1
|
Ntadambanya A, Pernier J, David V, Susumu K, Medintz IL, Collot M, Klymchenko A, Hildebrandt N, Le Potier I, Le Clainche C, Cardoso Dos Santos M. Quantum Dot-Based FRET Nanosensors for Talin-Membrane Assembly and Mechanosensing. Angew Chem Int Ed Engl 2024; 63:e202409852. [PMID: 39007225 DOI: 10.1002/anie.202409852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/16/2024]
Abstract
Understanding the mechanisms of assembly and disassembly of macromolecular structures in cells relies on solving biomolecular interactions. However, those interactions often remain unclear because tools to track molecular dynamics are not sufficiently resolved in time or space. In this study, we present a straightforward method for resolving inter- and intra-molecular interactions in cell adhesive machinery, using quantum dot (QD) based Förster resonance energy transfer (FRET) nanosensors. Using a mechanosensitive protein, talin, one of the major components of focal adhesions, we are investigating the mechanosensing ability of proteins to sense and respond to mechanical stimuli. First, we quantified the distances separating talin and a giant unilamellar vesicle membrane for three talin variants. These variants differ in molecular length. Second, we investigated the mechanosensing capabilities of talin, i.e., its conformational changes due to mechanical stretching initiated by cytoskeleton contraction. Our results suggest that in early focal adhesion, talin undergoes stretching, corresponding to a decrease in the talin-membrane distance of 2.5 nm. We demonstrate that QD-FRET nanosensors can be applied for the sensitive quantification of mechanosensing with a sub-nanometer accuracy.
Collapse
Affiliation(s)
- Audrey Ntadambanya
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Julien Pernier
- Gustave Roussy Institute, Inserm U1279, Université Paris-Saclay, Villejuif, France
| | - Violaine David
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Kimihiro Susumu
- Center for Bio/Molecular Science and Engineering U.S. Naval Research Laboratory, Washington, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering U.S. Naval Research Laboratory, Washington, USA
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologie, CNRS UMR 7021 Université de Strasbourg, Strasbourg, France
| | - Andrey Klymchenko
- Laboratoire de Bioimagerie et Pathologie, CNRS UMR 7021 Université de Strasbourg, Strasbourg, France
| | - Niko Hildebrandt
- Department of Engineering Physics, McMaster University, Hamilton, ON L8S4L7, Canada
| | - Isabelle Le Potier
- Centre de nanosciences et nanotechnologies (C2N), CNRS UMR9001, Université Paris-Saclay, Palaiseau, France
| | - Christophe Le Clainche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Marcelina Cardoso Dos Santos
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
2
|
Pajic-Lijakovic I, Milivojevic M, McClintock PVE. Physical aspects of epithelial cell-cell interactions: hidden system complexities. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024:10.1007/s00249-024-01721-z. [PMID: 39256261 DOI: 10.1007/s00249-024-01721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024]
Abstract
The maintenance of homeostasis and the retention of ordered epithelial cell self-organization are essential for morphogenesis, wound healing, and the spread of cancer across the epithelium. However, cell-cell interactions in an overcrowded environment introduce a diversity of complications. Such interactions arise from an interplay between the cell compressive and shear stress components that accompany increased cell packing density. They can lead to various kinds of cell rearrangement such as: the epithelial-to-mesenchymal cell state transition; live cell extrusion; and cell jamming. All of these scenarios of cell rearrangement under mechanical stress relate to changes in the strengths of the cell-cell and cell-matrix adhesion contacts. The objective of this review study is twofold: first, to provide a comprehensive summary of the biological and physical factors influencing the effects of cell mechanical stress on cell-cell interactions, and the consequences of these interactions for the status of cell-cell and cell-matrix adhesion contacts; and secondly, to offer a bio-physical/mathematical analysis of the aforementioned biological aspects. By presenting these two approaches in conjunction, we seek to highlight the intricate nature of biological systems, which manifests in the form of complex bio-physical/mathematical equations. Furthermore, the juxtaposition of these apparently disparate approaches underscores the importance of conducting experiments to determine the multitude of parameters that contribute to the development of these intricate bio-physical/mathematical models.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- Faculty of Technology and Metallurgy, Department of Chemical Engineering, University of Belgrade, Belgrade, Serbia.
| | - Milan Milivojevic
- Faculty of Technology and Metallurgy, Department of Chemical Engineering, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
3
|
Pajic-Lijakovic I, Milivojevic M, McClintock PVE. Epithelial cell-cell interactions in an overcrowded environment: jamming or live cell extrusion. J Biol Eng 2024; 18:47. [PMID: 39237992 PMCID: PMC11378474 DOI: 10.1186/s13036-024-00442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
Epithelial tissues respond strongly to the mechanical stress caused by collective cell migration and are able to regulate it, which is important for biological processes such as morphogenesis, wound healing, and suppression of the spread of cancer. Compressive, tensional, and shear stress components are produced in cells when epithelial monolayers on substrate matrices are actively or passively wetted or de-wetted. Increased compressive stress on cells leads to enhanced cell-cell interactions by increasing the frequency of change the cell-cell distances, triggering various signalling pathways within the cells. This can ultimately lead either to cell jamming or to the extrusion of live cells. Despite extensive research in this field, it remains unclear how cells decide whether to jam, or to extrude a cell or cells, and how cells can reduce the compressive mechanical stress. Live cell extrusion from the overcrowded regions of the monolayers is associated with the presence of topological defects of cell alignment, induced by an interplay between the cell compressive and shear stress components. These topological defects stimulate cell re-alignment, as a part of the cells' tendency to re-establish an ordered trend of cell migration, by intensifying the glancing interactions in overcrowded regions. In addition to individual cell extrusion, collective cell extrusion has also been documented during monolayer active de-wetting, depending on the cell type, matrix stiffness, and boundary conditions. Cell jamming has been discussed in the context of the cells' contact inhibition of locomotion caused by cell head-on interactions. Since cell-cell interactions play a crucial role in cell rearrangement in an overcrowded environment, this review is focused on physical aspects of these interactions in order to stimulate further biological research in the field.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- Faculty of Technology and Metallurgy, Department of Chemical Engineering, University of Belgrade, Belgrade, Serbia.
| | - Milan Milivojevic
- Faculty of Technology and Metallurgy, Department of Chemical Engineering, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
4
|
Ruehle MD, Li S, Agard DA, Pearson CG. Poc1 bridges basal body inner junctions to promote triplet microtubule integrity and connections. J Cell Biol 2024; 223:e202311104. [PMID: 38743010 PMCID: PMC11094743 DOI: 10.1083/jcb.202311104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Basal bodies (BBs) are conserved eukaryotic structures that organize cilia. They are comprised of nine, cylindrically arranged, triplet microtubules (TMTs) connected to each other by inter-TMT linkages which stabilize the structure. Poc1 is a conserved protein important for BB structural integrity in the face of ciliary forces transmitted to BBs. To understand how Poc1 confers BB stability, we identified the precise position of Poc1 in the Tetrahymena BB and the effect of Poc1 loss on BB structure. Poc1 binds at the TMT inner junctions, stabilizing TMTs directly. From this location, Poc1 also stabilizes inter-TMT linkages throughout the BB, including the cartwheel pinhead and the inner scaffold. The full localization of the inner scaffold protein Fam161A requires Poc1. As ciliary forces are increased, Fam161A is reduced, indicative of a force-dependent molecular remodeling of the inner scaffold. Thus, while not essential for BB assembly, Poc1 promotes BB interconnections that establish an architecture competent to resist ciliary forces.
Collapse
Affiliation(s)
- Marisa D. Ruehle
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sam Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Institute for Advanced Biological Imaging, Redwood Shores, CA, USA
| | - Chad G. Pearson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
5
|
Aono Y, Nakajima T, Ichimiya W, Yoshida M, Sato M. Highly Efficient Fluorescent Probe to Visualize Protein Interactions at the Superresolution. ACS Chem Biol 2024; 19:1271-1279. [PMID: 38835147 DOI: 10.1021/acschembio.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Superresolution microscopy (SR microscopy) of protein-protein interactions (PPIs) occurring in subcellular structures is essential for understanding cellular functions. However, a powerful and useful technology for SR microscopy of PPIs remains elusive. Here, we develop a highly efficient photoconvertible fluorescent probe, named split-Dendra2, for SR microscopy of PPIs in the cell. We found that split-Dendra2 enables a highly efficient detection of PPIs, making it possible to perform SR microscopy of PPIs with high spatial resolution and high image reconstruction fidelity. We demonstrate the utility of split-Dendra2 by visualizing PPIs occurring in small subcellular structures at the superresolution, such as clathrin-coated pits and focal adhesions, which cannot be visualized by the existing tools. Split-Dendra2 offers a powerful and useful tool that greatly expands the possibility of SR microscopy and can contribute to revealing the function of PPIs at the nanoscale resolution.
Collapse
Affiliation(s)
- Yuki Aono
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Takahiro Nakajima
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Kanagawa Institute of Industrial Science and Technology, Kanagawa 243-0435, Japan
| | - Wataru Ichimiya
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Mayumi Yoshida
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Moritoshi Sato
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Kanagawa Institute of Industrial Science and Technology, Kanagawa 243-0435, Japan
| |
Collapse
|
6
|
Lofaro FD, Costa S, Simone ML, Quaglino D, Boraldi F. Fibroblasts' secretome from calcified and non-calcified dermis in Pseudoxanthoma elasticum differently contributes to elastin calcification. Commun Biol 2024; 7:577. [PMID: 38755434 PMCID: PMC11099146 DOI: 10.1038/s42003-024-06283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a rare disease characterized by ectopic calcification, however, despite the widely spread effect of pro/anti-calcifying systemic factors associated with this genetic metabolic condition, it is not known why elastic fibers in the same patient are mainly fragmented or highly mineralized in clinically unaffected (CUS) and affected (CAS) skin, respectively. Cellular morphology and secretome are investigated in vitro in CUS and CAS fibroblasts. Here we show that, compared to CUS, CAS fibroblasts exhibit: a) differently distributed and organized focal adhesions and stress fibers; b) modified cell-matrix interactions (i.e., collagen gel retraction); c) imbalance between matrix metalloproteinases and tissue inhibitor of metalloproteinases; d) differentially expressed pro- and anti-calcifying proteoglycans and elastic-fibers associated glycoproteins. These data emphasize that in the development of pathologic mineral deposition fibroblasts play an active role altering the stability of elastic fibers and of the extracellular matrix milieu creating a local microenvironment guiding the level of matrix remodeling at an extent that may lead to degradation (in CUS) or to degradation and calcification (in CAS) of the elastic component. In conclusion, this study contributes to a better understanding of the mechanisms of the mineral deposition that can be also associated with several inherited or age-related diseases (e.g., diabetes, atherosclerosis, chronic kidney diseases).
