1
|
Xiao M, Banu A, Jia Y, Chang M, Wang G, An J, Huang Y, Hu X, Tang C, Li Z, Niu Y, Tian X, Deng W, Tang C, Du J, Cui X, Chan JFW, Peng R, Yin F. Circulation pattern and genetic variation of rhinovirus infection among hospitalized children on Hainan Island, before and after the dynamic zero-COVID policy, from 2021 to 2023. J Med Virol 2024; 96:e29755. [PMID: 38922896 DOI: 10.1002/jmv.29755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/17/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Throughout the COVID-19 pandemic, rhinovirus (RV) remained notable persistence, maintaining its presence while other seasonal respiratory viruses were largely suppressed by pandemic restrictions during national lockdowns. This research explores the epidemiological dynamics of RV infections among pediatric populations on Hainan Island, China, specifically focusing on the impact before and after the zero-COVID policy was lifted. From January 2021 to December 2023, 19 680 samples were collected from pediatric patients hospitalized with acute lower respiratory tract infections (ARTIs) at the Hainan Maternal and Child Health Hospital. The infection of RV was detected by tNGS. RV species and subtypes were identified in 32 RV-positive samples representing diverse time points by analyzing the VP4/VP2 partial regions. Among the 19 680 pediatric inpatients with ARTIs analyzed, 21.55% were found to be positive for RV infection, with notable peaks observed in April 2021 and November 2022. A gradual annual decline in RV infections was observed, alongside a seasonal pattern of higher prevalence during the colder months. The highest proportion of RV infections was observed in the 0-1-year age group. Phylogenetic analysis on 32 samples indicated a trend from RV-A to RV-C in 2022. This observation suggests potential evolving dynamics within the RV species although further studies are needed due to the limited sample size. The research emphasizes the necessity for ongoing surveillance and targeted management, particularly for populations highly susceptible to severe illnesses caused by RV infections.
Collapse
Affiliation(s)
- Meifang Xiao
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
- Department of Microbiology, Faculty of Medicine, Lincoln University College, Petaling Jaya, Malaysia
| | - Afreen Banu
- Department of Microbiology, Faculty of Medicine, Lincoln University College, Petaling Jaya, Malaysia
| | - Yibo Jia
- Medical Administration Division, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
- International School of Public Health and One Health, Hainan Medical College, Haikou, Hainan, China
| | - Meng Chang
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Gaoyu Wang
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Jing An
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
| | - Yi Huang
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Xiaoyuan Hu
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Chuanning Tang
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Zihan Li
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Yi Niu
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Xiuying Tian
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Wanxin Deng
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Cheng Tang
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Jiang Du
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiuji Cui
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
- Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan, China
| | - Jasper Fuk-Woo Chan
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Ruoyan Peng
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Feifei Yin
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
- Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
2
|
Naeem A, Alkadi HS, Manzoor MU, Yousaf I, Awadalla M, Alturaiki W, AlYami AS, Zafar A, Alosaimi B. Mutations at the conserved N-Terminal of the human Rhinovirus capsid gene VP4, and their impact on the immune response. J Immunoassay Immunochem 2024; 45:271-291. [PMID: 38551181 DOI: 10.1080/15321819.2024.2323460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Rhinoviruses (RV) are the major cause of chronic obstructive pulmonary disease and are associated with exacerbation development as well as community-acquired pneumonia in children, leading to substantial morbidity, mortality, and hospital admission. Here we have examined how changes at the amino terminal of the conserved VP4 epitope of different RV serotypes may affect pulmonary cytokine and chemokine responses and disease severity. Samples positive for rhinovirus were used for genetic characterization, followed by profiling gene expression of pulmonary Th1 and Th2 cytokines/chemokines by RT-PCR arrays. Genetic sequencing and homology 3D modeling revealed changes at the amino terminal of the conserved viral protein 4 (VP4) epitope in the RV-A101 serotype, especially serine at several positions that are important for interactive binding with the host immune cells. We found dysregulation of pulmonary gene expression of Th1- and Th2-related cytokines and chemokines in RV-A 101 and RV-C 8 pneumonia patients. These findings might contribute to a better understanding of RV immunity and the potential mechanisms underlying the pathogenesis of severe RV infections, but further functional studies are needed to confirm the causal relationship.
