1
|
Marchant WG, Brown JK, Gautam S, Ghosh S, Simmons AM, Srinivasan R. Non-Feeding Transmission Modes of the Tomato Yellow Leaf Curl Virus by the Whitefly Bemisia tabaci Do Not Contribute to Reoccurring Leaf Curl Outbreaks in Tomato. INSECTS 2024; 15:760. [PMID: 39452336 PMCID: PMC11508932 DOI: 10.3390/insects15100760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Tomato yellow leaf curl virus (TYLCV) causes significant yield loss in tomato production in the southeastern United States and elsewhere. TYLCV is transmitted by the whitefly Bemisia tabaci cryptic species in a persistent, circulative, and non-propagative manner. Unexpectedly, transovarial and sexual transmission of TYLCV has been reported for one strain from Israel. In this study, the potential contribution of the B. tabaci B cryptic species transovarial and sexual transmission of TYLCV (Israel strain, Georgia variant, Georgia, USA) to reoccurring outbreaks was investigated by conducting whitefly-TYLCV transmission assays and virus DNA detection using end point PCR, DNA quantitation via real-time PCR, and virion detection by immunocapture PCR. TYLCV DNA was detectable in four, two, and two percent of first-generation fourth-instar nymphs, first-generation adults, and second-generation adults, respectively, following transovarial acquisition. Post-mating between viruliferous counterparts, the virus's DNA was detected in four percent of males and undetectable in females. The accumulation of TYLCV DNA in whiteflies from the transovarial and/or sexual experiments was substantially lower (100 to 1000-fold) compared with whitefly adults allowed a 48-hr acquisition-access period on plants infected with TYLCV. Despite the detection of TYLCV DNA in whiteflies from the transovarial and/or mating experiments, the virions were undetectable by immunocapture PCR-a technique specifically designed to detect virions. Furthermore, tomato test plants exposed to whitefly adults that presumably acquired TYLCV transovarially or through mating remained free of detectable TYLCV DNA. Collectively, the extremely low levels of TYLCV DNA and complete absence of virions detected in whiteflies and the inability of the B. tabaci cryptic species B to transmit TYLCV to test tomato plants following transovarial and mating acquisition indicate that neither transovarial nor sexual transmission of TYLCV are probable or epidemiologically relevant for TYLCV persistence in this pathosystem.
Collapse
Affiliation(s)
- Wendy G. Marchant
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA; (W.G.M.); (S.G.); (S.G.)
| | - Judith K. Brown
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA;
| | - Saurabh Gautam
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA; (W.G.M.); (S.G.); (S.G.)
| | - Saptarshi Ghosh
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA; (W.G.M.); (S.G.); (S.G.)
| | - Alvin M. Simmons
- Agriculture Research Service, United States Department of Agriculture, Charleston, SC 29414, USA;
| | - Rajagopalbabu Srinivasan
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA; (W.G.M.); (S.G.); (S.G.)
