1
|
Jo H, Lee S, Kim MH, Park S, Lee SY. Recapitulating Glioma Stem Cell Niches Using 3D Spheroid Models for Glioblastoma Research. BIOSENSORS 2024; 14:539. [PMID: 39589998 PMCID: PMC11592235 DOI: 10.3390/bios14110539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Glioblastoma multiforme (GBM) is among the most aggressive brain cancers, and it contains glioma stem cells (GSCs) that drive tumor initiation, progression, and recurrence. These cells resist conventional therapies, contributing to high recurrence rates in GBM patients. Developing in vitro models that mimic the tumor microenvironment (TME), particularly the GSC niche, is crucial for understanding GBM growth and therapeutic resistance. Three-dimensional (3D) spheroid models provide a more physiologically relevant approach than traditional two-dimensional (2D) cultures, recapitulating key tumor features like hypoxia, cell heterogeneity, and drug resistance. This review examines scaffold-free and scaffold-based methods for generating 3D GBM spheroids, focusing on their applications in studying the cancer stem cell niche. The discussion encompasses methods such as the hanging drop, low-adhesion plates, and magnetic levitation, alongside advancements in embedding spheroids within extracellular matrix-based hydrogels and employing 3D bioprinting to fabricate more intricate tumor models. These 3D culture systems offer substantial potential for enhancing our understanding of GBM biology and devising more effective targeted therapies.
Collapse
Affiliation(s)
- Hyunji Jo
- Department of Metabiohealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; (H.J.); (S.L.)
| | - Seulgi Lee
- Department of Metabiohealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; (H.J.); (S.L.)
| | - Min-Hyeok Kim
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea;
| | - Sungsu Park
- Department of Metabiohealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; (H.J.); (S.L.)
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea;
- Department of Quantum Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Seo-Yeon Lee
- Department of Pharmacology, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
- Department of Biomedical Science, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
| |
Collapse
|
2
|
Liu P, Zeng YP, Qu H, Zheng WY, Zhou TX, Hang LF, Jiang GH. Multiparametric simultaneous hybrid 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging ( 18F-FDG PET/MRI) incorporating intratumoral and peritumoral regions for grading of glioma. Quant Imaging Med Surg 2024; 14:5665-5681. [PMID: 39144048 PMCID: PMC11320556 DOI: 10.21037/qims-24-280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/30/2024] [Indexed: 08/16/2024]
Abstract
Background Preoperative grading gliomas is essential for therapeutic clinical decision-making. Current non-invasive imaging modality for glioma grading were primarily focused on magnetic resonance imaging (MRI) or positron emission tomography (PET) of the tumor region. However, these methods overlook the peritumoral region (PTR) of tumor and cannot take full advantage of the biological information derived from hybrid-imaging. Therefore, we aimed to combine multiparameter from hybrid 18F-fluorodeoxyglucose (18F-FDG) PET/MRI of the solid component and PTR were combined for differentiating high-grade glioma (HGG) from low-grade glioma (LGG). Methods A total of 76 patients with pathologically confirmed glioma (41 HGG and 35 LGG) who underwent simultaneous 18F-FDG PET, arterial spin labelling (ASL), and diffusion-weighted imaging (DWI) with hybrid PET/MRI were retrospectively enrolled. The relative maximum standardized uptake value (rSUVmax), relative cerebral blood flow (rCBF), and relative minimum apparent diffusion coefficient (rADCmin) for the solid component and PTR at different distances outside tumoral border were compared. Receiver operating characteristic (ROC) curves were applied to assess the grading performance. A nomogram for HGG prediction was constructed. Results HGGs displayed higher rSUVmax and rCBF but lower rADCmin in the solid component and 5 mm-adjacent PTR, lower rADCmin in 10 mm-adjacent PTR, and higher rCBF in 15- and 20-mm-adjacent PTR. rSUVmax in solid component performed best [area under the curve (AUC) =0.865] as a single parameter for grading. Combination of rSUVmax in the solid component and adjacent 20 mm performed better (AUC =0.881). Integration of all 3 indicators in the solid component and adjacent 20 mm performed the best (AUC =0.928). The nomogram including rSUVmax, rCBF, and rADCmin in the solid component and 5-mm-adjacent PTR predicted HGG with a concordance index (C-index) of 0.906. Conclusions Multiparametric 18F-FDG PET/MRI from the solid component and PTR performed excellently in differentiating HGGs from LGGs. It can be used as a non-invasive and effective tool for preoperative grade stratification of patients with glioma, and can be considered in clinical practice.
