1
|
Tewari N, Dey P. Navigating commensal dysbiosis: Gastrointestinal host-pathogen interplay orchestrating opportunistic infections. Microbiol Res 2024; 286:127832. [PMID: 39013300 DOI: 10.1016/j.micres.2024.127832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
The gut commensals, which are usually symbiotic or non-harmful bacteria that live in the gastrointestinal tract, have a positive impact on the health of the host. This review, however, specifically discuss distinct conditions where commensals aid in the development of pathogenic opportunistic infections. We discuss that the categorization of gut bacteria as either pathogens or non-pathogens depends on certain circumstances, which are significantly affected by the tissue microenvironment and the dynamic host-microbe interaction. Under favorable circumstances, commensals have the ability to transform into opportunistic pathobionts by undergoing overgrowth. These conditions include changes in the host's physiology, simultaneous infection with other pathogens, effective utilization of nutrients, interactions between different species of bacteria, the formation of protective biofilms, genetic mutations that enhance pathogenicity, acquisition of genes associated with virulence, and the ability to avoid the host's immune response. These processes allow commensals to both initiate infections themselves and aid other pathogens in populating the host. This review highlights the need of having a detailed and sophisticated knowledge of the two-sided nature of gut commensals. Although commensals mostly promote health, they may also become harmful in certain changes in the environment or the body's functioning. This highlights the need of acknowledging the intricate equilibrium in interactions between hosts and microbes, which is crucial for preserving intestinal homeostasis and averting diseases. Finally, we also emphasize the further need of research to better understand and anticipate the behavior of gut commensals in different situations, since they play a crucial and varied role in human health and disease.
Collapse
Affiliation(s)
- Nisha Tewari
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India.
| |
Collapse
|
2
|
Li Q, Liu D, Liang M, Zhu Y, Yousaf M, Wu Y. Mechanism of probiotics in the intervention of colorectal cancer: a review. World J Microbiol Biotechnol 2024; 40:306. [PMID: 39160377 DOI: 10.1007/s11274-024-04112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
The human microbiome interacts with the host mainly in the intestinal lumen, where putrefactive bacteria are suggested to promote colorectal cancer (CRC). In contrast, probiotics and their isolated components and secreted substances, display anti-tumor properties due to their ability to modulate gut microbiota composition, promote apoptosis, enhance immunity, resist oxidation and alter metabolism. Probiotics help to form a solid intestinal barrier against damaging agents via altering the gut microbiota and preventing harmful microbes from colonization. Probiotic strains that specifically target essential proteins involved in the process of apoptosis can overcome CRC resistance to apoptosis. They can increase the production of anti-inflammatory cytokines, essential in preventing carcinogenesis, and eliminate cancer cells by activating T cell-mediated immune responses. There is a clear indication that probiotics optimize the antioxidant system, decrease radical generation, and detect and degrade potential carcinogens. In this review, the pathogenic mechanisms of pathogens in CRC and the recent insights into the mechanism of probiotics in CRC prevention and therapy are discussed to provide a reference for the actual application of probiotics in CRC.