| |
Collapse
|
2
|
Shakoor S, Rao AQ, Ajmal S, Yasmeen A, Khan MAU, Sadaqat S, Ashraf NM, Wolter F, Pacher M, Husnain T. Multiplex Cas9-based excision of CLCuV betasatellite and DNA-A revealed reduction of viral load with asymptomatic cotton plants. PLANTA 2023; 258:79. [PMID: 37698688 DOI: 10.1007/s00425-023-04233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/27/2023] [Indexed: 09/13/2023]
Abstract
MAIN CONCLUSION Multiplexed Cas9-based genome editing of cotton resulted in reduction of viral load with asymptomatic cotton plants. In depth imaging of proteomic dynamics of resulting CLCuV betasatellite and DNA-A protein was also performed. The notorious cotton leaf curl virus (CLCuV), which is transmitted by the sap-sucking insect whitefly, continuously damages cotton crops. Although the application of various toxins and RNAi has shown some promise, sustained control has not been achieved. Consequently, CRISPR_Cas9 was applied by designing multiplex targets against DNA-A (AC2 and AC3) and betasatellite (βC1) of CLCuV using CRISPR direct and ligating into the destination vector of the plant using gateway ligation method. The successful ligation of targets into the destination vector was confirmed by the amplification of 1049 bp using a primer created from the promoter and target, while restriction digestion using the AflII and Asc1 enzymes determined how compact the plasmid developed and the nucleotide specificity of the plasmid was achieved through Sanger sequencing. PCR confirmed the successful introduction of plasmid into CKC-1 cotton variety. Through Sanger sequencing and correlation with the mRNA expression of DNA-A and betasatellite in genome-edited cotton plants subjected to agroinfiltration of CLCuV infectious clone, the effectiveness of knockout was established. The genome-edited cotton plants demonstrated edited efficacy of 72% for AC2 and AC3 and 90% for the (βC1) through amplicon sequencing, Molecular dynamics (MD) simulations were used to further validate the results. Higher RMSD values for the edited βC1 and AC3 proteins indicated functional loss caused by denaturation. Thus, CRISPR_Cas9 constructs can be rationally designed using high-throughput MD simulation technique. The confidence in using this technology to control plant virus and its vector was determined by the knockout efficiency and the virus inoculation assay.
Collapse
Affiliation(s)
- Sana Shakoor
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Abdul Qayyum Rao
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan.
| | - Sara Ajmal
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Aneela Yasmeen
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | | | - Sahar Sadaqat
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Naeem Mahmood Ashraf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Felix Wolter
- Pacific Biosciences, Bonn, Nordrhein-Westfalen, Deutschland
| | - Michael Pacher
- CureVac Manufacturing GmbH, Tübingen, Baden-Württemberg, Deutschland
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| |
Collapse
|
3
|
Iqbal MJ, Zia-Ur-Rehman M, Ilyas M, Hameed U, Herrmann HW, Chingandu N, Manzoor MT, Haider MS, Brown JK. Sentinel plot surveillance of cotton leaf curl disease in Pakistan- a case study at the cultivated cotton-wild host plant interface. Virus Res 2023; 333:199144. [PMID: 37271420 PMCID: PMC10352719 DOI: 10.1016/j.virusres.2023.199144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
A sentinel plot case study was carried out to identify and map the distribution of begomovirus-betasatellite complexes in sentinel plots and commercial cotton fields over a four-year period using molecular and high-throughput DNA 'discovery' sequencing approaches. Samples were collected from 15 study sites in the two major cotton-producing areas of Pakistan. Whitefly- and leafhopper-transmitted geminiviruses were detected in previously unreported host plant species and locations. The most prevalent begomovirus was cotton leaf curl Kokhran virus-Burewala (CLCuKoV-Bu). Unexpectedly, a recently recognized recombinant, cotton leaf curl Multan virus-Rajasthan (CLCuMuV-Ra) was prevalent in five of 15 sites. cotton leaf curl Alabad virus (CLCuAlV) and cotton leaf curl Kokhran virus-Kokhran, 'core' members of CLCuD-begomoviruses that co-occurred with CLCuMuV in the 'Multan' epidemic were detected in one of 15 sentinel plots. Also identified were chickpea chlorotic dwarf virus and 'non-core' CLCuD-begomoviruses, okra enation leaf curl virus, squash leaf curl virus, and tomato leaf curl New Delhi virus. Cotton leaf curl Multan betasatellite (CLCuMuB) was the most prevalent CLCuD-betasatellite, and less commonly, two 'non-core' betasatellites. Recombination analysis revealed previously uncharacterized recombinants among helper virus-betasatellite complexes consisting of CLCuKoV, CLCuMuV, CLCuAlV and CLCuMuB. Population analyses provided early evidence for CLCuMuV-Ra expansion and displacement of CLCuKoV-Bu in India and Pakistan from 2012-2017. Identification of 'core' and non-core CLCuD-species/strains in cotton and other potential reservoirs, and presence of the now predominant CLCuMuV-Ra strain are indicative of ongoing diversification. Investigating the phylodynamics of geminivirus emergence in cotton-vegetable cropping systems offers an opportunity to understand the driving forces underlying disease outbreaks and reconcile viral evolution with epidemiological relationships that also capture pathogen population shifts.