Collapse
Affiliation(s)
- Ping Liu
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China
| | - Yu-Ping Zeng
- Department of Medical Imaging, Ganzhou People’s Hospital, Ganzhou, China
- Department of Nuclear Medicine, Guangzhou Universal Medical Imaging Diagnostic Center, Guangzhou, China
| | - Hong Qu
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China
| | - Wan-Yi Zheng
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China
| | - Tian-Xing Zhou
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Li-Feng Hang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Gui-Hua Jiang
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Grishin A, Achkasova K, Kukhnina L, Sharova V, Ostapyuk M, Yashin K. Peritumoral Brain Zone in Astrocytoma: Morphology, Molecular Aspects, and Clinical Manifestations (Review). Sovrem Tekhnologii Med 2024; 16:79-88. [PMID: 39539752 PMCID: PMC11556047 DOI: 10.17691/stm2024.16.2.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 11/16/2024] Open
Abstract
A peritumoral brain zone is an area between a tumor and nontumorous brain tissue with tumor cell infiltration. The identification of this area is sufficiently difficult due to the lack of clear morphological or some other criteria. Besides, its dimensions may vary considerably. In the present review, we have analyzed the available data on the morphological structure and metabolism of peritumoral zone in astrocytomes, and considered the main molecular and genetic aspects and clinical manifestations. Exploration of the peritumoral zone is of great importance for determining the extent of resection to prevent recurrence and to reveal the causes and mechanisms of continued tumor growth.
Collapse
Affiliation(s)
- A.S. Grishin
- Pathologist, Pathological Anatomy Unit, University Clinic; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Assistant, Department of Pathological Anatomy; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - K.A. Achkasova
- Junior Researcher, Laboratory of Optical Coherence Tomography, Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - L.S. Kukhnina
- Student; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - V.A. Sharova
- Student; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - M.V. Ostapyuk
- Neurosurgeon, Neurosurgery Unit, University Clinic; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Assistant, M.V. Kolokoltsev Department of Traumatology, Orthopedics, and Neurosurgery; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - K.S. Yashin
- MD, PhD, Neurosurgeon, Neurosurgery Unit, University Clinic; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Assistant, M.V. Kolokoltsev Department of Traumatology, Orthopedics, and Neurosurgery; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Oncologist, Outpatient Department; Nizhny Novgorod Regional Oncologic Dispensary, 11/1 Delovaya St., Nizhny Novgorod, 603163, Russia
| |
Collapse
|
4
|
Ballestín A, Armocida D, Ribecco V, Seano G. Peritumoral brain zone in glioblastoma: biological, clinical and mechanical features. Front Immunol 2024; 15:1347877. [PMID: 38487525 PMCID: PMC10937439 DOI: 10.3389/fimmu.2024.1347877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Glioblastoma is a highly aggressive and invasive tumor that affects the central nervous system (CNS). With a five-year survival rate of only 6.9% and a median survival time of eight months, it has the lowest survival rate among CNS tumors. Its treatment consists of surgical resection, subsequent fractionated radiotherapy and concomitant and adjuvant chemotherapy with temozolomide. Despite the implementation of clinical interventions, recurrence is a common occurrence, with over 80% of cases arising at the edge of the resection cavity a few months after treatment. The high recurrence rate and location of glioblastoma indicate the need for a better understanding of the peritumor brain zone (PBZ). In this review, we first describe the main radiological, cellular, molecular and biomechanical tissue features of PBZ; and subsequently, we discuss its current clinical management, potential local therapeutic approaches and future prospects.
