1
|
Kim CG, Jose J, Hay MP, Choi PJ. Novel Prodrug Strategies for the Treatment of Tuberculosis. Chem Asian J 2024; 19:e202400944. [PMID: 39179514 PMCID: PMC11613820 DOI: 10.1002/asia.202400944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
The emergence of drug-resistant strains of Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis, is on the rise and increasing antimicrobial resistance is a global threat. This phenomenon necessitates new drug design methods such as a prodrug strategy to develop novel antitubercular agents. The prodrug strategy is a viable and useful means to improve the absorption, distribution, metabolism, excretion and toxicity (ADMET) profiles of pharmacologically active agents. Granulomas are a pathological hallmark of M.tb infection and bear a remarkable resemblance to the tumour microenvironment, including regions of hypoxia. The hypoxic environment observed in the two structures offer an exceptional opportunity to deliver antitubercular agents selectively in a similar manner to hypoxia activated prodrugs in cancer therapy. Nitroimidazoles have been studied extensively as bioactivated prodrugs of cancer, and their suitability as substrates for mammalian reductases highlight their huge potential. This review will discuss the mechanism of action and resistance mechanisms of the current prodrugs used for the treatment of tuberculosis. It will also highlight the potential advantages and challenges of using hypoxia activated prodrugs as a viable strategy to target latent M.tb in hypoxic regions of granulomas.
Collapse
Affiliation(s)
- Christine G. Kim
- Auckland Cancer Society Research Centre, School of Medical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Jiney Jose
- Auckland Cancer Society Research Centre, School of Medical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Michael P. Hay
- Auckland Cancer Society Research Centre, School of Medical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Peter J. Choi
- Auckland Cancer Society Research Centre, School of Medical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| |
Collapse
|
2
|
Cho JA, Jeon S, Kwon Y, Roh YJ, Shin S, Lee CH, Kim SJ. Identification and comparison of protein composition of biofilms in response to EGCG from Enterococcus faecalis and Staphylococcus lugdunensis, which showed opposite patterns in biofilm-forming abilities. Biofilm 2024; 8:100232. [PMID: 39555139 PMCID: PMC11564074 DOI: 10.1016/j.bioflm.2024.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
Bacterial biofilm is resistant to conventional antibiotic treatments, leading to complications associated with many infection-related human diseases. Epigallocatechin Gallate (EGCG), a phenolic catechin enriched in green tea, is recognized for its anti-bacterial and anti-biofilm activities. In this study, we examined the protein components of the biofilms formed in the absence or presence of EGCG using Enterococcus faecalis and Staphylococcus lugdunensis, which had shown opposing patterns in biofilm formation. A clustering heatmap revealed that the two microorganisms expressed the different protein sets in response to EGCG. Proteins that were noticeably upregulated included those associated with stress responsiveness and gluconeogenesis in E. faecalis, and gene modification in S. lugdunensis. Conversely, downregulated proteins were related to tRNA-modifying enzyme activity in E. faecalis, and anabolic metabolism in S. lugdunensis. Among the proteins identified only in EGCG-responsive biofilms, enzymes involved in de novo purine biosynthesis were enriched in E. faecalis, while proteins likely to cause DNA instability and pathogenicity changes were abundantly present in S. lugdunensis. The classification based on gene ontology (GO) terms by microorganism exhibited that metabolic process or catabolic activity was at the top rank in E. faecalis with more than 33 proteins, and in S. lugdunensis, localization or transport was highly ranked with 4 proteins. These results support the hypothesis that EGCG might cause different cellular programs in each microorganism. Finally, comparison of the proteomes between two groups that form biofilms to similar extents discovered that 2 proteins were commonly found in the weak biofilm-forming groups (E. faecalis and EGCG-responding S. lugudunensis), whereas 9 proteins were common among the strong biofilm-forming groups (S. lugdunensis and EGCG-responding E. faecalis). It was suggested that these proteins could serve as potential indicators to detect the presence and predict the extent of biofilm formation by multiple microorganisms. Taken all together, proteomics data and analyses performed in this study provided useful and new information on the proteins embedded in the biofilms formed at the specific conditions, which can aid in diagnosis and the development of tailored treatment strategies.
Collapse
Affiliation(s)
- Jung-Ah Cho
- Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwaseong, Republic of Korea
- College of Transdisciplinary Studies, School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Sangsoo Jeon
- College of Transdisciplinary Studies, School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Youngmin Kwon
- Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwaseong, Republic of Korea
| | - Yoo Jin Roh
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Sukjin Shin
- Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
| | - Chang-Hun Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Sung Jae Kim
- Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwaseong, Republic of Korea
| |
Collapse
|
3
|
Iturrieta-Gonzalez I, Olivares-Ferretti P, Hidalgo A, Zambrano F, Ossa X, Fonseca-Salamanca F, Melo A. High frequency of point mutations in the nitroreductase 4 and 6 genes of Trichomonas vaginalis associated with metronidazole resistance. Folia Parasitol (Praha) 2024; 71:2024.021. [PMID: 39584737 DOI: 10.14411/fp.2024.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/17/2024] [Indexed: 11/26/2024]
Abstract
Trichomoniasis, a globally distributed sexually transmitted infection, is caused by the urogenital parasite Trichomonas vaginalis Donné, 1836 affecting both women and men. The treatment of choice is metronidazole (MTZ). In the present study, 15 samples of vaginal discharge and urine were analysed by sequencing nitroreductase genes (ntr4 and ntr6). An in silico model was structured to illustrate the location of point mutations (PM) in the protein. The ntr4 gene presented four PMs: G76C (10/10), C213G (9/10), C318A (5/10) and G424A (1/10), while the ntr6 gene had eight PMs; G593A (13/13) the most frequent, G72T and G627C, both in 8/13. The PM C213G and A438T generated a stop codon causing a truncated nitroreductase 4 and 6 protein. Docking analysis demonstrated that some models had a decrease in binding affinity to MTZ (p < 0.0001). A high frequency of mutations was observed in the samples analysed that could be associated with resistance to MTZ in Chile.
