1
|
Rozas-Serri M, Kani T, Jaramillo V, Correa R, Ildefonso R, Rabascall C, Barrientos S, Coñuecar D, Peña A. Current vaccination strategy against Piscirickettsia salmonis in Chile based only on the EM-90 genogroup shows incomplete cross-protection for the LF-89 genogroup. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109893. [PMID: 39260531 DOI: 10.1016/j.fsi.2024.109893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Piscirickettsia salmonis, the primary bacterial disease in Chilean salmon farming, necessitates a constant refinement of control strategies. This study hypothesized that the current vaccination strategy for SRS control in the Chilean Atlantic salmon aquaculture industry, which has been in place since 2017 (ALPHA JECT® 5.1 plus LiVac®), solely relies on vaccines formulated with the EM-90 genogroup of P. salmonis (PS-EM-90), triggering a partial cross-immunity response in fish infected with the LF-89 genogroup (PS-LF-89). Relative Percent Survival (RPS) and cell-mediated immune (CMI) response were evaluated in Atlantic salmon post-smolts vaccinated with the standard vaccination strategy but challenged with both PS-EM-90 and PS-LF-89, in addition to other vaccination strategies considering primo vaccination and booster with other commercial vaccines and the possible enhancing effects of the combination with a natural immunomodulator (PAQ-Xtract®) administered orally. The intraperitoneal (I.P.) challenge was performed after 2395°-days (DD) after the start of the immunostimulant delivery, 1905 DD after the primo vaccination, and 1455 DD after the booster vaccination. Unvaccinated fish showed 73.6 and 41.7 % mortality when challenged with PS-EM-90 and PS-LF-89, respectively. Fish infected with PS-LF-89 died significantly faster (21 days post-infection, dpi) than fish challenged with PS-EM-90 (28 dpi) (p = 0.0043) and had a higher probability of death (0.4626) than fish challenged with PS-EM-90. RPS had a significant positive correlation with the PS-EM-90 load of the P. salmonis genogroup (r = 0.540, p < 0.01) but not with the PS-LF-89 load (r = 0.155, p > 0.05). This demonstrated that the immunization strategies were more effective in lowering PS-EM-90 loads, resulting in higher survival rates in fish challenged with PS-EM-90. The current industry vaccination strategy recorded a 100 % RPS when fish were challenged with PS-EM-90, but the RPS dropped significantly to 77 % when fish were challenged with PS-LF-89, meaning that the strategy did not show complete cross-protection. But after adding PAQ-Xtract®, the RPS improved from 77 % to 92 % in fish that were vaccinated with the standard method but then challenged with PS-LF-89. The most effective vaccination strategy was based on LiVac® as primo vaccination and ALPHA JECT® 5.1 plus LiVac® as booster vaccination, with or without PAQ-Xtract®, in both PS-EM-90 (100 %) and PS-LF-89 (96 %) challenged fish. The serum concentration of anti-P. salmonis IgM did not show a correlation with the protection of immunization strategies expressed in survival. Low serum IL-12 and high serum IFNγ concentrations showed a correlation with higher bacterial loads and lower survival. Aggregate analysis showed a significant correlation between higher numbers of CD8+ cells in the head-kidney, higher fish survival, and a lower bacterial load. The immunization strategies were safe for fish and induced only mild microscopic lesions in the gut. Taken together, our results help to better understand the biological interaction between P. salmonis and post-smolt vaccinated Atlantic salmon to deepen the knowledge on vaccine-induced protection, CMI immune response, and cross-immunity applied to improve the current immunization strategy for SRS control in the Chilean salmon industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Andrea Peña
- Pathovet Labs, Puerto Montt, Los Lagos, Chile
| |
Collapse
|
2
|
Kumar A, Middha SK, Menon SV, Paital B, Gokarn S, Nelli M, Rajanikanth RB, Chandra HM, Mugunthan SP, Kantwa SM, Usha T, Hati AK, Venkatesan D, Rajendran A, Behera TR, Venkatesamurthy S, Sahoo DK. Current Challenges of Vaccination in Fish Health Management. Animals (Basel) 2024; 14:2692. [PMID: 39335281 PMCID: PMC11429256 DOI: 10.3390/ani14182692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Vaccination is an essential method of immunological preventive care required for the health management of all animals, including fish. More particularly, immunization is necessary for in-land aquaculture to manage diseases in fish broodstocks and healthy seed production. According to the latest statistics in 2020, 90.3 million tons of capture fishery production was achieved from the aquaculture sector. Out of the above, 78.8 million tons were from marine water aquaculture sectors, and 11.5 million tons were from inland water aquaculture sectors. About a 4% decline in fish production was achieved in 2020 in comparison to 2018 from inland aquaculture sectors. On the other hand, the digestive protein content, healthy fats, and nutritional values of fish products are comparatively more affordable than in other meat sources. In 2014, about 10% of aquatic cultured animals were lost (costing global annual losses > USD 10 billion) due to infectious diseases. Therefore, vaccination in fish, especially in broodstocks, is one of the essential approaches to stop such losses in the aquaculture sector. Fish vaccines consist of whole-killed pathogens, protein subunits, recombinant proteins, DNA, or live-attenuated vaccines. Challenges persist in the adaption of vaccination in the aquaculture sector, the route of administration, the use of effective adjuvants, and, most importantly, the lack of effective results. The use of autogenous vaccines; vaccination via intramuscular, intraperitoneal, or oral routes; and, most importantly, adding vaccines in feed using top dressing methods or as a constituent in fish feed are now emerging. These methods will lower the risk of using antibiotics in cultured water by reducing environmental contamination.