Collapse
Affiliation(s)
- Alberto Ballestín
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| | - Daniele Armocida
- Human Neurosciences Department, Neurosurgery Division, Sapienza University, Rome, Italy
| | - Valentino Ribecco
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| | - Giorgio Seano
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| |
Collapse
|
5
|
Giambra M, Di Cristofori A, Raimondo F, Rigolio R, Conconi D, Chiarello G, Tabano SM, Antolini L, Nicolini G, Bua M, Ferlito D, Carrabba G, Giussani CG, Lavitrano M, Bentivegna A. Vacuolar Proton-Translocating ATPase May Take Part in the Drug Resistance Phenotype of Glioma Stem Cells. Int J Mol Sci 2024; 25:2743. [PMID: 38473989 DOI: 10.3390/ijms25052743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The vacuolar proton-translocating ATPase (V-ATPase) is a transmembrane multi-protein complex fundamental in maintaining a normal intracellular pH. In the tumoral contest, its role is crucial since the metabolism underlying carcinogenesis is mainly based on anaerobic glycolytic reactions. Moreover, neoplastic cells use the V-ATPase to extrude chemotherapy drugs into the extra-cellular compartment as a drug resistance mechanism. In glioblastoma (GBM), the most malignant and incurable primary brain tumor, the expression of this pump is upregulated, making it a new possible therapeutic target. In this work, the bafilomycin A1-induced inhibition of V-ATPase in patient-derived glioma stem cell (GSC) lines was evaluated together with temozolomide, the first-line therapy against GBM. In contrast with previous published data, the proposed treatment did not overcome resistance to the standard therapy. In addition, our data showed that nanomolar dosages of bafilomycin A1 led to the blockage of the autophagy process and cellular necrosis, making the drug unusable in models which are more complex. Nevertheless, the increased expression of V-ATPase following bafilomycin A1 suggests a critical role of the proton pump in GBM stem components, encouraging the search for novel strategies to limit its activity in order to circumvent resistance to conventional therapy.
Collapse
Affiliation(s)
- Martina Giambra
- PhD Program in Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy
- GBM-BI-TRACE (GlioBlastoMa-BIcocca-TRAnslational-CEnter), University of Milano-Bicocca, 20900 Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Andrea Di Cristofori
- PhD Program in Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy
- GBM-BI-TRACE (GlioBlastoMa-BIcocca-TRAnslational-CEnter), University of Milano-Bicocca, 20900 Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Francesca Raimondo
- GBM-BI-TRACE (GlioBlastoMa-BIcocca-TRAnslational-CEnter), University of Milano-Bicocca, 20900 Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Roberta Rigolio
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Donatella Conconi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Gaia Chiarello
- GBM-BI-TRACE (GlioBlastoMa-BIcocca-TRAnslational-CEnter), University of Milano-Bicocca, 20900 Monza, Italy
- Pathology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Silvia Maria Tabano
- Laboratory of Medical Genetics, Ospedale Maggiore Policlinico, IRCCS Ca' Granda, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Laura Antolini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Gabriella Nicolini
- GBM-BI-TRACE (GlioBlastoMa-BIcocca-TRAnslational-CEnter), University of Milano-Bicocca, 20900 Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Miriam Bua
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Davide Ferlito
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Giorgio Carrabba
- GBM-BI-TRACE (GlioBlastoMa-BIcocca-TRAnslational-CEnter), University of Milano-Bicocca, 20900 Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Carlo Giorgio Giussani
- GBM-BI-TRACE (GlioBlastoMa-BIcocca-TRAnslational-CEnter), University of Milano-Bicocca, 20900 Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Marialuisa Lavitrano
- GBM-BI-TRACE (GlioBlastoMa-BIcocca-TRAnslational-CEnter), University of Milano-Bicocca, 20900 Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Angela Bentivegna
- GBM-BI-TRACE (GlioBlastoMa-BIcocca-TRAnslational-CEnter), University of Milano-Bicocca, 20900 Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
6
|