Collapse
Affiliation(s)
- Qinqin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Dongmei Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Minghua Liang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yichao Zhu
- Laboratory of Cell Engineering, Research Unit of Cell Death Mechanism, Beijing Institute of Biotechnology, Chinese Academy of Medical Sciences (2021RU008), Beijing, 100071, China
| | - Muhammad Yousaf
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yaping Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
3
|
Wu-Chuang A, Mateos-Hernandez L, Abuin-Denis L, Maitre A, Avellanet J, García A, Fuentes D, Cabezas-Cruz A. Exploring the impact of breast cancer on colonization resistance of mouse microbiota using network node manipulation. Heliyon 2024; 10:e30914. [PMID: 38784541 PMCID: PMC11112314 DOI: 10.1016/j.heliyon.2024.e30914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer, a global health concern affecting women, has been linked to alterations in the gut microbiota, impacting various aspects of human health. This study investigates the interplay between breast cancer and the gut microbiome, particularly focusing on colonization resistance-an essential feature of the microbiota's ability to prevent pathogenic overgrowth. Using a mouse model of breast cancer, we employ diversity analysis, co-occurrence network analysis, and robustness tests to elucidate the impact of breast cancer on microbiome dynamics. Our results reveal that breast cancer exposure affects the bacterial community's composition and structure, with temporal dynamics playing a role. Network analysis demonstrates that breast cancer disrupts microbial interactions and decreases network complexity, potentially compromising colonization resistance. Moreover, network robustness analysis shows the susceptibility of the microbiota to node removal, indicating potential vulnerability to pathogenic colonization. Additionally, predicted metabolic profiling of the microbiome highlights the significance of the enzyme EC 6.2.1.2 - Butyrate--CoA ligase, potentially increasing butyrate, and balancing the reduction of colonization resistance. The identification of Rubrobacter as a key contributor to this enzyme suggests its role in shaping the microbiota's response to breast cancer. This study uncovers the intricate relationship between breast cancer, the gut microbiome, and colonization resistance, providing insights into potential therapeutic strategies and diagnostic approaches for breast cancer patients.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Lourdes Mateos-Hernandez
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Lianet Abuin-Denis
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 between 158 and 190, P.O. Box 6162, 10600, Havana, Cuba
| | - Apolline Maitre
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Janet Avellanet
- Center of Molecular Immunology (CIM), Calle 15 esq. 216, Atabey, Playa, Havana, Cuba
| | - Arlem García
- Center of Molecular Immunology (CIM), Calle 15 esq. 216, Atabey, Playa, Havana, Cuba
| | - Dasha Fuentes
- National Center for Laboratory Animal Breeding (CENPALAB), Calle 3ra # 40759 entre 6ta y carretera de Tirabeque, Rpto La Unión, Boyeros, Havana, Cuba
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| |
Collapse
|
4
|
Yadav A, Kaushik M, Tiwari P, Dada R. From microbes to medicine: harnessing the gut microbiota to combat prostate cancer. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:187-197. [PMID: 38803512 PMCID: PMC11129862 DOI: 10.15698/mic2024.05.824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 05/29/2024]
Abstract
The gut microbiome (GM) has been identified as a crucial factor in the development and progression of various diseases, including cancer. In the case of prostate cancer, commensal bacteria and other microbes are found to be associated with its development. Recent studies have demonstrated that the human GM, including Bacteroides, Streptococcus, Bacteroides massiliensis, Faecalibacterium prausnitzii, Eubacterium rectale, and Mycoplasma genitalium, are involved in prostate cancer development through both direct and indirect interactions. However, the pathogenic mechanisms of these interactions are yet to be fully understood. Moreover, the microbiota influences systemic hormone levels and contributes to prostate cancer pathogenesis. Currently, it has been shown that supplementation of prebiotics or probiotics can modify the composition of GM and prevent the onset of prostate cancer. The microbiota can also affect drug metabolism and toxicity, which may improve the response to cancer treatment. The composition of the microbiome is crucial for therapeutic efficacy and a potential target for modulating treatment response. However, their clinical application is still limited. Additionally, GM-based cancer therapies face limitations due to the complexity and diversity of microbial composition, and the lack of standardized protocols for manipulating gut microbiota, such as optimal probiotic selection, treatment duration, and administration timing, hindering widespread use. Therefore, this review provides a comprehensive exploration of the GM's involvement in prostate cancer pathogenesis. We delve into the underlying mechanisms and discuss their potential implications for both therapeutic and diagnostic approaches in managing prostate cancer. Through this analysis, we offer valuable insights into the pivotal role of the microbiome in prostate cancer and its promising application in future clinical settings.
Collapse
Affiliation(s)
- Anjali Yadav
- Department of Anatomy, Institute of Medical Sciences (AIIMS)India.
| | | | - Prabhakar Tiwari
- Department of Anatomy, Institute of Medical Sciences (AIIMS)India.
| | - Rima Dada
- Department of Anatomy, Institute of Medical Sciences (AIIMS)India.