Collapse
Affiliation(s)
- Avnish Kumar
- Department of Biotechnology, School of Life Sciences, Dr. Bhimrao Ambedkar University, Agra 282004, India
| | - Sushil Kumar Middha
- Department of Biotechnology, Maharani Lakshmi Ammanni College for Women, 18th Cross, Malleswaram, Bangalore 560012, India
| | - Soumya Vettiyatil Menon
- Department of Chemistry and Biochemistry, School of Sciences, Jain University, #34 JC Road, Bangalore 560027, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar 751003, India
| | - Shyam Gokarn
- Department of Chemistry and Biochemistry, School of Sciences, Jain University, #34 JC Road, Bangalore 560027, India
| | - Meghana Nelli
- Department of Chemistry and Biochemistry, School of Sciences, Jain University, #34 JC Road, Bangalore 560027, India
| | | | - Harish Mani Chandra
- Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, India
| | | | - Sanwar Mal Kantwa
- Department of Zoology, B. S. Memorial P.G. College, NH 52, Ranoli, Sikar 332403, India
| | - Talambedu Usha
- Department of Biochemistry, Maharani Lakshmi Ammanni College for Women, 18th Cross, Malleswaram, Bangalore 560012, India
| | - Akshaya Kumar Hati
- Dr. Abhin Chandra Homoeopathic Medical College and Hospital, Homeopathic College Rd., Unit 3, Kharvela Nagar, Bhubaneswar 751001, India
| | | | - Abira Rajendran
- Department of Chemistry and Biochemistry, School of Sciences, Jain University, #34 JC Road, Bangalore 560027, India
| | - Tapas Ranjan Behera
- Department of Community Medicine, Fakir Mohan Medical College and Hospital, Januganj Rd., Kalidaspur, Balia, Balasore 756019, India
| | - Swarupa Venkatesamurthy
- Department of Chemistry and Biochemistry, School of Sciences, Jain University, #34 JC Road, Bangalore 560027, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
3
|
Carril G, Morales-Lange B, Løvoll M, Inami M, Winther-Larsen HC, Øverland M, Sørum H. Salmonid Rickettsial Septicemia (SRS) disease dynamics and Atlantic salmon immune response to Piscirickettsia salmonis LF-89 and EM-90 co-infection. Vet Res 2024; 55:102. [PMID: 39152462 PMCID: PMC11328376 DOI: 10.1186/s13567-024-01356-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/27/2024] [Indexed: 08/19/2024] Open
Abstract
In Chile, Piscirickettsia salmonis contains two genetically isolated genogroups, LF-89 and EM-90. However, the impact of a potential co-infection with these two variants on Salmonid Rickettsial Septicemia (SRS) in Atlantic salmon (Salmo salar) remains largely unexplored. In our study, we evaluated the effect of P. salmonis LF-89-like and EM-90-like co-infection on post-smolt Atlantic salmon after an intraperitoneal challenge to compare changes in disease dynamics and host immune response. Co-infected fish had a significantly lower survival rate (24.1%) at 21 days post-challenge (dpc), compared with EM-90-like single-infected fish (40.3%). In contrast, all the LF-89-like single-infected fish survived. In addition, co-infected fish presented a higher presence of clinical lesions than any of the single-infected fish. The gene expression of salmon immune-related biomarkers evaluated in the head kidney, spleen, and liver showed that the EM-90-like isolate and the co-infection induced the up-regulation of cytokines (e.g., il-1β, ifnγ, il8, il10), antimicrobial peptides (hepdicin) and pattern recognition receptors (PRRs), such as TLR5s. Furthermore, in serum samples from EM-90-like and co-infected fish, an increase in the total IgM level was observed. Interestingly, specific IgM against P. salmonis showed greater detection of EM-90-like antigens in LF-89-like infected fish serum (cross-reaction). These data provide evidence that P. salmonis LF-89-like and EM-90-like interactions can modulate SRS disease dynamics in Atlantic salmon, causing a synergistic effect that increases the severity of the disease and the mortality rate of the fish. Overall, this study contributes to achieving a better understanding of P. salmonis population dynamics.