Collapse
Affiliation(s)
- Asif Naeem
- Department of Research Labs, Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Haitham S Alkadi
- Department of Research Labs, Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Muhammad U Manzoor
- Department of Medical Imaging, Diagnostic & Interventional Neuroradiology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Imran Yousaf
- Department of Medical Imaging, Diagnostic & Interventional Neuroradiology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Maaweya Awadalla
- Department of Research Labs, Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Riyadh Region, Saudi Arabia
| | - Ahmad S AlYami
- Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Adnan Zafar
- Pediatric Department, John Hopkins Aramco Healthcare, Al-Ahsa, Saudi Arabia
| | - Bandar Alosaimi
- Department of Research Labs, Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Diouf FS, Tidjani Alou M, Bassene H, Cortaredona S, Diatta G, Raoult D, Sokhna C, Lagier JC. Seasonal variation of asymptomatic viral and bacterial nasopharyngeal carriage in rural Senegal. J Infect Public Health 2024; 17:922-928. [PMID: 38579539 DOI: 10.1016/j.jiph.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/26/2024] [Accepted: 03/17/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND The surveillance of respiratory pathogens in rural areas of West Africa has, to date, largely been focussed on symptoms. In this prospective study conducted prior to the COVID-19 pandemic, we aimed to assess the asymptomatic prevalence of respiratory pathogen carriage in a group of individuals living in a rural area of Senegalese. METHODS Longitudinal follow up was performed through monthly nasopharyngeal swabbing during the dry season and weekly swabbing during the rainy season. We enrolled 15 individuals from the village of Ndiop. A total of 368 nasopharyngeal swabs were collected over a one-year period. We investigated the prevalence of 18 respiratory viruses and eight respiratory bacteria in different age groups using singleplex and multiplex PCR. RESULTS In total, 19.56% of the samples (72/368) were positive for respiratory viruses and 13.60% of the samples (50/368) were positive for respiratory bacteria. Coronaviruses (19/72, 26.39%), adenoviruses (17/72, 23.61%), rhinoviruses (14/72, 19.44%), Streptococcus pneumoniae (17/50, 34%), and Moraxella catarrhalis (15/50, 30%) were the most frequently detected viruses. Interestingly, the carriage of respiratory pathogens was shown to be more frequent during the rainy season, as pluviometry was shown to be positively associated with the occurrence of respiratory viruses such as influenza (P = .0078, r2 =.523) and RSV (P = .0055, r2 =.554). CONCLUSIONS Our results show a non-negligible circulation of respiratory pathogens in a rural area in Senegal (West Africa) with an underestimated proportion of asymptomatic individuals. This study highlights the fact that the circulation of viruses and bacteria in the community has been overlooked.
Collapse
Affiliation(s)
- Fatou Samba Diouf
- VITROME IRD, Campus International de Recherche IRD-UCAD Hann, Dakar, Senegal; IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Maryam Tidjani Alou
- IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Hubert Bassene
- VITROME IRD, Campus International de Recherche IRD-UCAD Hann, Dakar, Senegal
| | - Sebastien Cortaredona
- VITROME IRD, Campus International de Recherche IRD-UCAD Hann, Dakar, Senegal; IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Georges Diatta
- VITROME IRD, Campus International de Recherche IRD-UCAD Hann, Dakar, Senegal
| | - Didier Raoult
- VITROME IRD, Campus International de Recherche IRD-UCAD Hann, Dakar, Senegal; IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Cheikh Sokhna
- VITROME IRD, Campus International de Recherche IRD-UCAD Hann, Dakar, Senegal; IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Jean-Christophe Lagier
- IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France.