Collapse
Affiliation(s)
- Muhammad Javed Iqbal
- School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Tucson, AZ 85721 USA; Faculty of Agricultural Sciences, University of the Punjab, New Campus Canal Road Lahore, Pakistan
| | - Muhammad Zia-Ur-Rehman
- Faculty of Agricultural Sciences, University of the Punjab, New Campus Canal Road Lahore, Pakistan
| | - Muhammad Ilyas
- School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Tucson, AZ 85721 USA
| | - Usman Hameed
- Faculty of Agricultural Sciences, University of the Punjab, New Campus Canal Road Lahore, Pakistan
| | - Hans Werner Herrmann
- School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Tucson, AZ 85721 USA
| | - Nomatter Chingandu
- School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Tucson, AZ 85721 USA
| | - Muhammad Tariq Manzoor
- Faculty of Agricultural Sciences, University of the Punjab, New Campus Canal Road Lahore, Pakistan
| | - Muhammad Saleem Haider
- Faculty of Agricultural Sciences, University of the Punjab, New Campus Canal Road Lahore, Pakistan
| | - Judith K Brown
- School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Tucson, AZ 85721 USA.
| |
Collapse
|
4
|
Brown JK, Paredes-Montero JR, Stocks IC. The Bemisia tabaci cryptic (sibling) species group - imperative for a taxonomic reassessment. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101032. [PMID: 37030511 DOI: 10.1016/j.cois.2023.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023]
Abstract
The taxonomy of the Bemisia tabaci cryptic species group remains a challenge due to the lack of morphological differentiation and porous species boundaries among its members. Additionally, it is unclear whether B. tabaci consists of several species in evolutionary stasis with limited morphological change or is the result of a recent adaptive radiation characterized by great ecological diversity but little morphological divergence. Here, a historical overview of the development of the nomenclature used to classify B. tabaci is provided covering changes after synonymizing several species in 1957 until recent insights gained from whole-genome sequencing data. The article discusses the limitations of using a 3.5% mtCOI threshold and argues that a 1% nuclear divergence cutoff better reflects ecological and biogeographic species boundaries. Finally, a plan of action is outlined for naming B. tabaci species using a Latin binomial system in accordance with the International Comission on Zoological Nomenclature (ICZN) regulations.
Collapse
Affiliation(s)
- Judith K Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, United States.
| | - Jorge R Paredes-Montero
- Biology Department, Saginaw Valley State University, University Center, MI 48710, United States; Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador.
| | - Ian C Stocks
- Animal and Plant Inspection Service, Plant Protection and Quarantine, USDA, Rm. 320, Bldg. 003, Beltsville, MD 20705, United States.
| |
Collapse
|
5
|
Shahid MS, Paredes-Montero JR, Ashfaq M, Al-Sadi AM, Brown JK. Native and Non-Native Bemisia tabaci NAFME Haplotypes Can Be Implicated in Dispersal of Endemic and Introduced Begomoviruses in Oman. INSECTS 2023; 14:268. [PMID: 36975953 PMCID: PMC10056824 DOI: 10.3390/insects14030268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Irrigated agriculture and global trade expansion have facilitated diversification and spread of begomoviruses (Geminiviridae), transmitted by the Bemisia tabaci (Gennadius) cryptic species. Oman is situated on major crossroads between Africa and South Asia, where endemic/native and introduced/exotic begomoviruses occur in agroecosystems. The B. tabaci 'B mitotype' belongs to the North Africa-Middle East (NAFME) cryptic species, comprising at least eight endemic haplotypes, of which haplotypes 6 and/or 8 are recognized invasives. Prevalence and associations among native and exotic begomoviruses and NAFME haplotypes in Oman were investigated. Nine begomoviral species were identified from B. tabaci infesting crop or wild plant species, with 67% and 33% representing native and exotic species, respectively. Haplotypes 2, 3, and 5 represented 31%, 3%, and 66% of the B. tabaci population, respectively. Logistic regression and correspondence analyses predicted 'strong'- and 'close' virus-vector associations involving haplotypes 5 and 2 and the exotic chili leaf curl virus (ChiLCV) and endemic tomato yellow leaf curl virus-OM, respectively. Patterns favor a hypothesis of relaxed virus-vector specificity between an endemic haplotype and the introduced ChiLCV, whereas the endemic co-evolved TYLCV-OM and haplotype 2 virus-vector relationship was reinforced. Thus, in Oman, at least one native haplotype can facilitate the spread of endemic and introduced begomoviruses.