| |
Collapse
|
5
|
Dey P. Good girl goes bad: Understanding how gut commensals cause disease. Microb Pathog 2024; 190:106617. [PMID: 38492827 DOI: 10.1016/j.micpath.2024.106617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
This review examines the complex connection between commensal microbiota and the development of opportunistic infections. Several underlying conditions, such as metabolic diseases and weakened immune systems, increase the vulnerability of patients to opportunistic infections. The increasing antibiotic resistance adds significant complexity to the management of infectious diseases. Although commensals have long been considered beneficial, recent research contradicts this notion by uncovering chronic illnesses linked to atypical pathogens or commensal bacteria. This review examines conditions in which commensal bacteria, which are usually beneficial, contribute to developing diseases. Commensals' support for opportunistic infections can be categorized based on factors such as colonization fitness, pathoadaptive mutation, and evasion of host immune response. Individuals with weakened immune systems are especially susceptible, highlighting the importance of mucosal host-microbiota interaction in promoting infection when conditions are inappropriate. Dysregulation of gut microbial homeostasis, immunological modulation, and microbial interactions are caused by several factors that contribute to the development of chronic illnesses. Knowledge about these mechanisms is essential for developing preventive measures, particularly for susceptible populations, and emphasizes the importance of maintaining a balanced gut microbiota in reducing the impact of opportunistic infections.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India.
| |
Collapse
|
6
|
Pereira QC, Fortunato IM, Oliveira FDS, Alvarez MC, dos Santos TW, Ribeiro ML. Polyphenolic Compounds: Orchestrating Intestinal Microbiota Harmony during Aging. Nutrients 2024; 16:1066. [PMID: 38613099 PMCID: PMC11013902 DOI: 10.3390/nu16071066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
In the aging process, physiological decline occurs, posing a substantial threat to the physical and mental well-being of the elderly and contributing to the onset of age-related diseases. While traditional perspectives considered the maintenance of life as influenced by a myriad of factors, including environmental, genetic, epigenetic, and lifestyle elements such as exercise and diet, the pivotal role of symbiotic microorganisms had been understated. Presently, it is acknowledged that the intestinal microbiota plays a profound role in overall health by signaling to both the central and peripheral nervous systems, as well as other distant organs. Disruption in this bidirectional communication between bacteria and the host results in dysbiosis, fostering the development of various diseases, including neurological disorders, cardiovascular diseases, and cancer. This review aims to delve into the intricate biological mechanisms underpinning dysbiosis associated with aging and the clinical ramifications of such dysregulation. Furthermore, we aspire to explore bioactive compounds endowed with functional properties capable of modulating and restoring balance in this aging-related dysbiotic process through epigenetics alterations.
Collapse
Affiliation(s)
- Quélita Cristina Pereira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Isabela Monique Fortunato
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Fabricio de Sousa Oliveira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marisa Claudia Alvarez
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| |
Collapse
|
7
|
Sidhu D, Vasundhara M, Dey P. The intestinal-level metabolic benefits of green tea catechins: Mechanistic insights from pre-clinical and clinical studies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155207. [PMID: 38000106 DOI: 10.1016/j.phymed.2023.155207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND The intestinal-level host-microbiota interaction has been implicated in the pathogenesis of chronic diseases. The current review is intended to provide a comprehensive insight into deciphering whether intestinal-level bioactivities mediate the overall metabolic health benefits of green tea catechins. PURPOSE We have comprehensively discussed pre-clinical and clinical evidences of intestinal-level changes in metabolism, microbiota, and metabolome due to catechin-rich green tea treatments, ultimately limiting metabolic diseases. Exclusive emphasis has been given to purified catechins and green tea, and discussions on extraintestinal mechanisms of metabolic health benefits were avoided. METHODS A literature search for relevant pre-clinical and clinical studies was performed in various online databases (e.g., PubMed) using specific keywords (e.g., catechin, intestine, microbiota). Out of all the referred literature, ∼15% belonged to 2021-2023, ∼51% were from 2011-2020, and ∼32% from 2000-2010. RESULT The metabolic health benefits of green tea catechins are indeed influenced by the intestinal-level bioactivities, including reduction of mucosal inflammation and oxidative stress, attenuation of gut barrier dysfunction, decrease in intestinal lipid absorption and metabolism, favorable modulation of mucosal nuclear receptor signaling, alterations of the luminal global metabolome, and mitigation of the gut dysbiosis. The results from the recent clinical studies support the pre-clinical evidences. The challenges and pitfalls of the currently available knowledge on catechin bioactivities have been discussed, and constructive directions to harness the translational benefits of green tea through future interventions have been provided. CONCLUSION The metabolism, metabolome, and microbiota at the intestinal epithelia play critical roles in catechin metabolism, pharmacokinetics, bioavailability, and bioactivities. Especially the reciprocal interaction between the catechins and the gut microbiota dictates the metabolic benefits of catechins.