Trevisi G, Mangiola A. Current Knowledge about the Peritumoral Microenvironment in Glioblastoma. Cancers (Basel) 2023; 15:5460. [PMID: 38001721 PMCID: PMC10670229 DOI: 10.3390/cancers15225460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma is a deadly disease, with a mean overall survival of less than 2 years from diagnosis. Recurrence after gross total surgical resection and adjuvant chemo-radiotherapy almost invariably occurs within the so-called peritumoral brain zone (PBZ). The aim of this narrative review is to summarize the most relevant findings about the biological characteristics of the PBZ currently available in the medical literature. The PBZ presents several peculiar biological characteristics. The cellular landscape of this area is different from that of healthy brain tissue and is characterized by a mixture of cell types, including tumor cells (seen in about 30% of cases), angiogenesis-related endothelial cells, reactive astrocytes, glioma-associated microglia/macrophages (GAMs) with anti-inflammatory polarization, tumor-infiltrating lymphocytes (TILs) with an "exhausted" phenotype, and glioma-associated stromal cells (GASCs). From a genomic and transcriptomic point of view, compared with the tumor core and healthy brain tissue, the PBZ presents a "half-way" pattern with upregulation of genes related to angiogenesis, the extracellular matrix, and cellular senescence and with stemness features and downregulation in tumor suppressor genes. This review illustrates that the PBZ is a transition zone with a pre-malignant microenvironment that constitutes the base for GBM progression/recurrence. Understanding of the PBZ could be relevant to developing more effective treatments to prevent GBM development and recurrence.
Collapse
Affiliation(s)
- Gianluca Trevisi
- Department of Neurosciences, Imaging and Clinical Sciences, G. D’Annunzio University Chieti-Pescara, 66100 Chieti, Italy;
- Neurosurgical Unit, Ospedale Spirito Santo, 65122 Pescara, Italy
| | - Annunziato Mangiola
- Department of Neurosciences, Imaging and Clinical Sciences, G. D’Annunzio University Chieti-Pescara, 66100 Chieti, Italy;
| |
Collapse
|
7
|
Ardizzoia A, Jemma A, Redaelli S, Silva M, Bentivegna A, Lavitrano M, Conconi D. AhRR and PPP1R3C: Potential Prognostic Biomarkers for Serous Ovarian Cancer. Int J Mol Sci 2023; 24:11455. [PMID: 37511212 PMCID: PMC10380391 DOI: 10.3390/ijms241411455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The lack of effective screening and successful treatment contributes to high ovarian cancer mortality, making it the second most common cause of gynecologic cancer death. Development of chemoresistance in up to 75% of patients is the cause of a poor treatment response and reduced survival. Therefore, identifying potential and effective biomarkers for its diagnosis and prognosis is a strong critical need. Copy number alterations are frequent in cancer, and relevant for molecular tumor stratification and patients' prognoses. In this study, array-CGH analysis was performed in three cell lines and derived cancer stem cells (CSCs) to identify genes potentially predictive for ovarian cancer patients' prognoses. Bioinformatic analyses of genes involved in copy number gains revealed that AhRR and PPP1R3C expression negatively correlated with ovarian cancer patients' overall and progression-free survival. These results, together with a significant association between AhRR and PPP1R3C expression and ovarian cancer stemness markers, suggested their potential role in CSCs. Furthermore, AhRR and PPP1R3C's increased expression was maintained in some CSC subpopulations, reinforcing their potential role in ovarian cancer. In conclusion, we reported for the first time, to the best of our knowledge, a prognostic role of AhRR and PPP1R3C expression in serous ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Donatella Conconi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.A.); (A.J.); (S.R.); (M.S.); (A.B.); (M.L.)
| |
Collapse
|
8
|
Laudisi F, Stolfi C. Advances in Immunotherapy and Innovative Therapeutic Approaches for Cancer Treatment: Editorial to the Special Issue "State-of-the-Art Molecular Oncology in Italy". Int J Mol Sci 2023; 24:ijms24108929. [PMID: 37240286 DOI: 10.3390/ijms24108929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer remains one of the most common causes of death worldwide, mainly due to late diagnosis and the lack of efficient therapeutic options for patients with advanced diseases [...].