Collapse
Affiliation(s)
- Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod 123, Oman
| | - Jorge R. Paredes-Montero
- Department of Biology, Saginaw Valley State University, University Center, Saginaw, MI 48710, USA
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil 090605, Ecuador
| | - Muhammad Ashfaq
- Centre for Biodiversity Genomics, Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Abdullah M. Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod 123, Oman
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
6
|
Lestari SM, Khatun MF, Acharya R, Sharma SR, Shrestha YK, Jahan SMH, Aye TT, Lynn OM, Win NKK, Hoat TX, Thi Dao H, Tsai CW, Lee J, Hwang HS, Kil EJ, Lee S, Kim SM, Lee KY. Genetic diversity of cryptic species of Bemisia tabaci in Asia. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21981. [PMID: 36331499 DOI: 10.1002/arch.21981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Bemisia tabaci is a species complex consisting of various genetically different cryptic species worldwide. To understand the genetic characteristics and geographic distribution of cryptic species of B. tabaci in Asia, we conducted an extensive collection of B. tabaci samples in ten Asian countries (Bangladesh, Indonesia, Japan, Korea, Myanmar, Nepal, Philippines, Singapore, Taiwan, and Vietnam) from 2013 to 2020 and determined 56 different partial sequences of mitochondrial cytochrome oxidase subunit I (COI) DNA. In addition, information on 129 COI sequences of B. tabaci identified from 16 Asian countries was downloaded from the GenBank database. Among the total 185 COI sequences of B. tabaci, the sequence variation reached to 19.68%. In addition, there were 31 cryptic species updated from 16 countries in Asia, that is, Asia I, Asia I India, Asia II (1-13), Asia III, Asia IV, Asia V, China 1-6, MEAM (1, 2, K), MED, Australia/Indonesia, Japan (1 and 2). Further, MED cryptic species consisted of 2 clades, Q1 and Q2. This study provides updated information to understand the genetic variation and geographic diversity of B. tabaci in Asia.