Collapse
Affiliation(s)
- Isabel Iturrieta-Gonzalez
- Centre of Excellence in Translational Medicine, Nucleus of Scientific and Technological Bioresources (CEMT-BIOREN), Faculty of Medicine. Universidad de La Frontera, Temuco, Chile
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera. Temuco, Chile
| | - Pamela Olivares-Ferretti
- Centre of Excellence in Translational Medicine, Nucleus of Scientific and Technological Bioresources (CEMT-BIOREN), Faculty of Medicine. Universidad de La Frontera, Temuco, Chile
| | - Alejandro Hidalgo
- Centre of Excellence in Translational Medicine, Nucleus of Scientific and Technological Bioresources (CEMT-BIOREN), Faculty of Medicine. Universidad de La Frontera, Temuco, Chile
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera. Temuco, Chile
| | - Fabiola Zambrano
- Centre of Excellence in Translational Medicine, Nucleus of Scientific and Technological Bioresources (CEMT-BIOREN), Faculty of Medicine. Universidad de La Frontera, Temuco, Chile
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera. Temuco, Chile
| | - Ximena Ossa
- Public Health Department, Centre of Excellence Training, Research and Management for Evidence-Based Health (CIGES), Universidad de La Frontera, Temuco, Chile
| | - Flery Fonseca-Salamanca
- Centre of Excellence in Translational Medicine, Nucleus of Scientific and Technological Bioresources (CEMT-BIOREN), Faculty of Medicine. Universidad de La Frontera, Temuco, Chile
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera. Temuco, Chile
| | - Angelica Melo
- Centre of Excellence in Translational Medicine, Nucleus of Scientific and Technological Bioresources (CEMT-BIOREN), Faculty of Medicine. Universidad de La Frontera, Temuco, Chile
- Department of Pathological Anatomy, Faculty of Medicine. Universidad de La Frontera. Temuco, Chile *Address for correspondence: Angelica Melo Angermeyer. Universidad de La Frontera, Faculty of Medicine, Edificio Biociencias, Av. Alemania 0458 Temuco, Chile. E-mail: ; ORCID-iD: 0000-0002-3576-1745
| |
Collapse
|
4
|
Krzyżek P, Migdał P, Tusiewicz K, Zawadzki M, Szpot P. Subinhibitory concentrations of antibiotics affect development and parameters of Helicobacter pylori biofilm. Front Pharmacol 2024; 15:1477317. [PMID: 39469629 PMCID: PMC11513322 DOI: 10.3389/fphar.2024.1477317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Helicobacter pylori causes chronic gastric diseases in nearly 50% of people around the world. It is suggested that biofilm formation has a pronounced effect on the dynamic resistance spread and recurrence of these infections. Methods To mimic the scenario of therapeutic ineffectiveness, we investigated the impact of sub-minimal inhibitory concentrations (sub-MICs) of antibiotics on the development and parameters of biofilms produced by clinical H. pylori strains. Results We observed that constant exposure of planktonic forms to metronidazole or levofloxacin stimulated the speed of autoaggregation and the amount of extracellular matrix, resulting in increased dimensions of the developed biofilms. Contrary to this, continuous exposure to clarithromycin negatively affected a number of biofilm-related reactions and led to the biofilm-weakening effect. Through assessing the membrane fatty acid profiles of antibiotic-exposed cells, we confirmed that metronidazole and levofloxacin induced a biofilm-like phenotype, while clarithromycin kept bacteria in a planktonic form. Discussion Our results suggest that sub-MICs of antibiotics affect the biochemical and biophysical properties of the developing biofilm of H. pylori strains and may impact the effectiveness of antibiotic treatment.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Paweł Migdał
- Department of Bees Breeding, Institute of Animal Husbandry, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Kaja Tusiewicz
- Department of Forensic Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Marcin Zawadzki
- Department of Social Sciences and Infectious Diseases, Faculty of Medicine, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Paweł Szpot
- Department of Forensic Medicine, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
5
|
González A, Fullaondo A, Odriozola I, Odriozola A. Microbiota and other detrimental metabolites in colorectal cancer. ADVANCES IN GENETICS 2024; 112:309-365. [PMID: 39396839 DOI: 10.1016/bs.adgen.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Increasing scientific evidence demonstrates that gut microbiota plays an essential role in the onset and development of Colorectal cancer (CRC). However, the mechanisms by which these microorganisms contribute to cancer development are complex and far from completely clarified. Specifically, the impact of gut microbiota-derived metabolites on CRC is undeniable, exerting both protective and detrimental effects. This paper examines the effects and mechanisms by which important bacterial metabolites exert detrimental effects associated with increased risk of CRC. Metabolites considered include heterocyclic amines and polycyclic aromatic hydrocarbons, heme iron, secondary bile acids, ethanol, and aromatic amines. It is necessary to delve deeper into the mechanisms of action of these metabolites in CRC and identify the microbiota members involved in their production. Furthermore, since diet is the main factor capable of modifying the intestinal microbiota, conducting studies that include detailed descriptions of dietary interventions is crucial. All this knowledge is essential for developing precision nutrition strategies to optimise a protective intestinal microbiota against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
6
|
Kancherla AD, Liu L, Tillery L, Shek R, Craig JK, Machen AJ, Seibold S, Battaile KP, Fradi S, Barrett LK, Subramanian S, Myler P, Van Voorhis WC, Lovell S. Crystal structures of NAD(P)H nitroreductases from Klebsiella pneumoniae. Acta Crystallogr F Struct Biol Commun 2024; 80:173-182. [PMID: 38990055 PMCID: PMC11299736 DOI: 10.1107/s2053230x24006472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Klebsiella pneumoniae (Kp) is an infectious disease pathogen that poses a significant global health threat due to its potential to cause severe infections and its tendency to exhibit multidrug resistance. Understanding the enzymatic mechanisms of the oxygen-insensitive nitroreductases (Kp-NRs) from Kp is crucial for the development of effective nitrofuran drugs, such as nitrofurantoin, that can be activated as antibiotics. In this paper, three crystal structures of two Kp-NRs (PDB entries 7tmf/7tmg and 8dor) are presented, and an analysis of their crystal structures and their flavin mononucleotide (FMN)-binding mode is provided. The structures with PDB codes 7tmf (Kp-NR1a), 7tmg (Kp-NR1b) and 8dor (Kp-NR2) were determined at resolutions of 1.97, 1.90 and 1.35 Å, respectively. The Kp-NR1a and Kp-NR1b structures adopt an αβ fold, in which four-stranded antiparallel β-sheets are surrounded by five helices. With domain swapping, the β-sheet was expanded with a β-strand from the other molecule of the dimer. The difference between the structures lies in the loop spanning Leu173-Ala185: in Kp-NR1a the loop is disordered, whereas the loop adopts multiple conformations in Kp-NR1b. The FMN interactions within Kp-NR1/NR2 involve hydrogen-bond and π-stacking interactions. Kp-NR2 contains four-stranded antiparallel β-sheets surrounded by eight helices with two short helices and one β-sheet. Structural and sequence alignments show that Kp-NR1a/b and Kp-NR2 are homologs of the Escherichia coli oxygen-insensitive NRs YdjA and NfnB and of Enterobacter cloacae NR, respectively. By homology inference from E. coli, Kp-NR1a/b and Kp-NR2 may detoxify polynitroaromatic compounds and Kp-NR2 may activate nitrofuran drugs to cause bactericidal activity through a ping-pong bi-bi mechanism, respectively.