Collapse
Affiliation(s)
| | - Sonia Costa
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Luisa Simone
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
7
|
Miao Y, Wu S, Gong Z, Chen Y, Xue F, Liu K, Zou J, Feng Y, Li G. SPARCL1 promotes chondrocytes extracellular matrix degradation and inflammation in osteoarthritis via TNF/NF-κB pathway. J Orthop Translat 2024; 46:116-128. [PMID: 38867741 PMCID: PMC11167206 DOI: 10.1016/j.jot.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/27/2023] [Accepted: 02/29/2024] [Indexed: 06/14/2024] Open
Abstract
Objectives SPARCL1 is a matricellular protein that mediates the cell-matrix interactions and participates in physiological processes such as cell adhesion, differentiation and proliferation. However, its role in chondrocyte and osteoarthritis (OA) progression has not been fully characterized. We aimed to evaluate the effects of SPARCL1 on OA through in vitro and in vivo experiments. Methods Expression of SPARCL1 was examined in 55 paired human OA samples. Effects of Sparcl1 on chondrocytes were identified in vitro. Intra-articular injection was performed in an anterior cruciate ligament transection (ACLT) mouse model. Alterations of SPARCL1-mediated signaling pathway were identified by RNA-seq analysis. qPCR and western-blot were used to demonstrate the potential signaling pathway. Results SPARCL1 expression in the OA cartilage was increased compared with undamaged cartilage. Recombinant Sparcl1 protein induced extracellular matrix degradation in chondrocytes. Furthermore, intra-articular injection of recombinant Sparcl1 protein in ACLT mice could promote OA pathogenesis. Mechanistically, Sparcl1 activated TNF/NF-κB pathway and consequently led to increased transcription of inflammatory factors and catabolism genes of cartilage, which could be reversed by NF-κB inhibitor BAY 11-7082. Conclusion SPARCL1 could promote extracellular matrix degradation and inflammatory response to accelerate OA progression via TNF/NF-κB pathway. The translational potential of this article The current research could help to gain further insights into the underlying molecular mechanism in OA development, and provides a biological rationale for the use of SPARCL1 as a potential therapeutic target of OA.
Collapse
Affiliation(s)
- Yu Miao
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Shenghui Wu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ziling Gong
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yiwei Chen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Feng Xue
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Kexin Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jian Zou
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233, China
| | - Yong Feng
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Guangyi Li
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
8
|
Weidner AE, Roy A, Vann K, Walczyk AC, Astapova O. Paxillin regulates androgen receptor expression associated with granulosa cell focal adhesions. Mol Hum Reprod 2024; 30:gaae018. [PMID: 38718206 PMCID: PMC11136451 DOI: 10.1093/molehr/gaae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/19/2024] [Indexed: 05/31/2024] Open
Abstract
Paxillin is a ubiquitously expressed adaptor protein integral to focal adhesions, cell motility, and apoptosis. Paxillin has also recently been implicated as a mediator of nongenomic androgen receptor (AR) signaling in prostate cancer and other cells. We sought to investigate the relationship between paxillin and AR in granulosa cells (GCs), where androgen actions, apoptosis, and focal adhesions are of known importance, but where the role of paxillin is understudied. We recently showed that paxillin knockout in mouse GCs increases fertility in older mice. Here, we demonstrate that paxillin knockdown in human granulosa-derived KGN cells, as well as knockout in mouse primary GCs, results in reduced AR protein but not reduced mRNA expression. Further, we find that both AR protein and mRNA half-lives are reduced by approximately one-third in the absence of paxillin, but that cells adapt to chronic loss of paxillin by upregulating AR gene expression. Using co-immunofluorescence and proximity ligation assays, we show that paxillin and AR co-localize at the plasma membrane in GCs in a focal adhesion kinase-dependent way, and that disruption of focal adhesions leads to reduced AR protein level. Our findings suggest that paxillin recruits AR to the GC membrane, where it may be sequestered from proteasomal degradation and poised for nongenomic signaling, as reported in other tissues. To investigate the physiological significance of this in disorders of androgen excess, we tested the effect of GC-specific paxillin knockout in a mouse model of polycystic ovary syndrome (PCOS) induced by chronic postnatal dihydrotestosterone (DHT) exposure. While none of the control mice had estrous cycles, 33% of paxillin knockout mice were cycling, indicating that paxillin deletion may offer partial protection from the negative effects of androgen excess by reducing AR expression. Paxillin-knockout GCs from mice with DHT-induced PCOS also produced more estradiol than GCs from littermate controls. Thus, paxillin may be a novel target in the management of androgen-related disorders in women, such as PCOS.
Collapse
Affiliation(s)
- Adelaide E Weidner
- Division of Endocrinology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Anna Roy
- Division of Endocrinology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Kenji Vann
- Division of Endocrinology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Ariana C Walczyk
- Division of Endocrinology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Olga Astapova
- Division of Endocrinology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
9
|
Casarella S, Ferla F, Di Francesco D, Canciani E, Rizzi M, Boccafoschi F. Focal Adhesion's Role in Cardiomyocytes Function: From Cardiomyogenesis to Mechanotransduction. Cells 2024; 13:664. [PMID: 38667279 PMCID: PMC11049660 DOI: 10.3390/cells13080664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Mechanotransduction refers to the ability of cells to sense mechanical stimuli and convert them into biochemical signals. In this context, the key players are focal adhesions (FAs): multiprotein complexes that link intracellular actin bundles and the extracellular matrix (ECM). FAs are involved in cellular adhesion, growth, differentiation, gene expression, migration, communication, force transmission, and contractility. Focal adhesion signaling molecules, including Focal Adhesion Kinase (FAK), integrins, vinculin, and paxillin, also play pivotal roles in cardiomyogenesis, impacting cell proliferation and heart tube looping. In fact, cardiomyocytes sense ECM stiffness through integrins, modulating signaling pathways like PI3K/AKT and Wnt/β-catenin. Moreover, FAK/Src complex activation mediates cardiac hypertrophic growth and survival signaling in response to mechanical loads. This review provides an overview of the molecular and mechanical mechanisms underlying the crosstalk between FAs and cardiac differentiation, as well as the role of FA-mediated mechanotransduction in guiding cardiac muscle responses to mechanical stimuli.
Collapse
Affiliation(s)
- Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Federica Ferla
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Elena Canciani
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Manuela Rizzi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| |
Collapse
|
10
|
Han S, Lee G, Kim D, Kim J, Kim I, Kim H, Kim D. Selective Suppression of Integrin-Ligand Binding by Single Molecular Tension Probes Mediates Directional Cell Migration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306497. [PMID: 38311584 PMCID: PMC11005741 DOI: 10.1002/advs.202306497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/04/2024] [Indexed: 02/06/2024]
Abstract
Cell migration interacting with continuously changing microenvironment, is one of the most essential cellular functions, participating in embryonic development, wound repair, immune response, and cancer metastasis. The migration process is finely tuned by integrin-mediated binding to ligand molecules. Although numerous biochemical pathways orchestrating cell adhesion and motility are identified, how subcellular forces between the cell and extracellular matrix regulate intracellular signaling for cell migration remains unclear. Here, it is showed that a molecular binding force across integrin subunits determines directional migration by regulating tension-dependent focal contact formation and focal adhesion kinase phosphorylation. Molecular binding strength between integrin αvβ3 and fibronectin is precisely manipulated by developing molecular tension probes that control the mechanical tolerance applied to cell-substrate interfaces. This data reveals that integrin-mediated molecular binding force reduction suppresses cell spreading and focal adhesion formation, attenuating the focal adhesion kinase (FAK) phosphorylation that regulates the persistence of cell migration. These results further demonstrate that manipulating subcellular binding forces at the molecular level can recapitulate differential cell migration in response to changes of substrate rigidity that determines the physical condition of extracellular microenvironment. Novel insights is provided into the subcellular mechanics behind global mechanical adaptation of the cell to surrounding tissue environments featuring distinct biophysical signatures.
Collapse
Affiliation(s)
- Seong‐Beom Han
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Geonhui Lee
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Daesan Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Jeong‐Ki Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - In‐San Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Biomedical Research CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Hae‐Won Kim
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan31116Republic of Korea
- Department of Biomaterials Science in College of Dentistry & Department of Nanobiomedical Science in Graduate SchoolDankook UniversityCheonan31116Republic of Korea
| | - Dong‐Hwee Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Biomedical Research CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Department of Integrative Energy EngineeringCollege of EngineeringKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
11
|
Berniak K, Ura DP, Piórkowski A, Stachewicz U. Cell-Material Interplay in Focal Adhesion Points. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9944-9955. [PMID: 38354103 PMCID: PMC10910443 DOI: 10.1021/acsami.3c19035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
The complex interplay between cells and materials is a key focus of this research, aiming to develop optimal scaffolds for regenerative medicine. The need for tissue regeneration underscores understanding cellular behavior on scaffolds, especially cell adhesion to polymer fibers forming focal adhesions. Key proteins, paxillin and vinculin, regulate cell signaling, migration, and mechanotransduction in response to the extracellular environment. This study utilizes advanced microscopy, specifically the AiryScan technique, along with advanced image analysis employing the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) cluster algorithm, to investigate protein distribution during osteoblast cell adhesion to polymer fibers and glass substrates. During cell attachment to both glass and polymer fibers, a noticeable shift in the local maxima of paxillin and vinculin signals is observed at the adhesion sites. The focal adhesion sites on polymer fibers are smaller and elliptical but exhibit higher protein density than on the typical glass surface. The characteristics of focal adhesions, influenced by paxillin and vinculin, such as size and density, can potentially reflect the strength and stability of cell adhesion. Efficient adhesion correlates with well-organized, larger focal adhesions characterized by increased accumulation of paxillin and vinculin. These findings offer promising implications for enhancing scaffold design, evaluating adhesion to various substrates, and refining cellular interactions in biomedical applications.
