1
|
García-Beltrán JM, Johnstone C, Arizcun M, Cuesta A, Pérez M, Chaves-Pozo E. The susceptibility of shi drum juveniles to betanodavirus increases with rearing densities in a process mediated by neuroactive ligand-receptor interaction. Front Immunol 2024; 15:1304603. [PMID: 38933269 PMCID: PMC11200141 DOI: 10.3389/fimmu.2024.1304603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Nervous necrosis virus (NNV) is one of the greatest threats to Mediterranean aquaculture, infecting more than 170 fish species and causing mortalities up to 100% in larvae and juveniles of susceptible species. Intensive aquaculture implies stressed conditions that affect the welfare of fish and their ability to fight against infections. In fact, a higher susceptibility to NNV has been related to poor welfare conditions. In order to analyze the physiological link between stressed conditions and increased susceptibility to NNV, as well as its possible role in the pathogenesis of this disease, we reared shi drum (Umbrina cirrosa) juveniles (30.7 ± 3.10 g body weight), which are expected to be asymptomatic upon NNV infection, at three stocking densities (2, 15, and 30 kg/m3) for 27 days and subsequently challenged them with NNV. We firstly characterized the stressed conditions of the specimens before and after infection and recorded the mortalities, demonstrating that stressed specimens reared at 30 kg/m3 suffered mortalities. However, the viral loads in different tissues were similar in all experimental groups, allowing horizontal and vertical transmission of the virus from asymptomatic specimens. All of these data suggest that shi drum tolerates wide ranges of culture densities, although high densities might be a setback for controlling NNV outbreaks in this species. In an attempt to understand the molecular pathways orchestrating this susceptibility change in stressed conditions, we performed a transcriptomic analysis of four tissues under mock- and NNV-infected conditions. In addition to the modification of the exceptive pathways such as cell adhesion, leukocyte migration, cytokine interaction, cell proliferation and survival, and autophagy, we also observed a heavy alteration of the neuroactive ligand-receptor pathway in three of the four tissues analyzed. Our data also point to some of the receptors of this pathway as potential candidates for future pharmacological treatment to avoid the exacerbated immune response that could trigger fish mortalities upon NNV infection.
Collapse
Affiliation(s)
- José María García-Beltrán
- Physiology and Welfare of Marine Species Group (PHYSIS), Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), Consejo Superior de Investigaciones Científicas (CSIC), Murcia, Spain
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Carolina Johnstone
- Physiology and Welfare of Marine Species Group (PHYSIS), Centro Oceanográfico de Málaga, Instituto Español de Oceanografía (COMA-IEO), Consejo Superior de Investigaciones Científicas (CSIC), Málaga, Spain
| | - Marta Arizcun
- Physiology and Welfare of Marine Species Group (PHYSIS), Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), Consejo Superior de Investigaciones Científicas (CSIC), Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Montse Pérez
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (COV-IEO), Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain
| | - Elena Chaves-Pozo
- Physiology and Welfare of Marine Species Group (PHYSIS), Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), Consejo Superior de Investigaciones Científicas (CSIC), Murcia, Spain
| |
Collapse
|
2
|
Yue GH, Tay YX, Wong J, Shen Y, Xia J. Aquaculture species diversification in China. AQUACULTURE AND FISHERIES 2023. [DOI: 10.1016/j.aaf.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
3
|
Bashar A, Heal RD, Hasan NA, Salam MA, Haque MM. COVID-19 impacts on the Bangladesh shrimp industry: A sequential survey-based case study from southwestern Bangladesh. FISHERIES SCIENCE : FS 2022; 88:767-786. [PMID: 36187420 PMCID: PMC9510452 DOI: 10.1007/s12562-022-01630-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
Shrimp farming is fundamental to the national economy of Bangladesh, particularly through earning foreign currency. The nationwide lockdown and international cargo restriction jeopardized the sector and breaking its marketing chain. Assessing the degree of farming socio-economic peril from COVID-19 and suggesting early coping strategies and long-term mitigation measures are pressing to build resilience for this food production sector. To collect survey data, two key-informant face-to-face surveys with 51 shrimp farmers and 62 consumers in southwest Bangladesh were accomplished. As national lockdowns restricted access to export markets and movements within the country, farm incomes decreased against rising production costs. To compensate, farmers reduced their workforce (29.4%), but even with the sale of co-cultured finfish still suffered from large drops in revenue (42.8% average profit reduction). Furthermore, we present evidence that shrimp farmers should consider diversification of aquaculture product type as co-culture of additional shrimp species was a poor mitigation strategy against large market price fluctuations. Product price reductions were passed on to the consumer, who enjoyed falling product prices including more expensive shrimp products, but the markup for nearly all aquaculture products increased. The current jeopardy and consequences of shrimp farming future are discussed, including coping strategies to help policymakers in building resilience against future uncertainties. Supplementary Information The online version contains supplementary material available at 10.1007/s12562-022-01630-0.
Collapse
Affiliation(s)
- Abul Bashar
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Richard D. Heal
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, UK
| | - Neaz A. Hasan
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md. Abdus Salam
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Mahfujul Haque
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Centre for Sustainable Aquaculture Futures, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
4
|
Kim DY, Shinde SK, Kadam AA, Saratale RG, Saratale GD, Kumar M, Syed A, Bahkali AH, Ghodake GS. Retraction: Kim et al. Advantage of Species Diversification to Facilitate Sustainable Development of Aquaculture Sector. Biology 2022, 11, 368. BIOLOGY 2022; 11:509. [PMID: 35383738 PMCID: PMC8985415 DOI: 10.3390/biology11040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022]
Abstract
Biology retracts the article "Advantage of Species Diversification to Facilitate Sustainable Development of Aquaculture Sector" cited above [...].
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea
| | - Surendra Krushna Shinde
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea
| | - Avinash Ashok Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea
| | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea
| |
Collapse
|