, schisandrin C enhanced glucose uptake with no toxic effects on C2C12 cells. Western blot analysis showed that the expression of associated proteins, including insulin receptor substrate-1 (IRS-1), AMP-activated protein kinase (AMPK), PI3K, Akt, glucose transporter type 4 (GLUT-4), was increased in C2C12 cells after treatment with schisandrin C. Schisandrin C may improve hyperglycemia by enhancing insulin secretion in pancreatic β-cells and improving glucose uptake into skeletal muscle cells. Our findings may provide evidence that schisandrin C may be beneficial in devising novel anti-T2D strategies.
Collapse
Affiliation(s)
- Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| | - Young-Mi Kim
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (Y.-M.K.); (H.W.K.)
| | - Hyun Woo Kim
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (Y.-M.K.); (H.W.K.)
| | - You-Kyoung Choi
- Department of Korean International Medicine, College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| | - Bang Ju Park
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Korea;
| | - Sang Hoon Joo
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Korea
- Correspondence: (S.H.J.); (K.S.K.); Tel.: +82-53-850-3614 (S.H.J.); +82-31-750-5402 (K.S.K.)
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
- Correspondence: (S.H.J.); (K.S.K.); Tel.: +82-53-850-3614 (S.H.J.); +82-31-750-5402 (K.S.K.)
| |
Collapse
|
17
|
Blahova J, Martiniakova M, Babikova M, Kovacova V, Mondockova V, Omelka R. Pharmaceutical Drugs and Natural Therapeutic Products for the Treatment of Type 2 Diabetes Mellitus. Pharmaceuticals (Basel) 2021; 14:806. [PMID: 34451903 PMCID: PMC8398612 DOI: 10.3390/ph14080806] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is the most widespread form of diabetes, characterized by chronic hyperglycaemia, insulin resistance, and inefficient insulin secretion and action. Primary care in T2DM is pharmacological, using drugs of several groups that include insulin sensitisers (e.g., biguanides, thiazolidinediones), insulin secretagogues (e.g., sulphonylureas, meglinides), alpha-glucosidase inhibitors, and the newest incretin-based therapies and sodium-glucose co-transporter 2 inhibitors. However, their long-term application can cause many harmful side effects, emphasising the importance of the using natural therapeutic products. Natural health substances including non-flavonoid polyphenols (e.g., resveratrol, curcumin, tannins, and lignans), flavonoids (e.g., anthocyanins, epigallocatechin gallate, quercetin, naringin, rutin, and kaempferol), plant fruits, vegetables and other products (e.g., garlic, green tea, blackcurrant, rowanberry, bilberry, strawberry, cornelian cherry, olive oil, sesame oil, and carrot) may be a safer alternative to primary pharmacological therapy. They are recommended as food supplements to prevent and/or ameliorate T2DM-related complications. In the advanced stage of T2DM, the combination therapy of synthetic agents and natural compounds with synergistic interactions makes the treatment more efficient. In this review, both pharmaceutical drugs and selected natural products, as well as combination therapies, are characterized. Mechanisms of their action and possible negative side effects are also provided.
Collapse
Affiliation(s)
- Jana Blahova
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia;
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia;
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| |
Collapse
|
18
|
Natural Products in Modern Biology: Ancient Wisdom for Today's Challenges. BIOLOGY 2021; 10:biology10050369. [PMID: 33923014 PMCID: PMC8146646 DOI: 10.3390/biology10050369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022]
Abstract
Nature provides a unique diversity of primary and secondary metabolites [...].
Collapse
|