Collapse
Affiliation(s)
- Susanti Mugi Lestari
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Mst Fatema Khatun
- Department of Entomology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Dhaka, Bangladesh
| | - Rajendra Acharya
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sushant Raj Sharma
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | | | - S M Hemayet Jahan
- Department of Entomology, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh
| | - Tin-Tin Aye
- Department of Entomology, Yezin Agricultural University, Yezin, Myanmar
| | - Ohn Mar Lynn
- Department of Entomology, Yezin Agricultural University, Yezin, Myanmar
| | - Nang Kyu Kyu Win
- Department of Plant Pathology, Yezin Agricultural University, Yezin, Myanmar
| | | | - Hang Thi Dao
- Plant Protection Research Institute, Ha Noi, Vietnam
| | - Chi-Wei Tsai
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Jangha Lee
- PT. Koreana Seed Indonesia, Kediri Jawa Timur, Indonesia
| | - Hwal-Su Hwang
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Eui-Joon Kil
- Department of Plant Medicine, Andong National University, Andong, Republic of Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sunkyunkwan University, Suwon, Republic of Korea
| | - Sang-Mok Kim
- Plant Quarantine Technology Center, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Kyeong-Yeoll Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
7
|
Pascual S, Rodríguez-Álvarez CI, Kaloshian I, Nombela G. Hsp90 Gene Is Required for Mi-1-Mediated Resistance of Tomato to the Whitefly Bemisia tabaci. PLANTS (BASEL, SWITZERLAND) 2023; 12:641. [PMID: 36771723 PMCID: PMC9919380 DOI: 10.3390/plants12030641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The Mi-1 gene of tomato (Solanum lycopersicum) confers resistance against some nematodes and insects, but the resistance mechanisms differ depending on the harmful organism, as a hypersensitive reaction (HR) occurs only in the case of nematodes. The gene Rme1 is required for Mi-1-mediated resistance to nematodes, aphids, and whiteflies, and several additional proteins also play a role in this resistance. Among them, the involvement of the chaperone HSP90 has been demonstrated in Mi-1-mediated resistance for aphids and nematodes, but not for whiteflies. In this work, we studied the implication of the Hsp90 gene in the Mi-1 resistance against the whitefly Bemisia tabaci by means of Tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS). The silencing of the Hsp90 gene in tomato Motelle plants carrying the Mi-1 gene resulted in a decrease in resistance to whiteflies, as oviposition values were significantly higher than those on non-silenced plants. This decrease in resistance was equivalent to that caused by the silencing of the Mi-1 gene itself. Infiltration with the control TRV vector did not alter Mi-1 mediated resistance to B. tabaci. Similar to the Mi-1 gene, silencing of Hsp90-1 occurs partially, as silenced plants showed a significant but not complete suppression of gene expression. Thus, our results demonstrate the requirement of Hsp90 in the Mi-1-mediated resistance to B. tabaci and reinforce the hypothesis of a common model for this resistance to nematodes and insects.
Collapse
Affiliation(s)
- Susana Pascual
- Entomology Group, Plant Protection Department, National Institute of Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Ctra. Coruña km 7, 28040 Madrid, Spain
| | - Clara I. Rodríguez-Álvarez
- Department of Plant Protection, Institute for Agricultural Sciences (ICA), Spanish National Research Council (CSIC), Serrano 115 Dpdo., 28006 Madrid, Spain
| | - Isgouhi Kaloshian
- Department of Nematology, University of California, Riverside, CA 92521, USA
| | - Gloria Nombela
- Department of Plant Protection, Institute for Agricultural Sciences (ICA), Spanish National Research Council (CSIC), Serrano 115 Dpdo., 28006 Madrid, Spain
| |
Collapse
|
8
|
Renault D, Elfiky A, Mohamed A. Predicting the insecticide-driven mutations in a crop pest insect: Evidence for multiple polymorphisms of acetylcholinesterase gene with potential relevance for resistance to chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18937-18955. [PMID: 36219281 DOI: 10.1007/s11356-022-23309-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The silverleaf whitefly Bemisia tabaci (Gennadius, 1889) (Homoptera: Aleyrodidae) is a serious invasive herbivorous insect pest worldwide. The excessive use of pesticides has progressively selected B. tabaci specimens, reducing the effectiveness of the treatments, and ultimately ending in the selection of pesticide-resistant strains. The management of this crop pest has thus become challenging owing to the level of resistance to all major classes of recommended insecticides. Here, we used in silico techniques for detecting sequence polymorphisms in ace1 gene from naturally occurring B. tabaci variants, and monitor the presence and frequency of the detected putative mutations from 30 populations of the silverleaf whitefly from Egypt and Pakistan. We found several point mutations in ace1-type acetylcholinesterase (ace1) in the studied B. tabaci variants naturally occurring in the field. By comparing ace1 sequence data from an organophosphate-susceptible and an organophosphate-resistant strains of B. tabaci to ace1 sequence data retrieved from GenBank for that species and to nucleotide polymorphisms from other arthropods, we identified novel mutations that could potentially influence insecticide resistance. Homology modeling and molecular docking analyses were performed to determine if the mutation-induced changes in form 1 acetylcholinesterase (AChE1) structure could confer resistance to carbamate and organophosphate insecticides. Mutations had small effects on binding energy (ΔGb) interactions between mutant AChE1 and insecticides; they altered the conformation of the peripheral anionic site of AChE1, and modified the enzyme surface, and these changes have potential effects on the target-site sensitivity. Altogether, the results from this study provide information on genic variants of B. tabaci ace1 for future monitoring insecticide resistance development and report a potential case of environmentally driven gene variations.