Collapse
Affiliation(s)
- Federica Laudisi
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| |
Collapse
|
9
|
Insights into the Peritumoural Brain Zone of Glioblastoma: CDK4 and EXT2 May Be Potential Drivers of Malignancy. Int J Mol Sci 2023; 24:ijms24032835. [PMID: 36769158 PMCID: PMC9917451 DOI: 10.3390/ijms24032835] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Despite the efforts made in recent decades, glioblastoma is still the deadliest primary brain cancer without cure. The potential role in tumour maintenance and progression of the peritumoural brain zone (PBZ), the apparently normal area surrounding the tumour, has emerged. Little is known about this area due to a lack of common definition and due to difficult sampling related to the functional role of peritumoural healthy brain. The aim of this work was to better characterize the PBZ and to identify genes that may have role in its malignant transformation. Starting from our previous study on the comparison of the genomic profiles of matched tumour core and PBZ biopsies, we selected CDK4 and EXT2 as putative malignant drivers of PBZ. The gene expression analysis confirmed their over-expression in PBZ, similarly to what happens in low-grade glioma and glioblastoma, and CDK4 high levels seem to negatively influence patient overall survival. The prognostic role of CDK4 and EXT2 was further confirmed by analysing the TCGA cohort and bioinformatics prediction on their gene networks and protein-protein interactions. These preliminary data constitute a good premise for future investigations on the possible role of CDK4 and EXT2 in the malignant transformation of PBZ.
Collapse
|
10
|
Giambra M, Di Cristofori A, Valtorta S, Manfrellotti R, Bigiogera V, Basso G, Moresco RM, Giussani C, Bentivegna A. The peritumoral brain zone in glioblastoma: where we are and where we are going. J Neurosci Res 2023; 101:199-216. [PMID: 36300592 PMCID: PMC10091804 DOI: 10.1002/jnr.25134] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Accepted: 10/01/2022] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is the most aggressive and invasive primary brain tumor. Current therapies are not curative, and patients' outcomes remain poor with an overall survival of 20.9 months after surgery. The typical growing pattern of GBM develops by infiltrating the surrounding apparent normal brain tissue within which the recurrence is expected to appear in the majority of cases. Thus, in the last decades, an increased interest has developed to investigate the cellular and molecular interactions between GBM and the peritumoral brain zone (PBZ) bordering the tumor tissue. The aim of this review is to provide up-to-date knowledge about the oncogenic properties of the PBZ to highlight possible druggable targets for more effective treatment of GBM by limiting the formation of recurrence, which is almost inevitable in the majority of patients. Starting from the description of the cellular components, passing through the illustration of the molecular profiles, we finally focused on more clinical aspects, represented by imaging and radiological details. The complete picture that emerges from this review could provide new input for future investigations aimed at identifying new effective strategies to eradicate this still incurable tumor.
Collapse
Affiliation(s)
- Martina Giambra
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,PhD Program in Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Andrea Di Cristofori
- PhD Program in Neuroscience, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Silvia Valtorta
- Department of Nuclear Medicine, San Raffaele Scientific Institute, IRCCS, Milan, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy.,NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Roberto Manfrellotti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Vittorio Bigiogera
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Gianpaolo Basso
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Rosa Maria Moresco
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Department of Nuclear Medicine, San Raffaele Scientific Institute, IRCCS, Milan, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy
| | - Carlo Giussani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Angela Bentivegna
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
11
|
Munquad S, Si T, Mallik S, Das AB, Zhao Z. A Deep Learning-Based Framework for Supporting Clinical Diagnosis of Glioblastoma Subtypes. Front Genet 2022; 13:855420. [PMID: 35419027 PMCID: PMC9000988 DOI: 10.3389/fgene.2022.855420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Understanding molecular features that facilitate aggressive phenotypes in glioblastoma multiforme (GBM) remains a major clinical challenge. Accurate diagnosis of GBM subtypes, namely classical, proneural, and mesenchymal, and identification of specific molecular features are crucial for clinicians for systematic treatment. We develop a biologically interpretable and highly efficient deep learning framework based on a convolutional neural network for subtype identification. The classifiers were generated from high-throughput data of different molecular levels, i.e., transcriptome and methylome. Furthermore, an integrated subsystem of transcriptome and methylome data was also used to build the biologically relevant model. Our results show that deep learning model outperforms the traditional machine learning algorithms. Furthermore, to evaluate the biological and clinical applicability of the classification, we performed weighted gene correlation network analysis, gene set enrichment, and survival analysis of the feature genes. We identified the genotype-phenotype relationship of GBM subtypes and the subtype-specific predictive biomarkers for potential diagnosis and treatment.