Collapse
Affiliation(s)
- Gabriela Carril
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Byron Morales-Lange
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1433, Ås, Norway.
| | | | | | - Hanne C Winther-Larsen
- Department of Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316, Oslo, Norway
| | - Margareth Øverland
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1433, Ås, Norway
| | - Henning Sørum
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432, Ås, Norway.
| |
Collapse
|
4
|
Parra M, Aldabaldetrecu M, Arce P, Soto-Aguilera S, Vargas R, Guerrero J, Tello M, Modak B. Oral administration of a new copper (I) complex with coumarin as ligand: modulation of the immune response and the composition of the intestinal microbiota in Onchorhynchus mykiss. Front Chem 2024; 12:1338614. [PMID: 38807978 PMCID: PMC11131136 DOI: 10.3389/fchem.2024.1338614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/08/2024] [Indexed: 05/30/2024] Open
Abstract
[Cu(NN1)2]ClO4 is a copper (I) complex, where NN1 is an imine ligand 6-((quinolin-2-ylmethylene) amino)-2H-chromen-2-one obtained by derivatization of natural compound coumarin, developed for the treatment of infectious diseases that affect salmonids. In previous research, we showed that the Cu(I) coordination complex possesses antibacterial activity against Flavobacterium psychrophilum, providing protection against this pathogen in rainbow trout during challenge assays (with an RPS of 50%). In the present study, the effects of administering [Cu(NN1)2]ClO4 to Oncorhynchus mykiss over a 60-days period were evaluated with regard to systemic immune response and its potential to alter intestinal microbiota composition. In O. mykiss, an immunostimulatory effect was evident at days 30 and 45 after administration, resulting in an increment of transcript levels of IFN-γ, IL-12, TNF-α, lysozyme and perforin. To determine whether these immunomodulatory effects correlated with changes in the intestinal microbiota, we analyzed the metagenome diversity by V4 16S rRNA sequencing. In O. mykiss, both [Cu(NN1)2]ClO4 and commercial antibiotic florfenicol had comparable effects at the phylum level, resulting in a predominance of proteobacteria and firmicutes. Nonetheless, at the genus level, florfenicol and [Cu(NN1)2]ClO4 complex exhibited distinct effects on the intestinal microbiota of O. mykiss. In conclusion, our findings demonstrate that [Cu(NN1)2]ClO4 is capable of stimulating the immune system at a systemic level, while inducing alterations in the composition of the intestinal microbiota in O. mykiss.
Collapse
Affiliation(s)
- Mick Parra
- Laboratory of Natural Products Chemistry, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
- Laboratory of Bacterial Metagenomic, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Maialen Aldabaldetrecu
- Laboratory of Coordination Compounds and Supramolecularity, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Pablo Arce
- Laboratory of Coordination Compounds and Supramolecularity, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Sarita Soto-Aguilera
- Laboratory of Bacterial Metagenomic, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Rodrigo Vargas
- Laboratory of Bacterial Metagenomic, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
- Aquaculture Production Unit, Universidad de Los Lagos, Osorno, Chile
| | - Juan Guerrero
- Laboratory of Coordination Compounds and Supramolecularity, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Mario Tello
- Laboratory of Bacterial Metagenomic, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Brenda Modak
- Laboratory of Natural Products Chemistry, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| |
Collapse
|
5
|
Olsen RH, Finne-Fridell F, Bordevik M, Nygaard A, Rajan B, Karlsen M. The Effect of an Attenuated Live Vaccine against Salmonid Rickettsial Septicemia in Atlantic Salmon ( Salmo salar) Is Highly Dependent on Water Temperature during Immunization. Vaccines (Basel) 2024; 12:416. [PMID: 38675798 PMCID: PMC11053689 DOI: 10.3390/vaccines12040416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Salmonid Rickettsial Septicemia (SRS), caused by the bacterium Piscirickettsia salmonis, is the main reason for antibiotic usage in the Chilean aquaculture industry. In 2016, a live attenuated vaccine (ALPHA JECT LiVac® SRS, PHARMAQ AS) was licensed in Chile and has been widely used in farmed salmonids since then. In experimental injection and cohabitation laboratory challenge models, we found that the vaccine is effective in protecting Atlantic salmon (Salmo salar) for at least 15 months against P. salmonis-induced mortality. However, the protection offered by the vaccine is sensitive to temperature during immunization. Fish vaccinated and immunized at 10 °C and above were well protected, but those immunized at 7 °C and 8 °C (the lower end of the temperature range commonly found in Chile) experienced a significant loss of protection. This temperature-dependent loss of effect correlated with the amount of vaccine-strain RNA detected in the liver the first week after vaccination and with in vitro growth curves, which failed to detect any growth at 8 °C. We found that good vaccine efficacy can be restored by exposing fish to 15 °C for the first five days after vaccination before lowering the temperature to 7 °C for the remaining immunization period. This suggests that maintaining the correct temperature during the first few days after vaccination is crucial for achieving a protective immune response with ALPHA JECT LiVac® SRS. Our results emphasize the importance of temperature control when vaccinating poikilothermic animals with live vaccines.