| |
Collapse
|
4
|
Kurskaya OG, Prokopyeva EA, Sobolev IA, Solomatina MV, Saroyan TA, Dubovitskiy NA, Derko AA, Nokhova AR, Anoshina AV, Leonova NV, Simkina OA, Komissarova TV, Shestopalov AM, Sharshov KA. Changes in the Etiology of Acute Respiratory Infections among Children in Novosibirsk, Russia, between 2019 and 2022: The Impact of the SARS-CoV-2 Virus. Viruses 2023; 15:934. [PMID: 37112913 PMCID: PMC10141072 DOI: 10.3390/v15040934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
A wide range of human respiratory viruses are known that may cause acute respiratory infections (ARIs), such as influenza A and B viruses (HIFV), respiratory syncytial virus (HRSV), coronavirus (HCoV), parainfluenza virus (HPIV), metapneumovirus (HMPV), rhinovirus (HRV), adenovirus (HAdV), bocavirus (HBoV), and others. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COronaVIrus Disease (COVID) that lead to pandemic in 2019 and significantly impacted on the circulation of ARIs. The aim of this study was to analyze the changes in the epidemic patterns of common respiratory viruses among children and adolescents hospitalized with ARIs in hospitals in Novosibirsk, Russia, from November 2019 to April 2022. During 2019 and 2022, nasal and throat swabs were taken from a total of 3190 hospitalized patients 0-17 years old for testing for HIFV, HRSV, HCoV, HPIV, HMPV, HRV, HAdV, HBoV, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by real-time PCR. The SARS-CoV-2 virus dramatically influenced the etiology of acute respiratory infections among children and adolescents between 2019 and 2022. We observed dramatic changes in the prevalence of major respiratory viruses over three epidemic research seasons: HIFV, HRSV, and HPIV mainly circulated in 2019-2020; HMPV, HRV, and HCoV dominated in 2020-2021; and HRSV, SARS-CoV-2, HIFV, and HRV were the most numerous agents in 2021-2022. Interesting to note was the absence of HIFV and a significant reduction in HRSV during the 2020-2021 period, while HMPV was absent and there was a significant reduction of HCoV during the following epidemic period in 2021-2022. Viral co-infection was significantly more frequently detected in the 2020-2021 period compared with the other two epidemic seasons. Certain respiratory viruses, HCoV, HPIV, HBoV, HRV, and HAdV, were registered most often in co-infections. This cohort study has revealed that during the pre-pandemic and pandemic periods, there were dramatic fluctuations in common respiratory viruses registered among hospitalized patients 0-17 years old. The most dominant virus in each research period differed: HIFV in 2019-2020, HMPV in 2020-2021, and HRSV in 2021-2022. Virus-virus interaction was found to be possible between SARS-CoV-2 and HRV, HRSV, HAdV, HMPV, and HPIV. An increase in the incidence of COVID-19 was noted only during the third epidemic season (January to March 2022).