Collapse
Affiliation(s)
- Sana Munquad
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, India
| | - Tapas Si
- Department of Computer Science and Engineering, Bankura Unnayani Institute of Engineering, Bankura, India
| | - Saurav Mallik
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Asim Bikas Das
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, India
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
12
|
Malacrida A, Di Domizio A, Bentivegna A, Cislaghi G, Messuti E, Tabano SM, Giussani C, Zuliani V, Rivara M, Nicolini G. MV1035 Overcomes Temozolomide Resistance in Patient-Derived Glioblastoma Stem Cell Lines. BIOLOGY 2022; 11:70. [PMID: 35053068 PMCID: PMC8772739 DOI: 10.3390/biology11010070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 11/26/2022]
Abstract
Glioblastoma (GBM, grade IV glioma) represents the most aggressive brain tumor and patients with GBM have a poor prognosis. Until now surgical resection followed by radiotherapy and temozolomide (TMZ) treatment represents the standard strategy for GBM. We showed that the imidazobenzoxazin-5-thione MV1035 is able to significantly reduce GBM U87-MG cells migration and invasiveness through inhibition of the RNA demethylase ALKBH5. In this work, we focus on the DNA repair protein ALKBH2, a further MV1035 target resulting from SPILLO-PBSS proteome-wide scale in silico analysis. Our data demonstrate that MV1035 inhibits the activity of ALKBH2, known to be involved in GBM TMZ resistance. MV1035 was used on both U87-MG and two patient-derived (PD) glioma stem cells (GSCs): in combination with TMZ, it has a significant synergistic effect in reducing cell viability and sphere formation. Moreover, MV1035 induces a reduction in MGMT expression in PD-GSCs cell lines most likely through a mechanism that acts on MGMT promoter methylation. Taken together our data show that MV1035 could act as an inhibitor potentially helpful to overcome TMZ resistance and able to reduce GBM migration and invasiveness.
Collapse
Affiliation(s)
- Alessio Malacrida
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (A.M.); (A.B.); (E.M.); (C.G.); (G.N.)
- Milan Center for Neuroscience, University of Milano-Bicocca, Piazza dell’Ateneo Nuovo 1, 20126 Milan, Italy
| | | | - Angela Bentivegna
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (A.M.); (A.B.); (E.M.); (C.G.); (G.N.)
- Milan Center for Neuroscience, University of Milano-Bicocca, Piazza dell’Ateneo Nuovo 1, 20126 Milan, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Giacomo Cislaghi
- SPILLOproject, Via Stradivari 17, 20037 Paderno Dugnano, Italy; (A.D.D.); (G.C.)
| | - Eleonora Messuti
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (A.M.); (A.B.); (E.M.); (C.G.); (G.N.)
| | - Silvia Maria Tabano
- Laboratory of Medical Genetics, IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy;
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Carlo Giussani
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (A.M.); (A.B.); (E.M.); (C.G.); (G.N.)
- Neurosurgery Unit, Department of Neuroscience, S. Gerardo Hospital, 20900 Monza, Italy
| | - Valentina Zuliani
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy;
| | - Mirko Rivara
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy;
| | - Gabriella Nicolini
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (A.M.); (A.B.); (E.M.); (C.G.); (G.N.)
- Milan Center for Neuroscience, University of Milano-Bicocca, Piazza dell’Ateneo Nuovo 1, 20126 Milan, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| |
Collapse
|