Collapse
Affiliation(s)
- Krzysztof Berniak
- Faculty
of Metals Engineering and Industrial Computer Science, AGH University of Krakow, al. A. Mickiewicza 30, Krakow 30-059, Poland
| | - Daniel P. Ura
- Faculty
of Metals Engineering and Industrial Computer Science, AGH University of Krakow, al. A. Mickiewicza 30, Krakow 30-059, Poland
| | - Adam Piórkowski
- Department
of Biocybernetics and Biomedical Engineering, AGH University of Krakow, al. A. Mickiewicza 30, Krakow 30-059, Poland
| | - Urszula Stachewicz
- Faculty
of Metals Engineering and Industrial Computer Science, AGH University of Krakow, al. A. Mickiewicza 30, Krakow 30-059, Poland
| |
Collapse
|
12
|
Jühlen R, Grauer L, Martinelli V, Rencurel C, Fahrenkrog B. Alteration of actin cytoskeletal organisation in fetal akinesia deformation sequence. Sci Rep 2024; 14:1742. [PMID: 38242956 PMCID: PMC10799014 DOI: 10.1038/s41598-023-50615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024] Open
Abstract
Fetal akinesia deformation sequence (FADS) represents the severest form of congenital myasthenic syndrome (CMS), a diverse group of inherited disorders characterised by impaired neuromuscular transmission. Most CMS originate from defects in the muscle nicotinic acetylcholine receptor, but the underlying molecular pathogenesis is only poorly understood. Here we show that RNAi-mediated silencing of FADS-related proteins rapsyn and NUP88 in foetal fibroblasts alters organisation of the actin cytoskeleton. We show that fibroblasts from two independent FADS individuals have enhanced and shorter actin stress fibre bundles, alongside with an increased number and size of focal adhesions, with an otherwise normal overall connectivity and integrity of the actin-myosin cytoskeleton network. By proximity ligation assays and bimolecular fluorescence complementation, we show that rapsyn and NUP88 localise nearby adhesion plaques and that they interact with the focal adhesion protein paxillin. Based on these findings we propose that a respective deficiency in rapsyn and NUP88 in FADS alters the regulation of actin dynamics at focal adhesions, and thereby may also plausibly dictate myofibril contraction in skeletal muscle of FADS individuals.
Collapse
Affiliation(s)
- Ramona Jühlen
- Laboratory Biology of the Cell Nucleus, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium.
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany.
| | - Lukas Grauer
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Valérie Martinelli
- Laboratory Biology of the Cell Nucleus, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium
- Laboratory of Neurovascular Signaling, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium
| | | | - Birthe Fahrenkrog
- Laboratory Biology of the Cell Nucleus, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium.
- Biozentrum, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
13
|
Biernacka Z, Gregorczyk-Zboroch K, Lasocka I, Ostrowska A, Struzik J, Gieryńska M, Toka FN, Szulc-Dąbrowska L. Ectromelia Virus Affects the Formation and Spatial Organization of Adhesive Structures in Murine Dendritic Cells In Vitro. Int J Mol Sci 2023; 25:558. [PMID: 38203729 PMCID: PMC10779027 DOI: 10.3390/ijms25010558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Ectromelia virus (ECTV) is a causative agent of mousepox. It provides a suitable model for studying the immunobiology of orthopoxviruses, including their interaction with the host cell cytoskeleton. As professional antigen-presenting cells, dendritic cells (DCs) control the pericellular environment, capture antigens, and present them to T lymphocytes after migration to secondary lymphoid organs. Migration of immature DCs is possible due to the presence of specialized adhesion structures, such as podosomes or focal adhesions (FAs). Since assembly and disassembly of adhesive structures are highly associated with DCs' immunoregulatory and migratory functions, we evaluated how ECTV infection targets podosomes and FAs' organization and formation in natural-host bone marrow-derived DCs (BMDC). We found that ECTV induces a rapid dissolution of podosomes at the early stages of infection, accompanied by the development of larger and wider FAs than in uninfected control cells. At later stages of infection, FAs were predominantly observed in long cellular extensions, formed extensively by infected cells. Dissolution of podosomes in ECTV-infected BMDCs was not associated with maturation and increased 2D cell migration in a wound healing assay; however, accelerated transwell migration of ECTV-infected cells towards supernatants derived from LPS-conditioned BMDCs was observed. We suggest that ECTV-induced changes in the spatial organization of adhesive structures in DCs may alter the adhesiveness/migration of DCs during some conditions, e.g., inflammation.
Collapse
Affiliation(s)
- Zuzanna Biernacka
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (Z.B.); (K.G.-Z.); (J.S.); (M.G.); (F.N.T.)
| | - Karolina Gregorczyk-Zboroch
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (Z.B.); (K.G.-Z.); (J.S.); (M.G.); (F.N.T.)
| | - Iwona Lasocka
- Department of Biology of Animal Environment, Institute of Animal Science, Warsaw University of Life Sciences, 02-786 Warsaw, Poland;
| | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland;
| | - Justyna Struzik
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (Z.B.); (K.G.-Z.); (J.S.); (M.G.); (F.N.T.)
| | - Małgorzata Gieryńska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (Z.B.); (K.G.-Z.); (J.S.); (M.G.); (F.N.T.)
| | - Felix N. Toka
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (Z.B.); (K.G.-Z.); (J.S.); (M.G.); (F.N.T.)
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Lidia Szulc-Dąbrowska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (Z.B.); (K.G.-Z.); (J.S.); (M.G.); (F.N.T.)
| |
Collapse
|
14
|
Valdivia A, Avalos AM, Leyton L. Thy-1 (CD90)-regulated cell adhesion and migration of mesenchymal cells: insights into adhesomes, mechanical forces, and signaling pathways. Front Cell Dev Biol 2023; 11:1221306. [PMID: 38099295 PMCID: PMC10720913 DOI: 10.3389/fcell.2023.1221306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/25/2023] [Indexed: 12/17/2023] Open
Abstract
Cell adhesion and migration depend on the assembly and disassembly of adhesive structures known as focal adhesions. Cells adhere to the extracellular matrix (ECM) and form these structures via receptors, such as integrins and syndecans, which initiate signal transduction pathways that bridge the ECM to the cytoskeleton, thus governing adhesion and migration processes. Integrins bind to the ECM and soluble or cell surface ligands to form integrin adhesion complexes (IAC), whose composition depends on the cellular context and cell type. Proteomic analyses of these IACs led to the curation of the term adhesome, which is a complex molecular network containing hundreds of proteins involved in signaling, adhesion, and cell movement. One of the hallmarks of these IACs is to sense mechanical cues that arise due to ECM rigidity, as well as the tension exerted by cell-cell interactions, and transduce this force by modifying the actin cytoskeleton to regulate cell migration. Among the integrin/syndecan cell surface ligands, we have described Thy-1 (CD90), a GPI-anchored protein that possesses binding domains for each of these receptors and, upon engaging them, stimulates cell adhesion and migration. In this review, we examine what is currently known about adhesomes, revise how mechanical forces have changed our view on the regulation of cell migration, and, in this context, discuss how we have contributed to the understanding of signaling mechanisms that control cell adhesion and migration.
Collapse
Affiliation(s)
- Alejandra Valdivia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
15
|
Ruehle MD, Li S, Agard DA, Pearson CG. Poc1 is a basal body inner junction protein that promotes triplet microtubule integrity and interconnections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567593. [PMID: 38014135 PMCID: PMC10680851 DOI: 10.1101/2023.11.17.567593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Basal bodies (BBs) are conserved eukaryotic structures that organize motile and primary cilia. The BB is comprised of nine, cylindrically arranged, triplet microtubules (TMTs) that are connected to each other by inter-TMT linkages which maintain BB structure. During ciliary beating, forces transmitted to the BB must be resisted to prevent BB disassembly. Poc1 is a conserved BB protein important for BBs to resist ciliary forces. To understand how Poc1 confers BB stability, we identified the precise position of Poc1 binding in the Tetrahymena BB and the effect of Poc1 loss on BB structure. Poc1 binds at the TMT inner junctions, stabilizing TMTs directly. From this location, Poc1 also stabilizes inter-TMT linkages throughout the BB, including the cartwheel pinhead and the inner scaffold. Moreover, we identify a molecular response to ciliary forces via a molecular remodeling of the inner scaffold, as determined by differences in Fam161A localization. Thus, while not essential for BB assembly, Poc1 promotes BB interconnections that establish an architecture competent to resist ciliary forces.