Collapse
Affiliation(s)
- Olga G. Kurskaya
- Laboratory of Molecular Epidemiology and Biodiversity of Viruses, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630060, Russia
| | - Elena A. Prokopyeva
- Laboratory of Molecular Epidemiology and Biodiversity of Viruses, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630060, Russia
| | - Ivan A. Sobolev
- Laboratory of Molecular Epidemiology and Biodiversity of Viruses, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630060, Russia
| | - Mariya V. Solomatina
- Laboratory of Molecular Epidemiology and Biodiversity of Viruses, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630060, Russia
| | - Tereza A. Saroyan
- Laboratory of Molecular Epidemiology and Biodiversity of Viruses, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630060, Russia
| | - Nikita A. Dubovitskiy
- Laboratory of Molecular Epidemiology and Biodiversity of Viruses, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630060, Russia
| | - Anastasiya A. Derko
- Laboratory of Molecular Epidemiology and Biodiversity of Viruses, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630060, Russia
| | - Alina R. Nokhova
- Laboratory of Molecular Epidemiology and Biodiversity of Viruses, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630060, Russia
| | - Angelika V. Anoshina
- Department of Children’s Diseases, Novosibirsk Children’s Municipal Clinical Hospital No 6, Novosibirsk 630015, Russia
| | - Natalya V. Leonova
- Department of Children’s Diseases, Novosibirsk Children’s Municipal Clinical Hospital No 6, Novosibirsk 630015, Russia
| | - Olga A. Simkina
- Department of Children’s Diseases, Novosibirsk Children’s Municipal Clinical Hospital No 3, Novosibirsk 630040, Russia
| | - Tatyana V. Komissarova
- Department of Children’s Diseases, Novosibirsk Children’s Municipal Clinical Hospital No 3, Novosibirsk 630040, Russia
| | - Alexander M. Shestopalov
- Laboratory of Molecular Epidemiology and Biodiversity of Viruses, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630060, Russia
| | - Kirill A. Sharshov
- Laboratory of Molecular Epidemiology and Biodiversity of Viruses, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630060, Russia
| |
Collapse
|
5
|
Momeni M, Rashidifar M, Balam FH, Roointan A, Gholaminejad A. A comprehensive analysis of gene expression profiling data in COVID-19 patients for discovery of specific and differential blood biomarker signatures. Sci Rep 2023; 13:5599. [PMID: 37019895 PMCID: PMC10075178 DOI: 10.1038/s41598-023-32268-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
COVID-19 is a newly recognized illness with a predominantly respiratory presentation. Although initial analyses have identified groups of candidate gene biomarkers for the diagnosis of COVID-19, they have yet to identify clinically applicable biomarkers, so we need disease-specific diagnostic biomarkers in biofluid and differential diagnosis in comparison with other infectious diseases. This can further increase knowledge of pathogenesis and help guide treatment. Eight transcriptomic profiles of COVID-19 infected versus control samples from peripheral blood (PB), lung tissue, nasopharyngeal swab and bronchoalveolar lavage fluid (BALF) were considered. In order to find COVID-19 potential Specific Blood Differentially expressed genes (SpeBDs), we implemented a strategy based on finding shared pathways of peripheral blood and the most involved tissues in COVID-19 patients. This step was performed to filter blood DEGs with a role in the shared pathways. Furthermore, nine datasets of the three types of Influenza (H1N1, H3N2, and B) were used for the second step. Potential Differential Blood DEGs of COVID-19 versus Influenza (DifBDs) were found by extracting DEGs involved in only enriched pathways by SpeBDs and not by Influenza DEGs. Then in the third step, a machine learning method (a wrapper feature selection approach supervised by four classifiers of k-NN, Random Forest, SVM, Naïve Bayes) was utilized to narrow down the number of SpeBDs and DifBDs and find the most predictive combination of them to select COVID-19 potential Specific Blood Biomarker Signatures (SpeBBSs) and COVID-19 versus influenza Differential Blood Biomarker Signatures (DifBBSs), respectively. After that, models based on SpeBBSs and DifBBSs and the corresponding algorithms were built to assess their performance on an external dataset. Among all the extracted DEGs from the PB dataset (from common PB pathways with BALF, Lung and Swab), 108 unique SpeBD were obtained. Feature selection using Random Forest outperformed its counterparts and selected IGKC, IGLV3-16 and SRP9 among SpeBDs as SpeBBSs. Validation of the constructed model based on these genes and Random Forest on an external dataset resulted in 93.09% Accuracy. Eighty-three pathways enriched by SpeBDs and not by any of the influenza strains were identified, including 87 DifBDs. Using feature selection by Naive Bayes classifier on DifBDs, FMNL2, IGHV3-23, IGLV2-11 and RPL31 were selected as the most predictable DifBBSs. The constructed model based on these genes and Naive Bayes on an external dataset was validated with 87.2% accuracy. Our study identified several candidate blood biomarkers for a potential specific and differential diagnosis of COVID-19. The proposed biomarkers could be valuable targets for practical investigations to validate their potential.