Collapse
Affiliation(s)
- Abhishek D. Kancherla
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA98109, USA
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Department of MedicineUniversity of WashingtonSeattleWA98109USA
| | - Lijun Liu
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA98109, USA
- Protein Structure and X-ray Crystallography LaboratoryUniversity of Kansas2034 Becker DriveLawrenceKS66047USA
| | - Logan Tillery
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA98109, USA
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Department of MedicineUniversity of WashingtonSeattleWA98109USA
| | - Roger Shek
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA98109, USA
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Department of MedicineUniversity of WashingtonSeattleWA98109USA
| | - Justin K. Craig
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA98109, USA
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Department of MedicineUniversity of WashingtonSeattleWA98109USA
| | - Alexandra J. Machen
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA98109, USA
- Protein Structure and X-ray Crystallography LaboratoryUniversity of Kansas2034 Becker DriveLawrenceKS66047USA
| | - Steve Seibold
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA98109, USA
- Protein Structure and X-ray Crystallography LaboratoryUniversity of Kansas2034 Becker DriveLawrenceKS66047USA
| | | | - Selma Fradi
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA98109, USA
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Department of MedicineUniversity of WashingtonSeattleWA98109USA
| | - Lynn K. Barrett
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA98109, USA
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Department of MedicineUniversity of WashingtonSeattleWA98109USA
| | - Sandhya Subramanian
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA98109, USA
- Center for Global Infectious Disease ResearchSeattle Children’s Research Institute307 Westlake Avenue North Suite 500SeattleWA98109USA
| | - Peter Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA98109, USA
- Center for Global Infectious Disease ResearchSeattle Children’s Research Institute307 Westlake Avenue North Suite 500SeattleWA98109USA
| | - Wesley C. Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA98109, USA
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Department of MedicineUniversity of WashingtonSeattleWA98109USA
| | - Scott Lovell
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA98109, USA
- Protein Structure and X-ray Crystallography LaboratoryUniversity of Kansas2034 Becker DriveLawrenceKS66047USA
| |
Collapse
|
7
|
Sun T, Wu L, Cui M, Zhao G. A Novel Fluorescent Probe for Nitroreductase Detection and Imaging of cancer Cells under Hypoxia Conditions. J Fluoresc 2024:10.1007/s10895-024-03778-7. [PMID: 39018002 DOI: 10.1007/s10895-024-03778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/16/2024] [Indexed: 07/18/2024]
Abstract
Nitroreductase (NTR) is to be pivotal in the biodegradation of nitroaromatics. NTR is produced in tumor tissues under hypoxic conditions, which is one of the markers for early tumor diagnosis. In this study, a novel probe FD-NTR was developed for NTR detection. Probe FD-NTR can exhibit a specific reaction with NTR in the presence of NADH. The probe displayed satisfactory selectivity and sensitivity towards NTR with a calculated detection limit of 12 ng/mL. Under the conditions of low cytotoxic hypoxia, the FD-NTR probe has shown successful application in imaging both MCF-7 cells and tumor tissues, which indicated that the FD-NTR probe holds promising application prospects for detecting NTR in tumors.
Collapse
Affiliation(s)
- Tong Sun
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Lei Wu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Mengyuan Cui
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Guisen Zhao
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
8
|
Zeng J, Xu S, Lin K, Yao S, Yang B, Peng Z, Hao T, Yu X, Zhu T, Jiang F, Sun J. Long-term stable and efficient degradation of ornidazole with minimized by-product formation by a biological sulfidogenic process based on elemental sulfur. WATER RESEARCH 2024; 249:120940. [PMID: 38071904 DOI: 10.1016/j.watres.2023.120940] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Conventional biological treatment processes cannot efficiently and completely degrade nitroimidazole antibiotics, due to the formation of highly antibacterial and carcinogenic nitroreduction by-products. This study investigated the removal of a typical nitroimidazole antibiotic (ornidazole) during wastewater treatment by a biological sulfidogenic process based on elemental sulfur (S0-BSP). Efficient and stable ornidazole degradation and organic carbon mineralization were simultaneously achieved by the S0-BSP in a 798-day bench-scale trial. Over 99.8 % of ornidazole (200‒500 μg/L) was removed with the removal rates of up to 0.59 g/(m3·d). Meanwhile, the efficiencies of organic carbon mineralization and sulfide production were hardly impacted by the dosed ornidazole, and their rates were maintained at 0.15 kg C/(m3·d) and 0.49 kg S/(m3·d), respectively. The genera associated with ornidazole degradation were identified (e.g., Sedimentibacter, Trichococcus, and Longilinea), and their abundances increased significantly. Microbial degradation of ornidazole proceeded by several functional genes, such as dehalogenases, cysteine synthase, and dioxygenases, mainly through dechlorination, denitration, N-heterocyclic ring cleavage, and oxidation. More importantly, the nucleophilic substitution of nitro group mediated by in-situ formed reducing sulfur species (e.g., sulfide, polysulfides, and cysteine hydropolysulfides), instead of nitroreduction, enhanced the complete ornidazole degradation and minimized the formation of carcinogenic and antibacterial nitroreduction by-products. The findings suggest that S0-BSP can be a promising approach to treat wastewater containing multiple contaminants, such as emerging organic pollutants, organic carbon, nitrate, and heavy metals.