Collapse
Affiliation(s)
- Marisa D. Ruehle
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sam Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Institute for Advanced Biological Imaging, 3400 Bridge Parkway, Redwood Shores, CA, USA
| | - Chad G. Pearson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
16
|
Shen C, Bi Y, Chai W, Zhang Z, Yang S, Liu Y, Wu Z, Peng F, Fan Z, Hu H. Construction and validation of a metabolism-associated gene signature for predicting the prognosis, immune landscape, and drug sensitivity in bladder cancer. BMC Med Genomics 2023; 16:264. [PMID: 37880682 PMCID: PMC10601123 DOI: 10.1186/s12920-023-01678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023] Open
Abstract
Tumor Metabolism is strongly correlated with prognosis. Nevertheless, the prognostic and therapeutic value of metabolic-associated genes in BCa patients has not been fully elucidated. First, in this study, metabolism-related differential expressed genes DEGs with prognostic value in BCa were determined. Through the consensus clustering algorithm, we identified two molecular clusters with significantly different clinicopathological features and survival prognosis. Next, a novel metabolism-related prognostic model was established. Its reliable predictive performance in BCa was verified by multiple external datasets. Multivariate Cox analysis exhibited that risk score were independent prognostic factors. Interestingly, GSEA enrichment analysis of GO, KEGG, and Hallmark gene sets showed that the biological processes and pathways associated with ECM and collagen binding in the high-risk group were significantly enriched. Notely, the model was also significantly correlated with drug sensitivity, immune cell infiltration, and immunotherapy efficacy prediction by the wilcox rank test and chi-square test. Based on the 7 immune infiltration algorithm, we found that Neutrophils, Myeloid dendritic cells, M2 macrophages, Cancer-associated fibroblasts, etc., were more concentrated in the high-risk group. Additionally, in the IMvigor210, GSE111636, GSE176307, or our Truce01 (registration number NCT04730219) cohorts, the expression levels of multiple model genes were significantly correlated with objective responses to anti-PD-1/anti-PD-L1 immunotherapy. Finally, the expression of interested model genes were verified in 10 pairs of BCa tissues and para-carcinoma tissues by the HPA and real-time fluorescent quantitative PCR. Altogether, the signature established and validated by us has high predictive power for the prognosis, immunotherapy responsiveness, and chemotherapy sensitivity of BCa.
Collapse
Affiliation(s)
- Chong Shen
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Tianjin, 300211, China
| | - Yuxin Bi
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Tianjin, 300211, China
| | - Wang Chai
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Tianjin, 300211, China
| | - Zhe Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Tianjin, 300211, China
| | - Shaobo Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Tianjin, 300211, China
| | - Yuejiao Liu
- Department of Pharmacy, Zhu Xianyi Memorial Hospital of Tianjin Medical University, Tianjin, China
| | - Zhouliang Wu
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Tianjin, 300211, China
| | - Fei Peng
- Department of Critical Care Medicine, the Peoples Hospital of Yuxi City, Yunnan, China
| | - Zhenqian Fan
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China.
| | - Hailong Hu
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China.
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Tianjin, 300211, China.
| |
Collapse
|
17
|
Luganini A, Serra V, Scarpellino G, Bhat SM, Munaron L, Fiorio Pla A, Gribaudo G. The US21 viroporin of human cytomegalovirus stimulates cell migration and adhesion. mBio 2023; 14:e0074923. [PMID: 37477430 PMCID: PMC10470750 DOI: 10.1128/mbio.00749-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/02/2023] [Indexed: 07/22/2023] Open
Abstract
The human cytomegalovirus (HCMV) US12 gene family contributes to virus-host interactions by regulating the virus' cell tropism and its evasion of host innate immune responses. US21, one of the 10 US12 genes (US12-US21), is a descendant of a captured cellular transmembrane BAX inhibitor motif-containing gene. It encodes a 7TMD endoplasmic reticulum (ER)-resident viroporin (pUS21) capable of reducing the Ca2+ content of ER stores, which, in turn, protects cells against apoptosis. Since regulation of Ca2+ homeostasis affects a broad range of cellular responses, including cell motility, we investigated whether pUS21 might also interfere with this cytobiological consequence of Ca2+ signaling. Indeed, deletion of the US21 gene impaired the ability of HCMV-infected cells to migrate, whereas expression of US21 protein stimulated cell migration and adhesion, as well as focal adhesion (FA) dynamics, in a way that depended on its ability to manipulate ER Ca2+ content. Mechanistic studies revealed pUS21-mediated cell migration to involve calpain 2 activation since its inhibition prevented the viroporin's effects on cell motility. Pertinently, pUS21 expression stimulated a store-operated Ca2+ entry (SOCE) mechanism that may determine the activation of calpain 2 by promoting Ca2+ entry. Furthermore, pUS21 was observed to interact with talin-1, a calpain 2 substrate, and crucial protein component of FA complexes. A functional consequence of this interaction was confirmed by talin-1 knockdown, which abrogated the pUS21-mediated increase in cell migration. Together, these results indicate the US21-encoded viroporin to be a viral regulator of cell adhesion and migration in the context of HCMV infection. IMPORTANCE Human cytomegalovirus (HCMV) is an opportunistic pathogen that owes part of its success to the capture, duplication, and tuning of cellular genes to generate modern viral proteins which promote infection and persistence in the host by interfering with many cell biochemical and physiological pathways. The US21 viral protein provides an example of this evolutionary strategy: it is a cellular-derived calcium channel that manipulates intracellular calcium homeostasis to confer edges to HCMV replication. Here, we report on the characterization of a novel function of the US21 protein as a viral regulator of cell migration and adhesion through mechanisms involving its calcium channel activity. Characterization of HCMV multifunctional regulatory proteins, like US21, supports the better understanding of viral pathogenesis and may open avenues for the design of new antiviral strategies that exploit their functions.
Collapse
Affiliation(s)
- Anna Luganini
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Valentina Serra
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Giorgia Scarpellino
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Shree Madhu Bhat
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Alessandra Fiorio Pla
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
18
|
Young KM, Reinhart-King CA. Cellular mechanosignaling for sensing and transducing matrix rigidity. Curr Opin Cell Biol 2023; 83:102208. [PMID: 37473514 PMCID: PMC10527818 DOI: 10.1016/j.ceb.2023.102208] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023]
Abstract
The mechanisms by which cells sense their mechanical environment and transduce the signal through focal adhesions and signaling pathways to the nucleus is an area of key focus for the field of mechanobiology. In the past two years, there has been expansion of our knowledge of commonly studied pathways, such as YAP/TAZ, FAK/Src, RhoA/ROCK, and Piezo1 signaling, as well as the discovery of new interactions, such as the effect of matrix rigidity of cell mitochondrial function and metabolism, which represent a new and exciting direction for the field as a whole. This review covers the most recent advances in the field of substrate stiffness sensing as well as perspective on future directions.
Collapse
Affiliation(s)
- Katherine M Young
- Vanderbilt University Department of Biomedical Engineering 2414 Highland Ave, Nashville, TN 37212, USA
| | - Cynthia A Reinhart-King
- Vanderbilt University Department of Biomedical Engineering 2414 Highland Ave, Nashville, TN 37212, USA.
| |
Collapse
|
19
|
Kumar S, Stainer A, Dubrulle J, Simpkins C, Cooper JA. Cas phosphorylation regulates focal adhesion assembly. eLife 2023; 12:e90234. [PMID: 37489578 PMCID: PMC10435235 DOI: 10.7554/elife.90234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023] Open
Abstract
Integrin-mediated cell attachment rapidly induces tyrosine kinase signaling. Despite years of research, the role of this signaling in integrin activation and focal adhesion assembly is unclear. We provide evidence that the Src-family kinase (SFK) substrate Cas (Crk-associated substrate, p130Cas, BCAR1) is phosphorylated and associated with its Crk/CrkL effectors in clusters that are precursors of focal adhesions. The initial phospho-Cas clusters contain integrin β1 in its inactive, bent closed, conformation. Later, phospho-Cas and total Cas levels decrease as integrin β1 is activated and core focal adhesion proteins including vinculin, talin, kindlin, and paxillin are recruited. Cas is required for cell spreading and focal adhesion assembly in epithelial and fibroblast cells on collagen and fibronectin. Cas cluster formation requires Cas, Crk/CrkL, SFKs, and Rac1 but not vinculin. Rac1 provides positive feedback onto Cas through reactive oxygen, opposed by negative feedback from the ubiquitin proteasome system. The results suggest a two-step model for focal adhesion assembly in which clusters of phospho-Cas, effectors and inactive integrin β1 grow through positive feedback prior to integrin activation and recruitment of core focal adhesion proteins.
Collapse
Affiliation(s)
- Saurav Kumar
- Fred Hutchinson Cancer CenterSeattleUnited States
| | | | | | | | | |
Collapse
|
20
|
Samaržija I, Konjevoda P. Extracellular Matrix- and Integrin Adhesion Complexes-Related Genes in the Prognosis of Prostate Cancer Patients' Progression-Free Survival. Biomedicines 2023; 11:2006. [PMID: 37509645 PMCID: PMC10377098 DOI: 10.3390/biomedicines11072006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer is a heterogeneous disease, and one of the main obstacles in its management is the inability to foresee its course. Therefore, novel biomarkers are needed that will guide the treatment options. The extracellular matrix (ECM) is an important part of the tumor microenvironment that largely influences cell behavior. ECM components are ligands for integrin receptors which are involved in every step of tumor progression. An underlying characteristic of integrin activation and ligation is the formation of integrin adhesion complexes (IACs), intracellular structures that carry information conveyed by integrins. By using The Cancer Genome Atlas data, we show that the expression of ECM- and IACs-related genes is changed in prostate cancer. Moreover, machine learning methods revealed that they are a source of biomarkers for progression-free survival of patients that are stratified according to the Gleason score. Namely, low expression of FMOD and high expression of PTPN2 genes are associated with worse survival of patients with a Gleason score lower than 9. The FMOD gene encodes protein that may play a role in the assembly of the ECM and the PTPN2 gene product is a protein tyrosine phosphatase activated by integrins. Our results suggest potential biomarkers of prostate cancer progression.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Paško Konjevoda
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
21
|
Davis-Lunn M, Goult BT, Andrews MR. Clutching at Guidance Cues: The Integrin-FAK Axis Steers Axon Outgrowth. BIOLOGY 2023; 12:954. [PMID: 37508384 PMCID: PMC10376711 DOI: 10.3390/biology12070954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Integrin receptors are essential contributors to neurite outgrowth and axon elongation. Activated integrins engage components of the extracellular matrix, enabling the growth cone to form point contacts, which connect the extracellular substrate to dynamic intracellular protein complexes. These adhesion complexes facilitate efficient growth cone migration and neurite extension. Major signalling pathways mediated by the adhesion complex are instigated by focal adhesion kinase (FAK), whilst axonal guidance molecules present in vivo promote growth cone turning or retraction by local modulation of FAK activity. Activation of FAK is marked by phosphorylation following integrin engagement, and this activity is tightly regulated during neurite outgrowth. FAK inhibition slows neurite outgrowth by reducing point contact turnover; however, mutant FAK constructs with enhanced activity stimulate aberrant outgrowth. Importantly, FAK is a major structural component of maturing adhesion sites, which provide the platform for actin polymerisation to drive leading edge advance. In this review, we discuss the coordinated signalling of integrin receptors and FAK, as well as their role in regulating neurite outgrowth and axon elongation. We also discuss the importance of the integrin-FAK axis in vivo, as integrin expression and activation are key determinants of successful axon regeneration following injury.