Collapse
Affiliation(s)
- Dwinder Sidhu
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, India
| | - M Vasundhara
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, India.
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, India.
| |
Collapse
|
8
|
Gupta U, Dey P. The oral microbial odyssey influencing chronic metabolic disease. Arch Physiol Biochem 2023:1-17. [PMID: 38145405 DOI: 10.1080/13813455.2023.2296346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/03/2023] [Indexed: 12/26/2023]
Abstract
INTRODUCTION Since the oral cavity is the gateway to the gut, oral microbes likely hold the potential to influence metabolic disease by affecting the gut microbiota. METHOD A thorough review of literature has been performed to link the alterations in oral microbiota with chronic metabolic disease by influencing the gut microbiota. RESULT A strong correlation exists between abnormalities in oral microbiota and several systemic disorders, such as cardiovascular disease, diabetes, and obesity, which likely initially manifest as oral diseases. Ensuring adequate oral hygiene practices and cultivating diverse oral microflora are crucial for the preservation of general well-being. Oral bacteria have the ability to establish and endure in the gastrointestinal tract, leading to the development of prolonged inflammation and activation of the immune system. Oral microbe-associated prophylactic strategies could be beneficial in mitigating metabolic diseases. CONCLUSION Oral microbiota can have a profound impact on the gut microbiota and influence the pathogenesis of metabolic diseases.
Collapse
Affiliation(s)
- Upasana Gupta
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| |
Collapse
|
9
|
Dey P, Ray Chaudhuri S. The opportunistic nature of gut commensal microbiota. Crit Rev Microbiol 2023; 49:739-763. [PMID: 36256871 DOI: 10.1080/1040841x.2022.2133987] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/30/2022] [Accepted: 10/05/2022] [Indexed: 11/03/2022]
Abstract
The abundance of gut commensals has historically been associated with health-promoting effects despite the fact that the definition of good or bad microbiota remains condition-specific. The beneficial or pathogenic nature of microbiota is generally dictated by the dimensions of host-microbiota and microbe-microbe interactions. With the increasing popularity of gut microbiota in human health and disease, emerging evidence suggests opportunistic infections promoted by those gut bacteria that are generally considered beneficial. Therefore, the current review deals with the opportunistic nature of the gut commensals and aims to summarise the concepts behind the occasional commensal-to-pathogenic transformation of the gut microbes. Specifically, relevant clinical and experimental studies have been discussed on the overgrowth and bacteraemia caused by commensals. Three key processes and their underlying mechanisms have been summarised to be responsible for the opportunistic nature of commensals, viz. improved colonisation fitness that is dictated by commensal-pathogen interactions and availability of preferred nutrients; pathoadaptive mutations that can trigger the commensal-to-pathogen transformation; and evasion of host immune response as a survival and proliferation strategy of the microbes. Collectively, this review provides an updated concept summary on the underlying mechanisms of disease causative events driven by gut commensal bacteria.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Saumya Ray Chaudhuri
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
10
|
Aldayel MF. Potential antibacterial and antioxidant inhibitory activities of Silybum marianum mediated biosynthesised He-Ne laser. Saudi J Biol Sci 2023; 30:103795. [PMID: 37692328 PMCID: PMC10492205 DOI: 10.1016/j.sjbs.2023.103795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023] Open
Abstract
A potentially beneficial method in laser irradiation is currently gaining popularity. The biosynthesis of low-power lasers has also been applied to the therapy of disease in biological tissues. This study used laser pre-treatments of Silybum marianum (S. marianum) fruit extract as a stabilising agent to bio-fabricate a low-power laser. The silybin A and silybin B of the S. marianum fruit, which are derived from seedlings before S. marianum undergoes therapy with an He-Ne laser at various intervals, were assessed for their expressive properties in this study. The findings revealed that 6-min laser pre-treatments increased silybin A + B and bacterial inhibition and improved the medicinal property of S. marianum. The analysis of the reaction records was performed using ultraviolet-visible spectroscopy. The minimum inhibitory concentration (MIC) limit for the sphere dispersion approach's antimicrobial effect on the microorganisms under investigation was 50 to 100 g/mL. With an IC50 of 0.69 mg/mL, the laser-treated S. marianum (6 min) demonstrated radical scavenging activity. At MIC concentration, the laser-treated S. marianum (6 min) did not exhibit cytotoxicity in the MCF-7 cell line. Additionally, Salmonella typhi, methicillin-resistant Staphylococcus aureus (MRSA), and E. coli were more susceptible to the antimicrobial effects of ethanolic fruit extract with a greater silybin level. It was observed that the laser-treated S. marianum (6 min) showed beneficial antioxidant and antibacterial properties and could be employed without risk in several medical applications.