Collapse
Affiliation(s)
- Jiajia Zeng
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China; State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Emerging Contaminants Detection and Control in Water Environment, Shenzhen Academy of Environmental Sciences, Shenzhen 518001, China
| | - Shuqun Xu
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Keyue Lin
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Si Yao
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Bin Yang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhanhui Peng
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Xiaoyu Yu
- Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China
| | - Tingting Zhu
- State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Emerging Contaminants Detection and Control in Water Environment, Shenzhen Academy of Environmental Sciences, Shenzhen 518001, China
| | - Feng Jiang
- School of Environmental Science & Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Jianliang Sun
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
9
|
Navarro-Peñaloza R, Anacleto-Santos J, Rivera-Fernández N, Sánchez-Bartez F, Gracia-Mora I, Caballero AB, Gamez P, Barba-Behrens N. Anti-toxoplasma activity and DNA-binding of copper(II) and zinc(II) coordination compounds with 5-nitroimidazole-based ligands. J Biol Inorg Chem 2024; 29:33-49. [PMID: 38099935 PMCID: PMC11001709 DOI: 10.1007/s00775-023-02029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/14/2023] [Indexed: 04/10/2024]
Abstract
Tetrahedral copper(II) and zinc(II) coordination compounds from 5-nitroimidazole derivatives, viz. 1-(2-chloroethyl)-2-methyl-5-nitroimidazole (cenz) and ornidazole 1-(3-chloro-2-hydroxypropyl)-2-methyl-5-nitroimidazole (onz), were synthesized and spectroscopically characterized. Their molecular structures were determined by X-ray diffraction studies. The complexes [Cu(onz)2X2], [Zn(onz)2X2], [Cu(cenz)2X2] and [Zn(cenz)2X2] (X- = Cl, Br), are stable in solution and exhibit positive LogD7.4 values that are in the range for molecules capable of crossing the cell membrane via passive difussion. Their biological activity against Toxoplasma gondi was investigated, and IC50 and lethal dose (LD50) values were determined. The ornidazole copper(II) compounds showed very good antiparasitic activity in its tachyzoite morphology. The interaction of the coordination compounds with DNA was examined by circular dichroism, fluorescence (using intercalating ethidium bromide and minor groove binding Hoechst 33258) and UV-Vis spectroscopy. The copper(II) compounds interact with the minor groove of the biomolecule, whereas weaker electrostatic interactions take place with the zinc(II) compounds. The spectroscopic data achieved for the two series of complexes (namely with copper(II) and zinc(II) as metal center) agree with the respective DNA-damage features observed by gel electrophoresis.
Collapse
Affiliation(s)
- Rubí Navarro-Peñaloza
- Departamento de Química Inorgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Jhony Anacleto-Santos
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Norma Rivera-Fernández
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Francisco Sánchez-Bartez
- Unidad de Investigación Preclínica (UNIPREC), Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Isabel Gracia-Mora
- Unidad de Investigación Preclínica (UNIPREC), Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Ana B Caballero
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica,, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Patrick Gamez
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica,, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Norah Barba-Behrens
- Departamento de Química Inorgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| |
Collapse
|
10
|
Guerrero M, Hernández J, Gomez L, Guerrero C. Oxidative stress enhances rotavirus oncolysis in breast cancer and leukemia, except in melanoma with abundant matrix. Virus Res 2024; 339:199285. [PMID: 38013142 PMCID: PMC10711233 DOI: 10.1016/j.virusres.2023.199285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
OBJECTIVES This study aimed to explore the impact of oxidative stress and extracellular matrix integrity on rotavirus infection in various cancer cells, including breast cancer, acute lymphoblastic leukemia, and melanoma. METHODS We induced oxidative stress using ROS-inducing drugs (cisplatin, metronidazole, melatonin, valproic acid, doxorubicin, losartan, nitrofurantoin, and DHA) and investigated the effects on viral infection in MCF-7, Reh, A375, B16-F1, and SK-MEL-28 cells and the generation of virions from infected cells by harvesting the supernatants every two hours, reinfecting other cells, and analyzing cell viability and DNA fragmentation. FINDINGS In MCF-7 and Reh cells, rotavirus Wt1-5 infection led to increased ROS generation, virion production, membrane permeability, mitochondrial dysfunction, DNA damage, and cell death. These effects were amplified by ROS-inducing drugs. Conversely, melanoma cells (SK-MEL-28 and A375) with a robust extracellular matrix network showed limited sensitivity to the drugs. Notably, losartan, which modulates the extracellular matrix, enhanced viral infection in melanoma cells (99 %). CONCLUSIONS Oxidative stress promotes oncolytic rotavirus infection in breast cancer and acute lymphoblastic leukemia cells, suggesting potential utility in combination with radiotherapy or chemotherapy due to their shared induction of intracellular oxidative stress.
Collapse
Affiliation(s)
- Marvi Guerrero
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, DC, Bogotá, Colombi
| | - Juan Hernández
- Grupo de Fisiología Molecular del Instituto Nacional de Salud. A. A. 80080. Av. Calle 26 No. 51-20 DC, Bogotá, Colombia
| | - Luis Gomez
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, DC, Bogotá, Colombi; Grupo de Fisiología Molecular del Instituto Nacional de Salud. A. A. 80080. Av. Calle 26 No. 51-20 DC, Bogotá, Colombia
| | - Carlos Guerrero
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, DC, Bogotá, Colombi.
| |
Collapse
|
11
|
Otero-Ruiz A, Rodriguez-Anaya LZ, Lares-Villa F, Lozano Aguirre Beltrán LF, Lares-Jiménez LF, Gonzalez-Galaviz JR, Cruz-Mendívil A. Functional annotation and comparative genomics analysis of Balamuthia mandrillaris reveals potential virulence-related genes. Sci Rep 2023; 13:14318. [PMID: 37653073 PMCID: PMC10471605 DOI: 10.1038/s41598-023-41657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Balamuthia mandrillaris is a pathogenic protozoan that causes a rare but almost always fatal infection of the central nervous system and, in some cases, cutaneous lesions. Currently, the genomic data for this free-living amoeba include the description of several complete mitochondrial genomes. In contrast, two complete genomes with draft quality are available in GenBank, but none of these have a functional annotation. In the present study, the complete genome of B. mandrillaris isolated from a freshwater artificial lagoon was sequenced and assembled, obtaining an assembled genome with better assembly quality parameter values than the currently available genomes. Afterward, the genome mentioned earlier, along with strains V039 and 2046, were subjected to functional annotation. Finally, comparative genomics analysis was performed, and it was found that homologous genes in the core genome potentially involved in the virulence of Acanthamoeba spp. and Trypanosoma cruzi. Moreover, eleven of fifteen genes were identified in the three strains described as potential target genes to develop new treatment approaches for B. mandrillaris infections. These results describe proteins in this protozoan's complete genome and help prioritize which target genes could be used to develop new treatments.