Collapse
Affiliation(s)
- Maryam Momeni
- Department of Biotechnology, Faculty of Biological Science and Technology, The University of Isfahan, Isfahan, Iran
| | - Maryam Rashidifar
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Farinaz Hosseini Balam
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Roointan
- Regenerative Medicine Research Center, Faculty of Medicine, Isfahan Univerity of Medical Sciences, Hezar Jarib St, Isfahan, 81746-73461, Iran
| | - Alieh Gholaminejad
- Regenerative Medicine Research Center, Faculty of Medicine, Isfahan Univerity of Medical Sciences, Hezar Jarib St, Isfahan, 81746-73461, Iran.
| |
Collapse
|
6
|
Geppe NA, Zaplatnikov AL, Kondyurina EG, Chepurnaya MM, Kolosova NG. The Common Cold and Influenza in Children: To Treat or Not to Treat? Microorganisms 2023; 11:microorganisms11040858. [PMID: 37110281 PMCID: PMC10146091 DOI: 10.3390/microorganisms11040858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
The common cold, which is mostly caused by respiratory viruses and clinically represented by the symptoms of acute respiratory viral infections (ARVI) with mainly upper respiratory tract involvement, is an important problem in pediatric practice. Due to the high prevalence, socio-economic burden, and lack of effective prevention measures (except for influenza and, partially, RSV infection), ARVI require strong medical attention. The purpose of this descriptive literature review was to analyze the current practical approaches to the treatment of ARVI to facilitate the choice of therapy in routine practice. This descriptive overview includes information on the causative agents of ARVI. Special attention is paid to the role of interferon gamma as a cytokine with antiviral and immunomodulatory effects on the pathogenesis of ARVI. Modern approaches to the treatment of ARVI, including antiviral, pathogenesis-directed and symptomatic therapy are presented. The emphasis is on the use of antibody-based drugs in the immunoprophylaxis and immunotherapy of ARVI. The data presented in this review allow us to conclude that a modern, balanced and evidence-based approach to the choice of ARVI treatment in children should be used in clinical practice. The published results of clinical trials and systematic reviews with meta-analyses of ARVI in children allow us to conclude that it is possible and expedient to use broad-spectrum antiviral drugs in complex therapy. This approach can provide an adequate response of the child’s immune system to the virus without limiting the clinical possibilities of using only symptomatic therapy.
Collapse
|
7
|
Viral and Bacterial Respiratory Pathogens during the COVID-19 Pandemic in Israel. Microorganisms 2023; 11:microorganisms11010166. [PMID: 36677458 PMCID: PMC9864990 DOI: 10.3390/microorganisms11010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND previous worldwide reports indicated a substantial short-term reduction in various respiratory infections during the early phase of the SARS-CoV-2 pandemic. AIMS exploring the long-term impact of the COVID-19 pandemic on respiratory pathogens. METHODS retrospective analysis of bacterial and viral positivity rate in respiratory samples, between 1 January 2017-30 June 2022 in a tertiary hospital in Jerusalem, Israel. RESULTS A decline in overall respiratory tests and positivity rate was observed in the first months of the pandemic. Respiratory isolations of Hemophilus influenza and Streptococcus pneumoniae were insignificantly affected and returned to their monthly average by November 2020, despite a parallel surge in COVID-19 activity, while Mycoplasma pneumoniae was almost eliminated from the respiratory pathogens scene. Each viral pathogen acted differently, with adenovirus affected only for few months. Human-metapneumovirus and respiratory-syncytial-virus had reduced activity for approximately a year, and influenza A virus resurged in November 2021 with the elimination of Influenza-B. CONCLUSIONS After an immediate decline in non-SARS-CoV-2 respiratory infections, each pathogen has a different pattern during a 2-year follow-up. These patterns might be influenced by intrinsic factors of each pathogen and different risk reduction behaviors of the population. Since some of these measures will remain in the following years, we cannot predict the timing of return to pre-COVID-19 normalcy.