Collapse
Affiliation(s)
- Mathew Davis-Lunn
- Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Melissa R Andrews
- Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Centre for Human Development, Stem Cells and Regeneration, School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
22
|
Lampiasi N. The Migration and the Fate of Dental Pulp Stem Cells. BIOLOGY 2023; 12:biology12050742. [PMID: 37237554 DOI: 10.3390/biology12050742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Human dental pulp stem cells (hDPSCs) are adult mesenchymal stem cells (MSCs) obtained from dental pulp and derived from the neural crest. They can differentiate into odontoblasts, osteoblasts, chondrocytes, adipocytes and nerve cells, and they play a role in tissue repair and regeneration. In fact, DPSCs, depending on the microenvironmental signals, can differentiate into odontoblasts and regenerate dentin or, when transplanted, replace/repair damaged neurons. Cell homing depends on recruitment and migration, and it is more effective and safer than cell transplantation. However, the main limitations of cell homing are the poor cell migration of MSCs and the limited information we have on the regulatory mechanism of the direct differentiation of MSCs. Different isolation methods used to recover DPSCs can yield different cell types. To date, most studies on DPSCs use the enzymatic isolation method, which prevents direct observation of cell migration. Instead, the explant method allows for the observation of single cells that can migrate at two different times and, therefore, could have different fates, for example, differentiation and self-renewal. DPSCs use mesenchymal and amoeboid migration modes with the formation of lamellipodia, filopodia and blebs, depending on the biochemical and biophysical signals of the microenvironment. Here, we present current knowledge on the possible intriguing role of cell migration, with particular attention to microenvironmental cues and mechanosensing properties, in the fate of DPSCs.
Collapse
Affiliation(s)
- Nadia Lampiasi
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
23
|
Lei X, Miao S, Wang X, Gao Y, Wu H, Cheng P, Song Y, Bi L, Pei G. Microgroove Cues Guiding Fibrogenesis of Stem Cells via Intracellular Force. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16380-16393. [PMID: 36961871 DOI: 10.1021/acsami.2c20903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Groove patterns are widely used in material surface modifications. However, the independent role of ditches/ridges in regulating fibrosis of soft tissues is not well-understood, especially the lack of linkage evidence in vitro and in vivo. Herein, two kinds of combinational microgroove chips with the gradient ditch/ridge width were fabricated by photolithography technology, termed R and G groups, respectively. In group R, the ridge width was 1, 5, 10, and 30 μm, with a ditch width of 30 μm; in group G, the groove width was 5, 10, 20, and 30 μm, and the ridge width was 5 μm. The effect of microgrooves on the morphology, proliferation, and expression of fibrous markers of stem cells was systematically investigated in vitro. Moreover, thicknesses of fibrous capsules were evaluated after chips were implanted into the muscular pouches of rats for 5 months. The results show that microgrooves have almost no effect on cell proliferation but significantly modulate the morphology of cells and focal adhesions (FAs) in vitro, as well as fibrosis differentiation. In particular, the differentiation of stem cells is attenuated after the intracellular force caused by stress fibers and FAs is interfered by drugs, such as rotenone and blebbistatin. Histological analysis shows that patterns of high intracellular force can apparently stimulate soft tissue fibrosis in vivo. This study not only reveals the specific rules and mechanisms of ditch/ridge regulating stem cell behaviors but also offers insight into tailoring implant surface patterns to induce controlled soft tissue fibrosis.
Collapse
Affiliation(s)
- Xing Lei
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
- Department of Orthopedic Surgery, Linyi People's Hospital, Linyi 276000, China
| | - Sheng Miao
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Xiuli Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yi Gao
- Southern University of Science and Technology Hospital, No. 6019 Liuxian Street, Xili Avenue, Nanshan District, Shenzhen 518055, China
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hao Wu
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Pengzhen Cheng
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Yue Song
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Long Bi
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Guoxian Pei
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
- Southern University of Science and Technology Hospital, No. 6019 Liuxian Street, Xili Avenue, Nanshan District, Shenzhen 518055, China
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
24
|
Li D, Liu L, Murea M, Freedman BI, Ma L. Bioinformatics Analysis Reveals a Shared Pathway for Common Forms of Adult Nephrotic Syndrome. KIDNEY360 2023; 4:e515-e524. [PMID: 36763793 PMCID: PMC10278839 DOI: 10.34067/kid.0000000000000074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/20/2023] [Indexed: 02/12/2023]
Abstract
Key Points Dysregulation of the focal adhesion pathway is present in the three most common forms of glomerular disease, that is, Focal segmental glomerulosclerosis, membranous nephropathy, and minimal change disease. Zyxin is seen to be upregulated in the glomerular compartment of patients with the three most common forms of glomerular disease. Background Focal segmental glomerulosclerosis, membranous nephropathy, and minimal change disease are common causes of nephrotic syndrome. Although triggers for these diseases differ, disease progression may share common molecular mechanisms. The aim of this study was to investigate the presence of molecular pathways that are dysregulated across these glomerular diseases. Methods The gene expression dataset GSE200828 from the Nephrotic Syndrome Study Network study was obtained from the Gene Expression Omnibus database. R and Python packages, Cytoscape software, and online tools (DAVID and STRING) were used to identify core genes and topologically relevant nodes and molecular pathways. Single-cell RNA sequencing analysis was applied to identify the expression patterns of core genes across kidney cell types in glomerular compartments. Results A total of 1087 differentially expressed genes were identified, including 691 upregulated genes and 396 downregulated genes, which are common in all three forms of nephrotic syndrome compared with kidney donor controls (FDR P <0.01). A multiapproach bioinformatics analysis narrowed down to 28 similarly dysregulated genes across the three proteinuric glomerulopathies. The most topologically relevant nodes belonged to the adherens junction, focal adhesion, and cytoskeleton pathways, where zyxin covers all of those gene ontology terms. Conclusions We report that dysregulation of cell adhesion complexes was present in the three most common forms of glomerular disease. Zyxin could be a biomarker in all three common forms of nephrotic syndrome. If further functional studies confirm its role in their development, zyxin could be a potential therapeutic target.
Collapse
Affiliation(s)
- DengFeng Li
- Informatics and Analytics, The University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Liang Liu
- Bioinformatics Shared Resource, Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Mariana Murea
- Department of Internal Medicine—Nephrology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Barry I. Freedman
- Department of Internal Medicine—Nephrology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Lijun Ma
- Department of Internal Medicine—Nephrology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
25
|
Lisiak N, Dzikowska P, Wisniewska U, Kaczmarek M, Bednarczyk-Cwynar B, Zaprutko L, Rubis B. Biological Activity of Oleanolic Acid Derivatives HIMOXOL and Br-HIMOLID in Breast Cancer Cells Is Mediated by ER and EGFR. Int J Mol Sci 2023; 24:5099. [PMID: 36982173 PMCID: PMC10048893 DOI: 10.3390/ijms24065099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Breast cancer is one of the most frequently observed malignancies worldwide and represents a heterogeneous group of cancers. For this reason, it is crucial to properly diagnose every single case so a specific and efficient therapy can be adjusted. One of the most critical diagnostic parameters evaluated in cancer tissue is the status of the estrogen receptor (ER) and epidermal growth factor receptor (EGFR). Interestingly, the expression of the indicated receptors may be used in a personalized therapy approach. Importantly, the promising role of phytochemicals in the modulation of pathways controlled by ER and EGFR was also demonstrated in several types of cancer. One such biologically active compound is oleanolic acid, but due to poor water solubility and cell membrane permeability that limits its use, alternative derivative compounds were developed. These are HIMOXOL and Br-HIMOLID, which were demonstrated to be capable of inducing apoptosis and autophagy or diminishing the migratory and invasive potential of breast cancer cells in vitro. In our study, we revealed that proliferation, cell cycle, apoptosis, autophagy, and also the migratory potential of HIMOXOL and Br-HIMOLID in breast cancer cells are mediated by ER (MCF7) and EGFR (MDA-MB-231) receptors. These observations make the studied compounds interesting in the context of anticancer strategies.