Collapse
Affiliation(s)
- Alejandro Otero-Ruiz
- Programa de Doctorado en Ciencias Especialidad en Biotecnología, Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 85000, Ciudad Obregón, Sonora, Mexico
| | | | - Fernando Lares-Villa
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, 85000, Ciudad Obregón, Sonora, Mexico
| | - Luis Fernando Lozano Aguirre Beltrán
- Unidad de Análisis Bioinformáticos, Centro de Ciencias Genómicas de la Universidad Nacional Autónoma de México (UNAM), 62210, Cuernavaca, Morelos, Mexico
| | - Luis Fernando Lares-Jiménez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, 85000, Ciudad Obregón, Sonora, Mexico
| | | | - Abraham Cruz-Mendívil
- CONAHCYT-Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, 81101, Guasave, Sinaloa, Mexico
| |
Collapse
|
12
|
Giacomazzo GE, Conti L, Fagorzi C, Pagliai M, Andreini C, Guerri A, Perito B, Mengoni A, Valtancoli B, Giorgi C. Ruthenium(II) Polypyridyl Complexes and Metronidazole Derivatives: A Powerful Combination in the Design of Photoresponsive Antibacterial Agents Effective under Hypoxic Conditions. Inorg Chem 2023; 62:7716-7727. [PMID: 37163381 DOI: 10.1021/acs.inorgchem.3c00214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ruthenium(II) polypyridyl complexes (RPCs) are gaining momentum in photoactivated chemotherapy (PACT), thanks to the possibility of overcoming the classical reliance on molecular oxygen of photodynamic therapy while preserving the selective drug activation by using light. However, notwithstanding the intriguing perspectives, the translation of such an approach in the development of new antimicrobials has been only barely considered. Herein, MTZH-1 and MTZH-2, two novel analogues of metronidazole (MTZ), a mainstay drug in the treatment of anaerobic bacterial infections, were designed and inserted in the strained ruthenium complexes [Ru(tpy)(dmp)(MTZ-1)]PF6 (Ru2) and [Ru(tpy)(dmp)(MTZ-2)]PF6 (Ru3) (tpy = terpyridine, dmp = 2,9-dimethyl-1,10-phenanthroline) (Chart 1). Analogously to the parental compound [Ru(tpy)(dmp)(5NIM)]PF6 (Ru1) (5-nitroimidazolate), the Ru(II)-imidazolate coordination of MTZ derivatives resulted in promising Ru(II) photocages, capable to easily unleash the bioactive ligands upon light irradiation and increase the antibacterial activity against Bacillus subtilis, which was chosen as a model of Gram-positive bacteria. The photoreleased 5-nitroimidazole-based ligands led to remarkable phototoxicities under hypoxic conditions (<1% O2), with the lead compound Ru3 that exhibited the highest potency across the series, being comparable to the one of the clinical drug MTZ. Besides, the chemical architectures of MTZ derivatives made their interaction with NimAunfavorable, being NimA a model of reductases responsible for bacterial resistance against 5-nitroimidazole-based antibiotics, thus hinting at their possible use to combat antimicrobial resistance. This work may therefore provide fundamental knowledge in the design of novel photoresponsive tools to be used in the fight against infectious diseases. For the first time, the effectiveness of the "photorelease antimicrobial therapy" under therapeutically relevant hypoxic conditions was demonstrated.
Collapse
Affiliation(s)
- Gina Elena Giacomazzo
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Luca Conti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Camilla Fagorzi
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Firenze, Italy
| | - Marco Pagliai
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Claudia Andreini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Firenze, Italy
| | - Annalisa Guerri
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Brunella Perito
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Firenze, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Firenze, Italy
| | - Barbara Valtancoli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Claudia Giorgi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| |
Collapse
|
13
|
Wood GE, Kim CM, Aguila LKT, Cichewicz RH. In Vitro Susceptibility and Resistance of Mycoplasma genitalium to Nitroimidazoles. Antimicrob Agents Chemother 2023; 67:e0000623. [PMID: 37070857 PMCID: PMC10112249 DOI: 10.1128/aac.00006-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Mycoplasma genitalium is a sexually transmitted reproductive tract pathogen of men and women. M. genitalium infections are increasingly difficult to treat due to poor efficacy of doxycycline and acquired resistance to azithromycin and moxifloxacin. A recent clinical trial suggested that metronidazole may improve cure rates for women with pelvic inflammatory disease and reduced the detection of M. genitalium when included with standard doxycycline plus ceftriaxone treatment. As data regarding susceptibility of mycoplasmas to nitroimidazoles are lacking in the scientific literature, we determined the in vitro susceptibility of 10 M. genitalium strains to metronidazole, secnidazole, and tinidazole. MICs ranged from 1.6 to 12.5 μg/mL for metronidazole, 3.1 to 12.5 μg/mL for secnidazole, and 0.8 to 6.3 μg/mL for tinidazole. None of these agents was synergistic with doxycycline in checkerboard broth microdilution assays. Tinidazole was superior to metronidazole and secnidazole in terms of MIC and time-kill kinetics and was bactericidal (>99.9% killing) at concentrations below reported serum concentrations. Mutations associated with nitroimidazole resistance were identified by whole-genome sequencing of spontaneous resistant mutants, suggesting a mechanism for reductive activation of the nitroimidazole prodrug by a predicted NAD(P)H-dependent flavin mononucleotide (FMN) oxidoreductase. The presence of oxygen did not affect MICs of wild-type M. genitalium, but a nitroimidazole-resistant mutant was defective for growth under anaerobic conditions, suggesting that resistant mutants may have a fitness disadvantage in anaerobic genital sites. Clinical studies are needed to determine if nitroimidazoles, especially tinidazole, are effective for eradicating M. genitalium infections in men and women.