Collapse
|
8
|
Urrutia-Pereira M, Chong-Neto HJ, Annesi Maesano I, Ansotegui IJ, Caraballo L, Cecchi L, Galán C, López JF, Aguttes MM, Peden D, Pomés A, Zakzuk J, Rosário Filho NA, D'Amato G. Environmental contributions to the interactions of COVID-19 and asthma: A secondary publication and update. World Allergy Organ J 2022; 15:100686. [PMID: 35966894 PMCID: PMC9359502 DOI: 10.1016/j.waojou.2022.100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/01/2022] Open
Abstract
An outbreak of coronavirus disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) started in Wuhan, Hubei Province, China and quickly spread around the world. Current evidence is contradictory on the association of asthma with COVID-19 and associated severe outcomes. Type 2 inflammation may reduce the risk for severe COVID-19. Whether asthma diagnosis may be a risk factor for severe COVID-19, especially for those with severe disease or non-allergic phenotypes, deserves further attention and clarification. In addition, COVID-19 does not appear to provoke asthma exacerbations, and asthma therapeutics should be continued for patients with exposure to COVID-19. Changes in the intensity of pollinization, an earlier start and extension of the pollinating season, and the increase in production and allergenicity of pollen are known direct effects that air pollution has on physical, chemical, and biological properties of the pollen grains. They are influenced and triggered by meteorological variables that could partially explain the effect on COVID-19. SARS-CoV-2 is capable of persisting in the environment and can be transported by bioaerosols which can further influence its transmission rate and seasonality. The COVID-19 pandemic has changed the behavior of adults and children globally. A general trend during the pandemic has been human isolation indoors due to school lockdowns and loss of job or implementation of virtual work at home. A consequence of this behavior change would presumably be changes in indoor allergen exposures and reduction of inhaled outdoor allergens. Therefore, lockdowns during the pandemic might have improved some specific allergies, while worsening others, depending on the housing conditions.
Collapse
Affiliation(s)
| | - Herberto Jose Chong-Neto
- Division of Allergy and Immunology, Department of Pediatrics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Isabella Annesi Maesano
- French NIH (INSERM), and EPAR Department, IPLESP, INSERM and Sorbonne University, Paris, France
| | | | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Lorenzo Cecchi
- Centre of Bioclimatology, University of Florence, Florence, Italy
- SOS Allergy and Clinical Immunology, USL Toscana Centro, Prato, Italy
| | - Carmen Galán
- Department of Botany, Ecology and Plant Physiology, International Campus of Excellence on Agrifood (ceiA3), University of Córdoba, Córdoba, Spain
| | - Juan Felipe López
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | | | - David Peden
- UNC School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Anna Pomés
- Basic Research, Indoor Biotechnologies, Inc, Charlottesville, VA, United States
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | | | - Gennaro D'Amato
- Division of Respiratory and Allergic Diseases, High Specialty Hospital A. Cardarelli, School of Specialization in Respiratory Diseases, Federico II University, Naples, Italy
| |
Collapse
|
9
|
Coronavirus Disease 2019 (COVID-19). BIOLOGY 2022; 11:biology11081250. [PMID: 36009877 PMCID: PMC9404726 DOI: 10.3390/biology11081250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
|
10
|