Collapse
Affiliation(s)
- David Renault
- University of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR, 6553, Rennes, France.
- Institut Universitaire de France, 1 rue Descartes, 75231, Paris Cedex 05, France.
| | - Abdo Elfiky
- Biophysics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
9
|
Rossitto De Marchi B, Gama AB, Smith HA. Evidence of the association between the Q2 mitochondrial group of Bemisia tabaci MED species (Hemiptera: Aleyrodidae) and low competitive displacement capability. PLoS One 2023; 18:e0280002. [PMID: 36634115 PMCID: PMC9836299 DOI: 10.1371/journal.pone.0280002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
The whitefly, Bemisia tabaci (Gennadius), is one of the most serious agricultural pests worldwide. Bemisia tabaci is a cryptic species complex of more than 40 species among which the invasive MEAM1 and MED species are the most widespread and economically important. Both MEAM1 and MED present intraspecific genetic variability and some haplotypes are reported to be more invasive than others. MED can be further deconstructed into different genetic groups, including MED-Q1 and MED-Q2. However, distinct biological phenotypes discerning the different MED mitochondrial haplotypes are yet to be characterized. Competitive displacement and life-history trials were carried out between MED-Q2 and MEAM1 populations collected in Florida, USA. In addition, a phylogenetic analysis was carried out including populations from previous whitefly competitive displacement studies for identification and comparison of the MED mitochondrial groups. In contrast to other studies with MED-Q1, the MED-Q2 population from Florida is less likely to displace MEAM1 on pepper. In addition, both pepper and watermelon were a more favorable host to MEAM1 compared to MED-Q2 according to the life history trials.
Collapse
Affiliation(s)
- Bruno Rossitto De Marchi
- Entomology and Nematology Department, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States of America
- * E-mail:
| | - Andre Bueno Gama
- Plant Pathology Department, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States of America
| | - Hugh A. Smith
- Entomology and Nematology Department, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States of America
| |
Collapse
|
10
|
Ibrahim YE, Paredes-Montero JR, Al-Saleh MA, Widyawan A, He R, El Komy MH, Al Dhafer HM, Kitchen N, Gang DR, Brown JK. Characterization of the Asian Citrus Psyllid-‘Candidatus Liberibacter Asiaticus’ Pathosystem in Saudi Arabia Reveals Two Predominant CLas Lineages and One Asian Citrus Psyllid Vector Haplotype. Microorganisms 2022; 10:microorganisms10101991. [PMID: 36296267 PMCID: PMC9610752 DOI: 10.3390/microorganisms10101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/16/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
In Saudi Arabia (SA), the citrus greening disease is caused by ‘Candidatus Liberibacter asiaticus’ (CLas) transmitted by the Asian citrus psyllid (ACP) Diaphorina citri. The origin and route(s) of the ACP-CLas pathosystem invasion in SA have not been studied. Adult ACP were collected from citrus trees in SA and differentiated by analysis of the mitochondrial cytochrome oxidase I (mtCOI) and nuclear copper transporting protein (atox1) genes. A phylogenetic analysis of the Wolbachia spp. surface protein (wsp) gene was used to identify the ACP-associated Wolbachia spp. A phylogenetic analysis of the atox1 and mtCOI gene sequences revealed one predominant ACP haplotype most closely related to the Indian subcontinent founder populations. The detection and identification of CLas in citrus trees were carried out by polymerase chain reaction (PCR) amplification and sequencing of the 16S rDNA gene. The CLas-integrated prophage genomes were sequenced, annotated, and used to differentiate CLas populations. The ML and ASTRAL trees reconstructed with prophages type 1 and 2 genome sequences, separately and concatenated, resolved two major lineages, CLas-1 and -2. The CLas-1 clade, reported here for the first time, consisted of isolates from SA isolates and Pakistan. The CLas-2 sequences formed two groups, CLas-2-1 and -2-2, previously the ‘Asiatic’ and ‘Floridian’ strains, respectively. Members of CLas-2-1 originated from Southeast Asia, the USA, and other worldwide locations, while CLas-2-2 was identified only in Florida. This study provides the first snapshot into the status of the ACP-CLas pathosystem in SA. In addition, the results provide new insights into the pathosystem coevolution and global invasion histories of two ACP-CLas lineages with a predicted center of origin in South and Southeast Asia, respectively.