Collapse
Affiliation(s)
- Gwendolyn E Wood
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Caroline M Kim
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Laarni Kendra T Aguila
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Robert H Cichewicz
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
- Natural Products Discovery Group, University of Oklahoma, Norman, Oklahoma, USA
- Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
14
|
García-Estrada C, Pérez-Pertejo Y, Domínguez-Asenjo B, Holanda VN, Murugesan S, Martínez-Valladares M, Balaña-Fouce R, Reguera RM. Further Investigations of Nitroheterocyclic Compounds as Potential Antikinetoplastid Drug Candidates. Biomolecules 2023; 13:biom13040637. [PMID: 37189384 DOI: 10.3390/biom13040637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Due to the lack of specific vaccines, management of the trypanosomatid-caused neglected tropical diseases (sleeping sickness, Chagas disease and leishmaniasis) relies exclusively on pharmacological treatments. Current drugs against them are scarce, old and exhibit disadvantages, such as adverse effects, parenteral administration, chemical instability and high costs which are often unaffordable for endemic low-income countries. Discoveries of new pharmacological entities for the treatment of these diseases are scarce, since most of the big pharmaceutical companies find this market unattractive. In order to fill the pipeline of compounds and replace existing ones, highly translatable drug screening platforms have been developed in the last two decades. Thousands of molecules have been tested, including nitroheterocyclic compounds, such as benznidazole and nifurtimox, which had already provided potent and effective effects against Chagas disease. More recently, fexinidazole has been added as a new drug against African trypanosomiasis. Despite the success of nitroheterocycles, they had been discarded from drug discovery campaigns due to their mutagenic potential, but now they represent a promising source of inspiration for oral drugs that can replace those currently on the market. The examples provided by the trypanocidal activity of fexinidazole and the promising efficacy of the derivative DNDi-0690 against leishmaniasis seem to open a new window of opportunity for these compounds that were discovered in the 1960s. In this review, we show the current uses of nitroheterocycles and the novel derived molecules that are being synthesized against these neglected diseases.
Collapse
Affiliation(s)
- Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Bárbara Domínguez-Asenjo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Vanderlan Nogueira Holanda
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, India
| | - María Martínez-Valladares
- Instituto de Ganadería de Montaña (IGM), Consejo Superior de Investigaciones Científicas-Universidad de León, Carretera León-Vega de Infanzones, Vega de Infanzones, 24346 León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
15
|
Boyanova L, Hadzhiyski P, Gergova R, Markovska R. Evolution of Helicobacter pylori Resistance to Antibiotics: A Topic of Increasing Concern. Antibiotics (Basel) 2023; 12:antibiotics12020332. [PMID: 36830243 PMCID: PMC9952372 DOI: 10.3390/antibiotics12020332] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Antibiotic resistance among Helicobacter pylori strains is the major cause of eradication failure. Resistance prevalence is dynamic and can greatly vary among countries over the years. We revealed H. pylori resistance trends for five antibiotics in 14 countries through articles predominantly published in 2018-2022, since the latest data can best show the most recent trends in resistance evolution. Amoxicillin resistance generally exhibited no evolution, yet it increased in Bulgaria, Iran, China, and Vietnam. Metronidazole resistance exhibited different trends, including an increase, a decrease and no evolution in six, three, and five studies, respectively. Clarithromycin resistance increased in Australia, Belgium, Bulgaria, Italy, Iran, and Taiwan, but remained stable in France, Spain, Russia, China, Chile, and Colombia. Tetracycline resistance was low and stable except in Iran. Levofloxacin resistance increased in four European and six other countries/regions, without significant increases in France, Spain, and Chile. In Chile, triple resistance also increased. In countries such as France and Spain, resistance to most antibiotics was stabilized, while in Bulgaria, Belgium, Iran and Taiwan, resistance to three or more agents was reported. Use of non-recommended regimens, national antibiotic consumption, patient's compliance, host factors, strain virulence, migrations, and azithromycin overuse during the COVID-19 pandemic can influence resistance evolution. New drugs, eradication regimens and diagnostic methods, such as next-generation sequencing can improve H. pylori infection control.
Collapse
Affiliation(s)
- Lyudmila Boyanova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Zdrave str. 2, 1431 Sofia, Bulgaria
- Correspondence: ; Tel.: +359-2-91-72-730
| | - Petyo Hadzhiyski
- Specialized Hospital for Active Pediatric Treatment, Medical University of Sofia, “Acad. Ivan Evstatiev Geshov” blvd., 1606 Sofia, Bulgaria
| | - Raina Gergova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Zdrave str. 2, 1431 Sofia, Bulgaria
| | - Rumyana Markovska
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Zdrave str. 2, 1431 Sofia, Bulgaria
| |
Collapse
|
16
|
Tang H, Zhou H, Zhang R. Antibiotic Resistance and Mechanisms of Pathogenic Bacteria in Tubo-Ovarian Abscess. Front Cell Infect Microbiol 2022; 12:958210. [PMID: 35967860 PMCID: PMC9363611 DOI: 10.3389/fcimb.2022.958210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
A tubo-ovarian abscess (TOA) is a common type of inflammatory lump in clinical practice. TOA is an important, life-threatening disease, and it has become more common in recent years, posing a major health risk to women. Broad-spectrum antimicrobial agents are necessary to cover the most likely pathogens because the pathogens that cause TOA are polymicrobial. However, the response rate of antibiotic treatment is about 70%, whereas one-third of patients have poor clinical consequences and they require drainage or surgery. Rising antimicrobial resistance serves as a significant reason for the unsatisfactory medical outcomes. It is important to study the antibiotic resistance mechanism of TOA pathogens in solving the problems of multi-drug resistant strains. This paper focuses on the most common pathogenic bacteria isolated from TOA specimens and discusses the emerging trends and epidemiology of resistant Escherichia coli, Bacteroides fragilis, and gram-positive anaerobic cocci. Besides that, new methods that aim to solve the antibiotic resistance of related pathogens are discussed, such as CRISPR, nanoparticles, bacteriophages, antimicrobial peptides, and pathogen-specific monoclonal antibodies. Through this review, we hope to reveal the current situation of antibiotic resistance of common TOA pathogens, relevant mechanisms, and possible antibacterial strategies, providing references for the clinical treatment of drug-resistant pathogens.