Collapse
Affiliation(s)
- Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806 Poznan, Poland
| | - Patrycja Dzikowska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806 Poznan, Poland
| | - Urszula Wisniewska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806 Poznan, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Garbary 15 St., 61-866 Poznan, Poland
| | - Barbara Bednarczyk-Cwynar
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 St., 60-780 Poznan, Poland
| | - Lucjusz Zaprutko
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 St., 60-780 Poznan, Poland
| | - Blazej Rubis
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806 Poznan, Poland
| |
Collapse
|
26
|
Chen S, He T, Zhong Y, Chen M, Yao Q, Chen D, Shao Z, Xiao G. Roles of focal adhesion proteins in skeleton and diseases. Acta Pharm Sin B 2023; 13:998-1013. [PMID: 36970189 PMCID: PMC10031257 DOI: 10.1016/j.apsb.2022.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/04/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
The skeletal system, which contains bones, joints, tendons, ligaments and other elements, plays a wide variety of roles in body shaping, support and movement, protection of internal organs, production of blood cells and regulation of calcium and phosphate metabolism. The prevalence of skeletal diseases and disorders, such as osteoporosis and bone fracture, osteoarthritis, rheumatoid arthritis, and intervertebral disc degeneration, increases with age, causing pain and loss of mobility and creating a huge social and economic burden globally. Focal adhesions (FAs) are macromolecular assemblies that are composed of the extracellular matrix (ECM), integrins, intracellular cytoskeleton and other proteins, including kindlin, talin, vinculin, paxillin, pinch, Src, focal adhesion kinase (FAK) and integrin-linked protein kinase (ILK) and other proteins. FA acts as a mechanical linkage connecting the ECM and cytoskeleton and plays a key role in mediating cell-environment communications and modulates important processes, such as cell attachment, spreading, migration, differentiation and mechanotransduction, in different cells in skeletal system by impacting distinct outside-in and inside-out signaling pathways. This review aims to integrate the up-to-date knowledge of the roles of FA proteins in the health and disease of skeletal system and focuses on the specific molecular mechanisms and underlying therapeutic targets for skeletal diseases.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiming Zhong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
27
|
Xue Q, Varady SR, Waddell TQA, Roman MR, Carrington J, Roh-Johnson M. Lack of Paxillin phosphorylation promotes single-cell migration in vivo. J Cell Biol 2023; 222:213850. [PMID: 36723624 PMCID: PMC9929932 DOI: 10.1083/jcb.202206078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 02/02/2023] Open
Abstract
Focal adhesions are structures that physically link the cell to the extracellular matrix for cell migration. Although cell culture studies have provided a wealth of information regarding focal adhesion biology, it is critical to understand how focal adhesions are dynamically regulated in their native environment. We developed a zebrafish system to visualize focal adhesion structures during single-cell migration in vivo. We find that a key site of phosphoregulation (Y118) on Paxillin exhibits reduced phosphorylation in migrating cells in vivo compared to in vitro. Furthermore, expression of a non-phosphorylatable version of Y118-Paxillin increases focal adhesion disassembly and promotes cell migration in vivo, despite inhibiting cell migration in vitro. Using a mouse model, we further find that the upstream kinase, focal adhesion kinase, is downregulated in cells in vivo, and cells expressing non-phosphorylatable Y118-Paxillin exhibit increased activation of the CRKII-DOCK180/RacGEF pathway. Our findings provide significant new insight into the intrinsic regulation of focal adhesions in cells migrating in their native environment.
Collapse
Affiliation(s)
- Qian Xue
- https://ror.org/03r0ha626Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Sophia R.S. Varady
- https://ror.org/03r0ha626Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | | | - Mackenzie R. Roman
- https://ror.org/03r0ha626Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - James Carrington
- https://ror.org/03r0ha626Department of Biochemistry, University of Utah, Salt Lake City, UT, USA,School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Minna Roh-Johnson
- https://ror.org/03r0ha626Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
28
|
Mavrakis M, Juanes MA. The compass to follow: Focal adhesion turnover. Curr Opin Cell Biol 2023; 80:102152. [PMID: 36796142 DOI: 10.1016/j.ceb.2023.102152] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
How cells move is a fundamental biological question. The directionality of adherent migrating cells depends on the assembly and disassembly (turnover) of focal adhesions (FAs). FAs are micron-sized actin-based structures that link cells to the extracellular matrix. Traditionally, microtubules have been considered key to triggering FA turnover. Through the years, advancements in biochemistry, biophysics, and bioimaging tools have been invaluable for many research groups to unravel a variety of mechanisms and molecular players that contribute to FA turnover, beyond microtubules. Here, we discuss recent discoveries of key molecular players that affect the dynamics and organization of the actin cytoskeleton to enable timely FA turnover and consequently proper directed cell migration.
Collapse
Affiliation(s)
- Manos Mavrakis
- Institut Fresnel, CNRS, Aix-Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - M Angeles Juanes
- School of Health and Life Science, Teesside University, Middlesbrough, TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom; Centro de Investigación Príncipe Felipe, Valencia, 46012, Spain.
| |
Collapse
|
29
|
Cardiac Differentiation Promotes Focal Adhesions Assembly through Vinculin Recruitment. Int J Mol Sci 2023; 24:ijms24032444. [PMID: 36768766 PMCID: PMC9916732 DOI: 10.3390/ijms24032444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Cells of the cardiovascular system are physiologically exposed to a variety of mechanical forces fundamental for both cardiac development and functions. In this context, forces generated by actomyosin networks and those transmitted through focal adhesion (FA) complexes represent the key regulators of cellular behaviors in terms of cytoskeleton dynamism, cell adhesion, migration, differentiation, and tissue organization. In this study, we investigated the involvement of FAs on cardiomyocyte differentiation. In particular, vinculin and focal adhesion kinase (FAK) family, which are known to be involved in cardiac differentiation, were studied. Results revealed that differentiation conditions induce an upregulation of both FAK-Tyr397 and vinculin, resulting also in the translocation to the cell membrane. Moreover, the role of mechanical stress in contractile phenotype expression was investigated by applying a uniaxial mechanical stretching (5% substrate deformation, 1 Hz frequency). Morphological evaluation revealed that the cell shape showed a spindle shape and reoriented following the stretching direction. Substrate deformation resulted also in modification of the length and the number of vinculin-positive FAs. We can, therefore, suggest that mechanotransductive pathways, activated through FAs, are highly involved in cardiomyocyte differentiation, thus confirming their role during cytoskeleton rearrangement and cardiac myofilament maturation.
Collapse
|
30
|
Reyes-Peces MV, Fernández-Montesinos R, Mesa-Díaz MDM, Vilches-Pérez JI, Cárdenas-Leal JL, de la Rosa-Fox N, Salido M, Piñero M. Structure-Related Mechanical Properties and Bioactivity of Silica-Gelatin Hybrid Aerogels for Bone Regeneration. Gels 2023; 9:67. [PMID: 36661833 PMCID: PMC9858756 DOI: 10.3390/gels9010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
We report the synthesis of mesoporous silica-gelatin hybrid aerogels with 15, 25, and 30 wt. % gelatin contents, using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a coupling agent, for tissue-engineering applications. Aerogels were obtained using a one-step sol-gel process followed by CO2 supercritical drying, resulting in crack-free monolith samples with bulk densities ranging from 0.41 g cm-3 to 0.66 g cm-3. Nitrogen adsorption measurements revealed an interconnected mesopore network and a general decrease in the textural parameters: specific surface areas (651-361 m2 g-1), pore volume (1.98-0.89 cm3 g-1), and pore sizes (10.8-8.6 nm), by increasing gelatin content. Thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy and uniaxial compression experiments confirmed that the structure, thermal properties and mechanical behavior of these aerogels changed significantly when the concentration of gelatin reached 25 wt.%, suggesting that this composition corresponds to the percolation threshold of the organic phase. In addition, the samples exhibited hydrophilic behavior and extremely fast swelling in phosphate-buffered saline (PBS), with swelling ratios from 2.32 to 3.32. Furthermore, in vitro bioactivity studies revealed a strong relationship between the kinetics of the nucleation and growth processes of hydroxyapatite in simulated body fluid (SBF) and the gelatin content. The live/dead assay revealed no cytotoxicity in HOB® osteoblasts in vitro and a positive influence on cell growth, focal adhesion development, and cytoskeletal arrangement for cell adhesion. Mineralization assays confirmed the positive effects of the samples on osteoblast differentiation. The biomaterials described are versatile, can be easily sterilized and are suitable for a wide range of applications in bone tissue-engineering, either alone or in combination with bioactive-reinforced phases.
Collapse
Affiliation(s)
- María V. Reyes-Peces
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
| | - Rafael Fernández-Montesinos
- Departamento de Histología, SCIBM, Facultad de Medicina, Universidad de Cádiz, 11004 Cádiz, Spain
- Instituto de Biomedicina de Cádiz, (INIBICA), Universidad de Cadiz, 11510 Puerto Real, Spain
| | - María del Mar Mesa-Díaz
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
- Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Universidad de Cadiz, 11510 Puerto Real, Spain
| | - José Ignacio Vilches-Pérez
- Departamento de Histología, SCIBM, Facultad de Medicina, Universidad de Cádiz, 11004 Cádiz, Spain
- Instituto de Biomedicina de Cádiz, (INIBICA), Universidad de Cadiz, 11510 Puerto Real, Spain
| | - Jose Luis Cárdenas-Leal
- Departamento de Física Aplicada, Escuela Superior de Ingeniería, Universidad de Cádiz, 11510 Puerto Real, Spain
| | - Nicolás de la Rosa-Fox
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
- Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Universidad de Cadiz, 11510 Puerto Real, Spain
| | - Mercedes Salido
- Departamento de Histología, SCIBM, Facultad de Medicina, Universidad de Cádiz, 11004 Cádiz, Spain
- Instituto de Biomedicina de Cádiz, (INIBICA), Universidad de Cadiz, 11510 Puerto Real, Spain
| | - Manuel Piñero
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
- Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Universidad de Cadiz, 11510 Puerto Real, Spain
| |
Collapse
|
31
|
Huang X, Chen D, Liang C, Shi K, Zhou X, Zhang Y, Li Y, Chen J, Xia K, Shu J, Yang B, Wang J, Xu H, Yu C, Cheng F, Wang S, Zhang Y, Wang C, Ying L, Li H, Han M, Li F, Tao Y, Zhao Q, Chen Q. Swelling-Mediated Mechanical Stimulation Regulates Differentiation of Adipose-Derived Mesenchymal Stem Cells for Intervertebral Disc Repair Using Injectable UCST Microgels. Adv Healthc Mater 2023; 12:e2201925. [PMID: 36250343 DOI: 10.1002/adhm.202201925] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Indexed: 01/26/2023]
Abstract
Mechanical stimulation is an effective approach for controlling stem cell differentiation in tissue engineering. However, its realization in in vivo tissue repair remains challenging since this type of stimulation can hardly be applied to injectable seeding systems. Here, it is presented that swelling of injectable microgels can be transformed to in situ mechanical stimulation via stretching the cells adhered on their surface. Poly(acrylamide-co-acrylic acid) microgels with the upper critical solution temperature property are fabricated using inverse emulsion polymerization and further coated with polydopamine to increase cell adhesion. Adipose-derived mesenchymal stem cells (ADSCs) adhered on the microgels can be omnidirectionally stretched along with the responsive swelling of the microgels, which upregulate TRPV4 and Piezo1 channel proteins and enhance nucleus pulposus (NP)-like differentiation of ADSCs. In vivo experiments reveal that the disc height and extracellular matrix content of NP are promoted after the implantation with the microgels. The findings indicate that swelling-induced mechanical stimulation has great potential for regulating stem cell differentiation during intervertebral disc repair.