Collapse
Affiliation(s)
- Yasser E. Ibrahim
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: author:
| | - Jorge R. Paredes-Montero
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
- Department of Biology, Saginaw Valley State University, Saginaw, MI 48710, USA
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090902, Ecuador
| | - Mohammed A. Al-Saleh
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Arya Widyawan
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ruifeng He
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Mahmoud H. El Komy
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hathal M. Al Dhafer
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Noel Kitchen
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - David R. Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
11
|
Paredes‐Montero JR, Rizental M, Quintela ED, de Abreu AG, Brown JK. Earlier than expected introductions of the Bemisia tabaci B mitotype in Brazil reveal an unprecedented, rapid invasion history. Ecol Evol 2022; 12:e8557. [PMID: 35127052 PMCID: PMC8796915 DOI: 10.1002/ece3.8557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 11/09/2022] Open
Abstract
During 1991, in Brazil, the presence of the exotic Bemisia tabaci B mitotype was reported in São Paulo state. However, the duration from the time of initial introduction to population upsurges is not known. To investigate whether the 1991 B mitotype outbreaks in Brazil originated in São Paulo or from migrating populations from neighboring introduction sites, country-wide field samples of B. tabaci archived from 1989-2005 collections were subjected to analysis of mitochondrial cytochrome oxidase I (mtCOI) and nuclear RNA-binding protein 15 (RP-15) sequences. The results of mtCOI sequence analysis identified all B. tabaci as the NAFME 8 haplotype of the B mitotype. Phylogenetic analyses of RP-15 sequences revealed that the B mitotype was likely a hybrid between a B type parent related to a haplotype Ethiopian endemism (NAFME 1-3), and an unidentified parent from the North Africa-Middle East (NAF-ME) region. Results provide the first evidence that this widely invasive B mitotype has evolved from a previously undocumented hybridization event. Samples from Rio de Janeiro (1989) and Ceará state (1990), respectively, are the earliest known B mitotype records in Brazil. A simulated migration for the 1989 introduction predicted a dispersal rate of 200-500 km/year, indicating that the population was unlikely to have reached Ceará by 1990. Results implicated two independent introductions of the B mitotype in Brazil in 1989 and 1990, that together were predicted to have contributed to the complete invasion of Brazil in only 30 generations.
Collapse
Affiliation(s)
- Jorge R. Paredes‐Montero
- School of Plant SciencesThe University of ArizonaTucsonArizonaUSA
- Facultad de Ciencias de la VidaEscuela Superior Politécnica del LitoralESPOLGuayaquilEcuador
| | - Muriel Rizental
- Federal University of GoiásGoiâniaBrazil
- EMBRAPA Rice and BeansSanto Antônio de GoiásBrazil
| | | | | | - Judith K. Brown
- School of Plant SciencesThe University of ArizonaTucsonArizonaUSA
| |
Collapse
|