Collapse
Affiliation(s)
- Huanna Tang
- Women’s Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Zhou
- Department of Infectious Disease, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hui Zhou, ; Runju Zhang,
| | - Runju Zhang
- Women’s Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hui Zhou, ; Runju Zhang,
| |
Collapse
|
17
|
Krakovka S, Ribacke U, Miyamoto Y, Eckmann L, Svärd S. Characterization of Metronidazole-Resistant Giardia intestinalis Lines by Comparative Transcriptomics and Proteomics. Front Microbiol 2022; 13:834008. [PMID: 35222342 PMCID: PMC8866875 DOI: 10.3389/fmicb.2022.834008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Metronidazole (MTZ) is a clinically important antimicrobial agent that is active against both bacterial and protozoan organisms. MTZ has been used extensively for more than 60 years and until now resistance has been rare. However, a recent and dramatic increase in the number of MTZ resistant bacteria and protozoa is of great concern since there are few alternative drugs with a similarly broad activity spectrum. To identify key factors and mechanisms underlying MTZ resistance, we utilized the protozoan parasite Giardia intestinalis, which is commonly treated with MTZ. We characterized two in vitro selected, metronidazole resistant parasite lines, as well as one revertant, by analyzing fitness aspects associated with increased drug resistance and transcriptomes and proteomes. We also conducted a meta-analysis using already existing data from additional resistant G. intestinalis isolates. The combined data suggest that in vitro generated MTZ resistance has a substantial fitness cost to the parasite, which may partly explain why resistance is not widespread despite decades of heavy use. Mechanistically, MTZ resistance in Giardia is multifactorial and associated with complex changes, yet a core set of pathways involving oxidoreductases, oxidative stress responses and DNA repair proteins, is central to MTZ resistance in both bacteria and protozoa.
Collapse
Affiliation(s)
- Sascha Krakovka
- Department of Cell and Molecular Biology, Biomedical Center (BMC), Uppsala University, Uppsala, Sweden
| | - Ulf Ribacke
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Yukiko Miyamoto
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Staffan Svärd
- Department of Cell and Molecular Biology, Biomedical Center (BMC), Uppsala University, Uppsala, Sweden.,SciLifeLab, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Liu D, Wanniarachchi TN, Jiang G, Seabra G, Cao S, Bruner SD, Ding Y. Biochemical and structural characterization of Haemophilus influenzae nitroreductase in metabolizing nitroimidazoles. RSC Chem Biol 2022; 3:436-446. [PMID: 35441146 PMCID: PMC8985140 DOI: 10.1039/d1cb00238d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/15/2022] [Indexed: 11/21/2022] Open
Abstract
Nitroheterocycle antibiotics, particularly 5-nitroimidazoles, are frequently used for treating anaerobic infections. The antimicrobial activities of these drugs heavily rely on the in vivo bioactivation, mainly mediated by widely distributed bacterial nitroreductases (NTRs). However, the bioactivation can also lead to severe toxicities and drug resistance. Mechanistic understanding of NTR-mediated 5-nitroimidazole metabolism can potentially aid addressing these issues. Here, we report the metabolism of structurally diverse nitroimidazole drug molecules by a NTR from a human pathogen Haemophilus influenzae (HiNfsB). Our detailed bioinformatic analysis uncovered that HiNfsB represents a group of unexplored oxygen-insensitive NTRs. Biochemical characterization of the recombinant enzyme revealed that HiNfsB effectively metabolizes ten clinically used nitroimidazoles. Furthermore, HiNfsB generated not only canonical nitroreduction metabolites but also stable, novel dimeric products from three nitroimidazoles, whose structures were proposed based on the results of high resolution MS and tandem MS analysis. X-ray structural analysis of the enzyme coupled with site-directed mutagenesis identified four active site residues important to its catalysis and broad substrate scope. Finally, transient expression of HiNfsB sensitized an E. coli mutant strain to 5-nitroimidazoles under anaerobic conditions. Together, these results advance our understanding of the metabolism of nitroimidazole antibiotics mediated by a new NTR group and reinforce the research on the natural antibiotic resistome for addressing the antibiotic resistance crisis. The nitroreductase of Haemophilus influenzae metabolizes clinically used nitroimidazoles, generates dimeric metabolites and anaerobically sensitizes an E. coli mutant to antibiotics. We further uncover its biochemical and structural details.![]()
Collapse
Affiliation(s)
- Dake Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, USA
| | | | - Guangde Jiang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, USA
| | - Gustavo Seabra
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, USA
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, University of Hawai'i at Hilo, Hilo, Hawaii, 96720, USA
| | - Steven D. Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, USA
| |
Collapse
|
19
|
Giacomazzo GE, Conti L, Guerri A, Pagliai M, Fagorzi C, Sfragano PS, Palchetti I, Pietraperzia G, Mengoni A, Valtancoli B, Giorgi C. Nitroimidazole-Based Ruthenium(II) Complexes: Playing with Structural Parameters to Design Photostable and Light-Responsive Antibacterial Agents. Inorg Chem 2021; 61:6689-6694. [PMID: 34793162 DOI: 10.1021/acs.inorgchem.1c03032] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
5-Nitroimidazole (5NIMH), chosen as a molecular model of nitroimidazole derivatives, which represent a broad-spectrum class of antimicrobials, was incorporated into the ruthenium complexes [Ru(tpy)(phen)(5NIM)]PF6 (1) and [Ru(tpy)(dmp)(5NIM)]PF6 (2) (tpy = terpyridine, phen = phenanthroline, dmp = 2,9-dimethyl-1,10-phenanthroline). Besides the uncommon metal coordination of 5-nitroimidazole in its imidazolate form (5NIM), the different architectures of the spectator ligands (phen and dmp) were exploited to tune the "mode of action" of the resulting complexes, passing from a photostable compound where the redox properties of 5NIMH are preserved (1) to one suitable for the nitroimidazole phototriggered release (2) and whose antibacterial activity against B. subtilis, chosen as cellular model, is effectively improved upon light exposure. This study may provide a fundamental knowledge on the use of Ru(II)-polypyridyl complexes to incorporate and/or photorelease biologically relevant nitroimidazole derivatives in the design of a novel class of antimicrobials.