Hu W, Fries AC, DeMarcus LS, Thervil JW, Kwaah B, Brown KN, Sjoberg PA, Robbins AS. Circulating Trends of Influenza and Other Seasonal Respiratory Viruses among the US Department of Defense Personnel in the United States: Impact of the COVID-19 Pandemic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19105942. [PMID: 35627483 PMCID: PMC9141702 DOI: 10.3390/ijerph19105942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023]
Abstract
The objective of this study was to evaluate the impact of the COVID-19 pandemic on the circulation of influenza and other seasonal respiratory viruses in the United States. All data were obtained from the US Department of Defense Global Respiratory Pathogen Surveillance Program over five consecutive respiratory seasons from 2016-2017 through to 2020-2021. A total of 62,476 specimens were tested for seasonal respiratory viruses. The circulating patterns of seasonal respiratory viruses have been greatly altered during the pandemic. The 2019-2020 influenza season terminated earlier compared to the pre-pandemic seasons, and the 2020-2021 influenza season did not occur. Moreover, weekly test positivity rates dramatically decreased for most of the seasonal respiratory viruses from the start of the pandemic through spring 2021. After the easing of non-pharmaceutical interventions (NPIs), circulations of seasonal coronavirus, parainfluenza, and respiratory syncytial virus have returned since spring 2021. High rhinovirus/enterovirus activity was evident throughout the 2020-2021 respiratory season. The findings suggest a strong association between the remarkably changed activity of seasonal respiratory viruses and the implementation of NPIs during the COVID-19 pandemic. The NPIs may serve as an effective public health tool to reduce transmissions of seasonal respiratory viruses.
Collapse
Affiliation(s)
- Wenping Hu
- The Department of Defense Global Emerging Infections Surveillance Branch, Armed Forces Health Surveillance Division, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (L.S.D.); (J.W.T.); (B.K.); (K.N.B.); (P.A.S.); (A.S.R.)
- JYG Innovations LLC, Dayton, OH 45414, USA
- Correspondence:
| | - Anthony C. Fries
- U.S. Air Force School of Aerospace Medicine, Wright-Patterson Air Force Base, Dayton, OH 45433, USA;
| | - Laurie S. DeMarcus
- The Department of Defense Global Emerging Infections Surveillance Branch, Armed Forces Health Surveillance Division, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (L.S.D.); (J.W.T.); (B.K.); (K.N.B.); (P.A.S.); (A.S.R.)
- JYG Innovations LLC, Dayton, OH 45414, USA
| | - Jeffery W. Thervil
- The Department of Defense Global Emerging Infections Surveillance Branch, Armed Forces Health Surveillance Division, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (L.S.D.); (J.W.T.); (B.K.); (K.N.B.); (P.A.S.); (A.S.R.)
- JYG Innovations LLC, Dayton, OH 45414, USA
| | - Bismark Kwaah
- The Department of Defense Global Emerging Infections Surveillance Branch, Armed Forces Health Surveillance Division, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (L.S.D.); (J.W.T.); (B.K.); (K.N.B.); (P.A.S.); (A.S.R.)
- JYG Innovations LLC, Dayton, OH 45414, USA
| | - Kayla N. Brown
- The Department of Defense Global Emerging Infections Surveillance Branch, Armed Forces Health Surveillance Division, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (L.S.D.); (J.W.T.); (B.K.); (K.N.B.); (P.A.S.); (A.S.R.)
- JYG Innovations LLC, Dayton, OH 45414, USA
| | - Paul A. Sjoberg
- The Department of Defense Global Emerging Infections Surveillance Branch, Armed Forces Health Surveillance Division, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (L.S.D.); (J.W.T.); (B.K.); (K.N.B.); (P.A.S.); (A.S.R.)
- JYG Innovations LLC, Dayton, OH 45414, USA
| | - Anthony S. Robbins
- The Department of Defense Global Emerging Infections Surveillance Branch, Armed Forces Health Surveillance Division, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (L.S.D.); (J.W.T.); (B.K.); (K.N.B.); (P.A.S.); (A.S.R.)
| |
Collapse
|