Collapse
Affiliation(s)
- Munirah F. Aldayel
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
11
|
Gupta U, Dey P. Rise of the guardians: Gut microbial maneuvers in bacterial infections. Life Sci 2023; 330:121993. [PMID: 37536616 DOI: 10.1016/j.lfs.2023.121993] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
AIMS Bacterial infections are one of the major causes of mortality globally. The gut microbiota, primarily comprised of the commensals, performs an important role in maintaining intestinal immunometabolic homeostasis. The current review aims to provide a comprehensive understanding of how modulation of the gut microbiota influences opportunistic bacterial infections. MATERIALS AND METHODS Primarily centered around mechanisms related to colonization resistance, nutrient, and metabolite-associated factors, mucosal immune response, and commensal-pathogen reciprocal interactions, we discuss how gut microbiota can promote or prevent bacterial infections. KEY FINDINGS Opportunistic infections can occur directly due to obligate pathogens or indirectly due to the overgrowth of opportunistic pathobionts. Gut microbiota-centered mechanisms of altered intestinal immunometabolic and metabolomic homeostasis play a significant role in infection promotion and prevention. Depletion in the population of commensals, increased abundance of pathobionts, and overall decrease in gut microbial diversity and richness caused due to prolonged antibiotic use are risk factors of opportunistic bacterial infections, including infections from multidrug-resistant spp. Gut commensals can limit opportunistic infections by mechanisms including the production of antimicrobials, short-chain fatty acids, bile acid metabolism, promoting mucin formation, and maintaining immunological balance at the mucosa. Gut microbiota-centered strategies, including the administration of probiotics and fecal microbiota transplantation, could help attenuate opportunistic bacterial infections. SIGNIFICANCE The current review discussed the gut microbial population and function-specific aspects contributing to bacterial infection susceptibility and prophylaxis. Collectively, this review provides a comprehensive understanding of the mechanisms related to the dual role of gut microbiota in bacterial infections.
Collapse
Affiliation(s)
- Upasana Gupta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India.
| |
Collapse
|
12
|
Rezgui R, Walia R, Sharma J, Sidhu D, Alshagadali K, Ray Chaudhuri S, Saeed A, Dey P. Chemically Defined Lactobacillus plantarum Cell-Free Metabolites Demonstrate Cytoprotection in HepG2 Cells through Nrf2-Dependent Mechanism. Antioxidants (Basel) 2023; 12:antiox12040930. [PMID: 37107305 PMCID: PMC10136174 DOI: 10.3390/antiox12040930] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Centering around the concept that metabolites from the gut commensals can exert metabolic health benefits along the gut-liver axis, we tested whether the cell-free global metabolome of probiotic bacteria can exert hepatoprotective benefits against H2O2-induced oxidative stress. Cell-free global metabolites of Lactobacillus plantarum (LPM) were isolated and untargeted metabolomics was performed. The free radical scavenging potentials of LPM were measured. The cytoprotective effects of LPM were tested on HepG2 cells. A total of 66 diverse metabolites were identified in LPM, among which saturated fatty acids, amino acids and dicarboxylic acids were highly enriched. LPM attenuated cell damage, lipid peroxidation and the levels of intracellular cytoprotective enzymes in H2O2-treated cells. LPM also attenuated H2O2-induced increased expressions of TNF-α and IL-6. However, the cytoprotective effects of LPM were diminished in cells that were pretreated with a pharmacological inhibitor of Nrf2. Our data collectively indicate that LPM can significantly attenuate oxidative damage to HepG2 cells. However, the cytoprotective effects of LPM likely depend on an Nrf2-dependent mechanism.