Collapse
Affiliation(s)
- Gina Elena Giacomazzo
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Luca Conti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Annalisa Guerri
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Marco Pagliai
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Camilla Fagorzi
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Patrick Severin Sfragano
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Ilaria Palchetti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Giangaetano Pietraperzia
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.,European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Barbara Valtancoli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudia Giorgi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
20
|
Pacheco JDS, Costa DDS, Cunha-Júnior EF, Andrade-Neto VV, Fairlamb AH, Wyllie S, Goulart MOF, Santos DC, Silva TL, Alves MA, Costa PRR, Dias AG, Torres-Santos EC. Monocyclic Nitro-heteroaryl Nitrones with Dual Mechanism of Activation: Synthesis and Antileishmanial Activity. ACS Med Chem Lett 2021; 12:1405-1412. [PMID: 34531949 DOI: 10.1021/acsmedchemlett.1c00193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022] Open
Abstract
5-Nitro-furan nitrones (1) and 5-nitro-thiophene nitrones (2) were synthesized in one step. Compounds 1a-c had the most potent leishmanicidal activity against intracellular amastigote forms of Leishmania amazonensis and L. infantum (from 0.019 to 2.76 μM), with excellent selectivity (from 39 to 5673). The comparison of the leishmanicidal activity in promastigotes of wild type L. donovani with those overexpressing nitroreductases NRT1 or NRT2 shows that 1a,b are activated by both, which could slow the development of resistance. Their redox potential (E redox) obtained by cyclic voltammetry (-0.67 and -0.62 V) shows that the reduction of the nitro group is modulated by the nitrone group. Oral administration of 1b to mice infected by L. infantum reduced the parasite load on the spleen by 76.6 and 95.0% with doses of 50 and 100 mg/kg, respectively, administered twice a day, for 5 days. In the liver, the parasite load suppression was above 75% with either treatment.
Collapse
Affiliation(s)
- Juliana da Silva Pacheco
- FIOCRUZ, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Tripanosomatídeos, Rio de Janeiro, RJ, Brazil
| | - Débora de Souza Costa
- Universidade Federal do Rio de Janeiro, Instituto de Pesquisas de Produtos Naturais, Laboratório de Química Bioorgânica, Rio de Janeiro, RJ, Brazil
| | | | - Valter Viana Andrade-Neto
- FIOCRUZ, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Tripanosomatídeos, Rio de Janeiro, RJ, Brazil
| | - Alan H. Fairlamb
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom
| | - Susan Wyllie
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom
| | - Marília O. F. Goulart
- Universidade Federal de Alagoas, Instituto de Química e Biotecnologia, Maceió, AL, Brazil
| | - Danyelle C. Santos
- Universidade Federal de Alagoas, Instituto de Química e Biotecnologia, Maceió, AL, Brazil
| | - Thaissa L. Silva
- Universidade Federal de Alagoas, Núcleo de Ciências Exatas, Campus de Arapiraca, Arapiraca, AL, Brazil
| | - Marina A. Alves
- Universidade Federal do Rio de Janeiro, Laboratório de Apoio ao Desenvolvimento Tecnológico, Rio de Janeiro, RJ, Brazil
| | - Paulo R. R. Costa
- Universidade Federal do Rio de Janeiro, Instituto de Pesquisas de Produtos Naturais, Laboratório de Química Bioorgânica, Rio de Janeiro, RJ, Brazil
| | - Ayres G. Dias
- Universidade do Estado do Rio de Janeiro, Centro de Tecnologia e Ciências, Departamento de Química Orgânica, Rio de Janeiro, RJ, Brazil
| | - Eduardo Caio Torres-Santos
- FIOCRUZ, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Tripanosomatídeos, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
21
|
Čėnas N, Nemeikaitė-Čėnienė A, Kosychova L. Single- and Two-Electron Reduction of Nitroaromatic Compounds by Flavoenzymes: Mechanisms and Implications for Cytotoxicity. Int J Mol Sci 2021; 22:ijms22168534. [PMID: 34445240 PMCID: PMC8395237 DOI: 10.3390/ijms22168534] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Nitroaromatic compounds (ArNO2) maintain their importance in relation to industrial processes, environmental pollution, and pharmaceutical application. The manifestation of toxicity/therapeutic action of nitroaromatics may involve their single- or two-electron reduction performed by various flavoenzymes and/or their physiological redox partners, metalloproteins. The pivotal and still incompletely resolved questions in this area are the identification and characterization of the specific enzymes that are involved in the bioreduction of ArNO2 and the establishment of their contribution to cytotoxic/therapeutic action of nitroaromatics. This review addresses the following topics: (i) the intrinsic redox properties of ArNO2, in particular, the energetics of their single- and two-electron reduction in aqueous medium; (ii) the mechanisms and structure-activity relationships of reduction in ArNO2 by flavoenzymes of different groups, dehydrogenases-electrontransferases (NADPH:cytochrome P-450 reductase, ferredoxin:NADP(H) oxidoreductase and their analogs), mammalian NAD(P)H:quinone oxidoreductase, bacterial nitroreductases, and disulfide reductases of different origin (glutathione, trypanothione, and thioredoxin reductases, lipoamide dehydrogenase), and (iii) the relationships between the enzymatic reactivity of compounds and their activity in mammalian cells, bacteria, and parasites.
Collapse
Affiliation(s)
- Narimantas Čėnas
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
- Correspondence: ; Tel.: +370-5-223-4392
| | - Aušra Nemeikaitė-Čėnienė
- State Research Institute Center for Innovative Medicine, Santariškių St. 5, LT-08406 Vilnius, Lithuania;
| | - Lidija Kosychova
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
| |
Collapse
|