Collapse
Affiliation(s)
- Xianpeng Huang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Di Chen
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, 315100, China
| | - Chengzhen Liang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Kesi Shi
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Xiaopeng Zhou
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yuang Zhang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yi Li
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Jiangjie Chen
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Kaishun Xia
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Jiawei Shu
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Biao Yang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Jingkai Wang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Haibin Xu
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Chao Yu
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Feng Cheng
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Shaoke Wang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yongxiang Zhang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Chenggui Wang
- Department of Orthopedics Surgery, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Liwei Ying
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Hao Li
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Meiling Han
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Fangcai Li
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yiqing Tao
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Qixin Chen
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| |
Collapse
|
32
|
Bun T, Sato Y, Futami H, Tagawa Y, Murakami Y, Takahashi M. Cytoskeletal fractionation identifies LMO7 as a positive regulator of fibroblast polarization and directed migration. Biochem Biophys Res Commun 2023; 638:58-65. [PMID: 36442233 DOI: 10.1016/j.bbrc.2022.11.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Cell migration is a cytoskeleton-driven cellular process involved in physiological and pathological events such as embryonic development and cancer metastasis. Fibroblasts have often been used to elucidate the mechanism of cell migration due to their high morphological polarity and migratory activity. We recently reported that human lung fibroblasts migrate straight for a long duration without external stimuli, which phenomenon we named intrinsic and directed migration (IDM) of fibroblasts. In this study, we explored proteins involved in IDM in order to elucidate the molecular mechanism. First, we focused on the differences in morphology and migratory behaviors between normal and immortalized fibroblasts-the former exhibit obvious polarity and IDM; the latter exhibit poorly polarized morphology and random migration. We compared the abundance of proteins functioning as the cytoskeletal components between them through proteomic analysis and found that LIM domain only protein 7 (LMO7) is overwhelmingly incorporated into the cytoskeletons of normal fibroblasts. Depletion of LMO7 inhibited the directed migration of normal fibroblast on the fibronectin (FN)-rich surface, suggesting that LMO7 is important for IDM. Moreover, on the FN-free surface, LMO7-depleted fibroblasts often failed to establish morphological polarity and hardly migrated. Thus, the present study identified LMO7 as a positive regulator of fibroblast polarization and IDM, especially in an environment where integrin-mediated substrate attachment is insufficient.
Collapse
Affiliation(s)
- Taichi Bun
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Yuta Sato
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Hajime Futami
- Department of Chemistry, School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yuki Tagawa
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Yota Murakami
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan; Department of Chemistry, School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Masayuki Takahashi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan; Department of Chemistry, School of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
33
|
A novel focal adhesion-related risk model predicts prognosis of bladder cancer —— a bioinformatic study based on TCGA and GEO database. BMC Cancer 2022; 22:1158. [PMID: 36357874 PMCID: PMC9647995 DOI: 10.1186/s12885-022-10264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Background Bladder cancer (BLCA) is the ninth most common cancer globally, as well as the fourth most common cancer in men, with an incidence of 7%. However, few effective prognostic biomarkers or models of BLCA are available at present. Methods The prognostic genes of BLCA were screened from one cohort of The Cancer Genome Atlas (TCGA) database through univariate Cox regression analysis and functionally annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The intersecting genes of the BLCA gene set and focal adhesion-related gene were obtained and subjected to the least absolute shrinkage and selection operator regression (LASSO) to construct a prognostic model. Gene set enrichment analysis (GSEA) of high- and low-risk patients was performed to explore further the biological process related to focal adhesion genes. Univariate and multivariate Cox analysis, receiver operating characteristic (ROC) curve analysis, and Kaplan–Meier survival analysis (KM) were used to evaluate the prognostic model. DNA methylation analysis was presented to explore the relationship between prognosis and gene methylation. Furthermore, immune cell infiltration was assessed by CIBERSORT, ESTIMATE, and TIMER. The model was verified in an external GSE32894 cohort of the Gene Expression Omnibus (GEO) database, and the Prognoscan database presented further validation of genes. The HPA database validated the related protein level, and functional experiments verified significant risk factors in the model. Results VCL, COL6A1, RAC3, PDGFD, JUN, LAMA2, and ITGB6 were used to construct a prognostic model in the TCGA-BLCA cohort and validated in the GSE32894 cohort. The 7-gene model successfully stratified the patients into both cohorts’ high- and low-risk groups. The higher risk score was associated with a worse prognosis. Conclusions The 7-gene prognostic model can classify BLCA patients into high- and low-risk groups based on the risk score and predict the overall survival, which may aid clinical decision-making. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10264-5.
Collapse
|
34
|
TNS1: Emerging Insights into Its Domain Function, Biological Roles, and Tumors. BIOLOGY 2022; 11:biology11111571. [PMID: 36358270 PMCID: PMC9687257 DOI: 10.3390/biology11111571] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 01/25/2023]
Abstract
Tensins are a family of cellular-adhesion constituents that have been extensively studied. They have instrumental roles in the pathogenesis of numerous diseases. The mammalian tensin family comprises four members: tensin1 (TNS1), tensin2, tensin3, and tensin4. Among them, TNS1 has recently received attention from researchers because of its structural properties. TNS1 engages in various biological processes, such as cell adhesion, polarization, migration, invasion, proliferation, apoptosis, and mechano-transduction, by interacting with various partner proteins. Moreover, the abnormal expression of TNS1 in vivo is associated with the development of various diseases, especially tumors. Interestingly, the role of TNS1 in different tumors is still controversial. Here, we systematically summarize three aspects of TNS1: the gene structure, the biological processes underlying its action, and the dual regulatory role of TNS1 in different tumors through different mechanisms, of which we provide the first overview.
Collapse
|
35
|
Han KJ, Mikalayeva V, Gerber SA, Kettenbach AN, Skeberdis VA, Prekeris R. Rab40c regulates focal adhesions and PP6 activity by controlling ANKRD28 ubiquitylation. Life Sci Alliance 2022; 5:5/9/e202101346. [PMID: 35512830 PMCID: PMC9070665 DOI: 10.26508/lsa.202101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
Rab40c is a SOCS box-containing protein which binds Cullin5 to form a ubiquitin E3 ligase complex (Rab40c/CRL5) to regulate protein ubiquitylation. However, the exact functions of Rab40c remain to be determined, and what proteins are the targets of Rab40c-Cullin5-mediated ubiquitylation in mammalian cells are unknown. Here we showed that in migrating MDA-MB-231 cells Rab40c regulates focal adhesion's number, size, and distribution. Mechanistically, we found that Rab40c binds the protein phosphatase 6 (PP6) complex and ubiquitylates one of its subunits, ankyrin repeat domain 28 (ANKRD28), thus leading to its lysosomal degradation. Furthermore, we identified that phosphorylation of FAK and MOB1 is decreased in Rab40c knock-out cells, which may contribute to focal adhesion site regulation by Rab40c. Thus, we propose a model where Rab40c/CRL5 regulates ANKRD28 ubiquitylation and degradation, leading to a decrease in PP6 activity, which ultimately affects FAK and Hippo pathway signaling to alter focal adhesion dynamics.
Collapse
Affiliation(s)
- Ke-Jun Han
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Valeryia Mikalayeva
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Scott A Gerber
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Norris Cotton Cancer Center, Lebanon, NH, USA
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Norris Cotton Cancer Center, Lebanon, NH, USA
| | - Vytenis A Skeberdis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
36
|
Epithelial-to-Mesenchymal Transition in Metastasis: Focus on Laryngeal Carcinoma. Biomedicines 2022; 10:biomedicines10092148. [PMID: 36140250 PMCID: PMC9496235 DOI: 10.3390/biomedicines10092148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
In epithelial neoplasms, such as laryngeal carcinoma, the survival indexes deteriorate abruptly when the tumor becomes metastatic. A molecular phenomenon that normally appears during embryogenesis, epithelial-to-mesenchymal transition (EMT), is reactivated at the initial stage of metastasis when tumor cells invade the adjacent stroma. The hallmarks of this phenomenon are the abolishment of the epithelial and acquisition of mesenchymal traits by tumor cells which enhance their migratory capacity. EMT signaling is mediated by complex molecular pathways that regulate the expression of crucial molecules contributing to the tumor’s metastatic potential. Effectors of EMT include loss of adhesion, cytoskeleton remodeling, evasion of apoptosis and immune surveillance, upregulation of metalloproteinases, neovascularization, acquisition of stem-cell properties, and the activation of tumor stroma. However, the current approach to EMT involves a holistic model that incorporates the acquisition of potentials beyond mesenchymal transition. As EMT is inevitably associated with a reverse mesenchymal-to-epithelial transition (MET), a model of partial EMT is currently accepted, signifying the cell plasticity associated with invasion and metastasis. In this review, we identify the cumulative evidence which suggests that various aspects of EMT theory apply to laryngeal carcinoma, a tumor of significant morbidity and mortality, introducing novel molecular targets with prognostic and therapeutic potential.