Collapse
Affiliation(s)
- Raja Rezgui
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 55473, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
| | - Ruhi Walia
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Jyoti Sharma
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Dwinder Sidhu
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Khalid Alshagadali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 55473, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
| | - Saumya Ray Chaudhuri
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh 160036, India
| | - Amir Saeed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 55473, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Medical Sciences & Technology, Khartoum 12810, Sudan
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| |
Collapse
|
13
|
Sharma R, Singh S, Tewari N, Dey P. A toxic shrub turned therapeutic: The dichotomy of Nerium oleander bioactivities. Toxicon 2023; 224:107047. [PMID: 36706925 DOI: 10.1016/j.toxicon.2023.107047] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Nerium oleander L. is a medicinal plant, used for the treatment of cancers and hyperglycemia across the world, especially in Indian sub-continent, Turkey, Morocco, and China. Although clinical studies supporting its pharmacological effects remain critically underexplored, accidental and intentional consumption of any part of the plant causes fatal toxicity in animals and humans. While the polyphenolic fraction of oleander leaves has been attributed to its pre-clinical pharmacological activities, the presence of diverse cardiac glycosides (especially oleandrin) causes apoptosis to cancer cells in vitro and results in clinical signs of oleander poisoning. Thus, the dual pharmacological and toxicological role of oleander is a perplexing dichotomy in phytotherapy. The current investigative review, therefore, intended to analyze the intrinsic and extrinsic factors that likely contribute to this conundrum. Especially by focusing on gut microbial diversity, abundance, and metabolic functions, oleander-associated pharmacological and toxicological studies have been critically analyzed to define the dual effects of oleander. Electronic databases were extensively screened for relevant research articles (including pre-clinical and clinical) related to oleander bioactivities and toxicity. Taxonomic preference was given to the plant N. oleander L. and synonymous plants as per 'The World Flora Online' database (WCSP record #135196). Discussion on yellow oleander (Cascabela thevetia (L.) Lippold) has intentionally been avoided since it is a different plant. The review indicates that the gut microbiota likely plays a key role in differentially modulating the pharmacological and toxicological effects of oleander. Other factors identified influencing the oleander bioactivities include dose and mode of treatment, cardiac glycoside pharmacokinetics, host-endogenous glycosides, plant material processing and phytochemical extraction methods, plant genotypic variations, environmental effects on the phytochemical quality and quantity, gene expression variations, host dietary patterns and co-morbidity, etc. The arguments proposed are also relevant to other medicinal plants containing toxic cardiac glycosides.
Collapse
Affiliation(s)
- Rajat Sharma
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| | - Swati Singh
- Department of Zoology, University of North Bengal, Siliguri, West Bengal, India.
| | - Nisha Tewari
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| |
Collapse
|
14
|
Xiong HH, Lin SY, Chen LL, Ouyang KH, Wang WJ. The Interaction between Flavonoids and Intestinal Microbes: A Review. Foods 2023; 12:foods12020320. [PMID: 36673411 PMCID: PMC9857828 DOI: 10.3390/foods12020320] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
In recent years, research on the interaction between flavonoids and intestinal microbes have prompted a rash of food science, nutriology and biomedicine, complying with future research trends. The gut microbiota plays an essential role in the maintenance of intestinal homeostasis and human health, but once the intestinal flora dysregulation occurs, it may contribute to various diseases. Flavonoids have shown a variety of physiological activities, and are metabolized or biotransformed by gut microbiota, thereby producing new metabolites that promote human health by modulating the composition and structure of intestinal flora. Herein, this review demonstrates the key notion of flavonoids as well as intestinal microbiota and dysbiosis, aiming to provide a comprehensive understanding about how flavonoids regulate the diseases by gut microbiota. Emphasis is placed on the microbiota-flavonoid bidirectional interaction that affects the metabolic fate of flavonoids and their metabolites, thereby influencing their metabolic mechanism, biotransformation, bioavailability and bioactivity. Potentially by focusing on the abundance and diversity of gut microbiota as well as their metabolites such as bile acids, we discuss the influence mechanism of flavonoids on intestinal microbiota by protecting the intestinal barrier function and immune system. Additionally, the microbiota-flavonoid bidirectional interaction plays a crucial role in regulating various diseases. We explain the underlying regulation mechanism of several typical diseases including gastrointestinal diseases, obesity, diabetes and cancer, aiming to provide a theoretical basis and guideline for the promotion of gastrointestinal health as well as the treatment of diseases.