Collapse
|
37
|
Svec KV, Howe AK. Protein Kinase A in cellular migration—Niche signaling of a ubiquitous kinase. Front Mol Biosci 2022; 9:953093. [PMID: 35959460 PMCID: PMC9361040 DOI: 10.3389/fmolb.2022.953093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/30/2022] [Indexed: 12/28/2022] Open
Abstract
Cell migration requires establishment and maintenance of directional polarity, which in turn requires spatial heterogeneity in the regulation of protrusion, retraction, and adhesion. Thus, the signaling proteins that regulate these various structural processes must also be distinctly regulated in subcellular space. Protein Kinase A (PKA) is a ubiquitous serine/threonine kinase involved in innumerable cellular processes. In the context of cell migration, it has a paradoxical role in that global inhibition or activation of PKA inhibits migration. It follows, then, that the subcellular regulation of PKA is key to bringing its proper permissive and restrictive functions to the correct parts of the cell. Proper subcellular regulation of PKA controls not only when and where it is active but also specifies the targets for that activity, allowing the cell to use a single, promiscuous kinase to exert distinct functions within different subcellular niches to facilitate cell movement. In this way, understanding PKA signaling in migration is a study in context and in the elegant coordination of distinct functions of a single protein in a complex cellular process.
Collapse
Affiliation(s)
- Kathryn V. Svec
- Department of Pharmacology, University of Vermont, Burlington, VT, United States
| | - Alan K. Howe
- Department of Pharmacology, University of Vermont, Burlington, VT, United States
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, V T, United States
- University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
- *Correspondence: Alan K. Howe,
| |
Collapse
|
38
|
Mijanović L, Weber I. Adhesion of Dictyostelium Amoebae to Surfaces: A Brief History of Attachments. Front Cell Dev Biol 2022; 10:910736. [PMID: 35721508 PMCID: PMC9197732 DOI: 10.3389/fcell.2022.910736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/13/2022] [Indexed: 12/23/2022] Open
Abstract
Dictyostelium amoebae adhere to extracellular material using similar mechanisms to metazoan cells. Notably, the cellular anchorage loci in Amoebozoa and Metazoa are both arranged in the form of discrete spots and incorporate a similar repertoire of intracellular proteins assembled into multicomponent complexes located on the inner side of the plasma membrane. Surprisingly, however, Dictyostelium lacks integrins, the canonical transmembrane heterodimeric receptors that dominantly mediate adhesion of cells to the extracellular matrix in multicellular animals. In this review article, we summarize the current knowledge about the cell-substratum adhesion in Dictyostelium, present an inventory of the involved proteins, and draw parallels with the situation in animal cells. The emerging picture indicates that, while retaining the basic molecular architecture common to their animal relatives, the adhesion complexes in free-living amoeboid cells have evolved to enable less specific interactions with diverse materials encountered in their natural habitat in the deciduous forest soil. Dissection of molecular mechanisms that underlay short lifetime of the cell-substratum attachments and high turnover rate of the adhesion complexes in Dictyostelium should provide insight into a similarly modified adhesion phenotype that accompanies the mesenchymal-amoeboid transition in tumor metastasis.
Collapse
Affiliation(s)
| | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
39
|
Activation of Focal Adhesion Kinase Restores Simulated Microgravity-Induced Inhibition of Osteoblast Differentiation via Wnt/Β-Catenin Pathway. Int J Mol Sci 2022; 23:ijms23105593. [PMID: 35628403 PMCID: PMC9146119 DOI: 10.3390/ijms23105593] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Simulated microgravity (SMG) inhibits osteoblast differentiation (OBD) and induces bone loss via the inhibition of the Wnt/β-catenin pathway. However, the mechanism by which SMG alters the Wnt/β-catenin pathway is unknown. We previously demonstrated that SMG altered the focal adhesion kinase (FAK)-regulated mTORC1, AMPK and ERK1/2 pathways, leading to the inhibition of tumor cell proliferation/metastasis and promoting cell apoptosis. To examine whether FAK similarly mediates SMG-dependent changes to Wnt/β-catenin in osteoblasts, we characterized mouse MC3T3-E1 cells cultured under clinostat-modeled SMG (µg) conditions. Compared to cells cultured under ground (1 g) conditions, SMG reduces focal adhesions, alters cytoskeleton structures, and down-regulates FAK, Wnt/β-catenin and Wnt/β-catenin-regulated molecules. Consequently, protein-2 (BMP2), type-1 collagen (COL1), alkaline-phosphatase activity and matrix mineralization are all inhibited. In the mouse hindlimb unloading (HU) model, SMG-affected tibial trabecular bone loss is significantly reduced, according to histological and micro-computed tomography analyses. Interestingly, the FAK activator, cytotoxic necrotizing factor-1 (CNF1), significantly suppresses all of the SMG-induced alterations in MC3T3-E1 cells and the HU model. Therefore, our data demonstrate the critical role of FAK in the SMG-induced inhibition of OBD and bone loss via the Wnt/β-catenin pathway, offering FAK signaling as a new therapeutic target not only for astronauts at risk of OBD inhibition and bone loss, but also osteoporotic patients.
Collapse
|
40
|
Oncel S, Basson MD. Gut homeostasis, injury, and healing: New therapeutic targets. World J Gastroenterol 2022; 28:1725-1750. [PMID: 35633906 PMCID: PMC9099196 DOI: 10.3748/wjg.v28.i17.1725] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/12/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
The integrity of the gastrointestinal mucosa plays a crucial role in gut homeostasis, which depends upon the balance between mucosal injury by destructive factors and healing via protective factors. The persistence of noxious agents such as acid, pepsin, nonsteroidal anti-inflammatory drugs, or Helicobacter pylori breaks down the mucosal barrier and injury occurs. Depending upon the size and site of the wound, it is healed by complex and overlapping processes involving membrane resealing, cell spreading, purse-string contraction, restitution, differentiation, angiogenesis, and vasculogenesis, each modulated by extracellular regulators. Unfortunately, the gut does not always heal, leading to such pathology as peptic ulcers or inflammatory bowel disease. Currently available therapeutics such as proton pump inhibitors, histamine-2 receptor antagonists, sucralfate, 5-aminosalicylate, antibiotics, corticosteroids, and immunosuppressants all attempt to minimize or reduce injury to the gastrointestinal tract. More recent studies have focused on improving mucosal defense or directly promoting mucosal repair. Many investigations have sought to enhance mucosal defense by stimulating mucus secretion, mucosal blood flow, or tight junction function. Conversely, new attempts to directly promote mucosal repair target proteins that modulate cytoskeleton dynamics such as tubulin, talin, Ehm2, filamin-a, gelsolin, and flightless I or that proteins regulate focal adhesions dynamics such as focal adhesion kinase. This article summarizes the pathobiology of gastrointestinal mucosal healing and reviews potential new therapeutic targets.
Collapse
Affiliation(s)
- Sema Oncel
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| | - Marc D Basson
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
- Department of Surgery, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| |
Collapse
|
41
|
Ripamonti M, Wehrle-Haller B, de Curtis I. Paxillin: A Hub for Mechano-Transduction from the β3 Integrin-Talin-Kindlin Axis. Front Cell Dev Biol 2022; 10:852016. [PMID: 35450290 PMCID: PMC9016114 DOI: 10.3389/fcell.2022.852016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 01/11/2023] Open
Abstract
Focal adhesions are specialized integrin-dependent adhesion complexes, which ensure cell anchoring to the extracellular matrix. Focal adhesions also function as mechano-signaling platforms by perceiving and integrating diverse physical and (bio)chemical cues of their microenvironment, and by transducing them into intracellular signaling for the control of cell behavior. The fundamental biological mechanism of creating intracellular signaling in response to changes in tensional forces appears to be tightly linked to paxillin recruitment and binding to focal adhesions. Interestingly, the tension-dependent nature of the paxillin binding to adhesions, combined with its scaffolding function, suggests a major role of this protein in integrating multiple signals from the microenvironment, and accordingly activating diverse molecular responses. This minireview offers an overview of the molecular bases of the mechano-sensitivity and mechano-signaling capacity of core focal adhesion proteins, and highlights the role of paxillin as a key component of the mechano-transducing machinery based on the interaction of cells to substrates activating the β3 integrin-talin1-kindlin.
Collapse
Affiliation(s)
- Marta Ripamonti
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milano, Italy
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Ivan de Curtis
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milano, Italy
- *Correspondence: Ivan de Curtis,
| |
Collapse
|
42
|
Pomella S, Cassandri M, Braghini MR, Marampon F, Alisi A, Rota R. New Insights on the Nuclear Functions and Targeting of FAK in Cancer. Int J Mol Sci 2022; 23:ijms23041998. [PMID: 35216114 PMCID: PMC8874710 DOI: 10.3390/ijms23041998] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase over-expressed and activated in both adult and pediatric cancers, where it plays important roles in the regulation of pathogenesis and progression of the malignant phenotype. FAK exerts its functions in cancer by two different ways: a kinase activity in the cytoplasm, mainly dependent on the integrin signaling, and a scaffolding activity into the nucleus by networking with different gene expression regulators. For this reason, FAK has to be considered a target with high therapeutic values. Indeed, evidence suggests that FAK targeting could be effective, either alone or in combination, with other already available treatments. Here, we propose an overview of the novel insights about FAK’s structure and nuclear functions, with a special focus on the recent findings concerning the roles of this protein in cancer. Additionally, we provide a recent update on FAK inhibitors that are currently in clinical trials for patients with cancer, and discuss the challenge and future directions of drug-based anti-FAK targeted therapies.
Collapse
Affiliation(s)
- Silvia Pomella
- Department of Oncohematology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (M.C.)
| | - Matteo Cassandri
- Department of Oncohematology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (M.C.)
- Department of Radiotherapy, Policlinico Umberto I, Sapienza University of Rome, 00185 Rome, Italy;
| | - Maria Rita Braghini
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Francesco Marampon
- Department of Radiotherapy, Policlinico Umberto I, Sapienza University of Rome, 00185 Rome, Italy;
| | - Anna Alisi
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
- Correspondence: (A.A.); (R.R.); Tel.: +39-06-68592186 (A.A.); +39-06-68592648 (R.R.)
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (M.C.)
- Correspondence: (A.A.); (R.R.); Tel.: +39-06-68592186 (A.A.); +39-06-68592648 (R.R.)
| |
Collapse
|