Collapse
Affiliation(s)
- Hui-Hui Xiong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Su-Yun Lin
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ling-Li Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ke-Hui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wen-Jun Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence: ; Tel.: +86-791-83813655
| |
Collapse
|
15
|
Kaur N, Dey P. Bacterial Exopolysaccharides as Emerging Bioactive Macromolecules: From Fundamentals to Applications. Res Microbiol 2022; 174:104024. [PMID: 36587857 DOI: 10.1016/j.resmic.2022.104024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Microbial exopolysaccharides (EPS) are extracellular carbohydrate polymers forming capsules or slimy coating around the cells. EPS can be secreted by various bacterial genera that can help bacterial cells in attachment, environmental adaptation, stress tolerance and are an integral part of microbial biofilms. Several gut commensals (e.g., Lactobacillus, Bifidobacterium) produce EPS that possess diverse bioactivities. Bacterial EPS also has extensive commercial applications in the pharmaceutical and food industries. Owing to the structural and functional diversity, genetic and metabolic engineering strategies are currently employed to increase EPS production. Therefore, the current review provides a comprehensive overview of the fundamentals of bacterial exopolysaccharides, including their classification, source, biosynthetic pathways, and functions in the microbial community. The review also provides an overview of the diverse bioactivities of microbial EPS, including immunomodulatory, anti-diabetic, anti-obesity, and anti-cancer properties. Since several gut microbes are EPS producers and gut microbiota helps maintain a functional gut barrier, emphasis has been given to the intestinal-level bioactivities of the gut microbial EPS. Collectively, the review provides a comprehensive overview of microbial bioactive exopolysaccharides.
Collapse
Affiliation(s)
- Navneet Kaur
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| |
Collapse
|
16
|
Gut Microbiota and Therapy in Metastatic Melanoma: Focus on MAPK Pathway Inhibition. Int J Mol Sci 2022; 23:ijms231911990. [PMID: 36233289 PMCID: PMC9569448 DOI: 10.3390/ijms231911990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Gut microbiome (GM) and its either pro-tumorigenic or anti-tumorigenic role is intriguing and constitutes an evolving landscape in translational oncology. It has been suggested that these microorganisms may be involved in carcinogenesis, cancer treatment response and resistance, as well as predisposition to adverse effects. In melanoma patients, one of the most immunogenic cancers, immune checkpoint inhibitors (ICI) and MAPK-targeted therapy—BRAF/MEK inhibitors—have revolutionized prognosis, and the study of the microbiome as a modulating factor is thus appealing. Although BRAF/MEK inhibitors constitute one of the main backbones of treatment in melanoma, little is known about their impact on GM and how this might correlate with immune re-induction. On the contrary, ICI and their relationship to GM has become an interesting field of research due to the already-known impact of immunotherapy in modulating the immune system. Immune reprogramming in the tumor microenvironment has been established as one of the main targets of microbiome, since it can induce immunosuppressive phenotypes, promote inflammatory responses or conduct anti-tumor responses. As a result, ongoing clinical trials are evaluating the role of fecal microbiota transplant (FMT), as well as the impact of using dietary supplements, antibiotics and probiotics in the prediction of response to therapy. In this review, we provide an overview of GM’s link to cancer, its relationship with the immune system and how this may impact response to treatments in melanoma patients. We also discuss insights about novel therapeutic approaches including FMT, changes in diet and use of probiotics, prebiotics and symbiotics. Finally, we hypothesize on the possible pathways through which GM may impact anti-tumor efficacy in melanoma patients treated with targeted therapy, an appealing subject of which little is known.
Collapse
|