Collapse
Affiliation(s)
| | - Frode Finne-Fridell
- PHARMAQ AS, 0275 Oslo, Norway; (R.H.O.); (F.F.-F.); (M.B.); (A.N.); (B.R.)
- Pure Salmon Technology, 3241 Sandefjord, Norway
| | - Marianne Bordevik
- PHARMAQ AS, 0275 Oslo, Norway; (R.H.O.); (F.F.-F.); (M.B.); (A.N.); (B.R.)
| | - Anja Nygaard
- PHARMAQ AS, 0275 Oslo, Norway; (R.H.O.); (F.F.-F.); (M.B.); (A.N.); (B.R.)
| | - Binoy Rajan
- PHARMAQ AS, 0275 Oslo, Norway; (R.H.O.); (F.F.-F.); (M.B.); (A.N.); (B.R.)
| | - Marius Karlsen
- PHARMAQ AS, 0275 Oslo, Norway; (R.H.O.); (F.F.-F.); (M.B.); (A.N.); (B.R.)
| |
Collapse
|
6
|
Parra M, Aldabaldetrecu M, Arce P, Soto-Aguilera S, Vargas R, Guerrero J, Tello M, Modak B. [Cu(NN 1) 2]ClO 4, a Copper (I) Complex as an Antimicrobial Agent for the Treatment of Piscirickettsiosis in Atlantic Salmon. Int J Mol Sci 2024; 25:3700. [PMID: 38612511 PMCID: PMC11011784 DOI: 10.3390/ijms25073700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Piscirickettsia salmonis is the pathogen that most affects the salmon industry in Chile. Large quantities of antibiotics have been used to control it. In search of alternatives, we have developed [Cu(NN1)2]ClO4 where NN1 = 6-((quinolin-2-ylmethylene)amino)-2H-chromen-2-one. The antibacterial capacity of [Cu(NN1)2]ClO4 was determined. Subsequently, the effect of the administration of [Cu(NN1)2]ClO4 on the growth of S. salar, modulation of the immune system and the intestinal microbiota was studied. Finally, the ability to protect against a challenge with P. salmonis was evaluated. The results obtained showed that the compound has an MIC between 15 and 33.9 μg/mL in four isolates. On the other hand, the compound did not affect the growth of the fish; however, an increase in the transcript levels of IFN-γ, IL-12, IL-1β, CD4, lysozyme and perforin was observed in fish treated with 40 μg/g of fish. Furthermore, modulation of the intestinal microbiota was observed, increasing the genera of beneficial bacteria such as Lactobacillus and Bacillus as well as potential pathogens such as Vibrio and Piscirickettsia. Finally, the treatment increased survival in fish challenged with P. salmonis by more than 60%. These results demonstrate that the compound is capable of protecting fish against P. salmonis, probably by modulating the immune system and the composition of the intestinal microbiota.
Collapse
Affiliation(s)
- Mick Parra
- Laboratory of Natural Products Chemistry, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9160000, Chile;
- Laboratory of Bacterial Metagenomic, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9160000, Chile; (S.S.-A.); (R.V.)
| | - Maialen Aldabaldetrecu
- Laboratory of Coordination Compounds and Supramolecularity, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9160000, Chile; (M.A.); (P.A.); (J.G.)
| | - Pablo Arce
- Laboratory of Coordination Compounds and Supramolecularity, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9160000, Chile; (M.A.); (P.A.); (J.G.)
| | - Sarita Soto-Aguilera
- Laboratory of Bacterial Metagenomic, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9160000, Chile; (S.S.-A.); (R.V.)
| | - Rodrigo Vargas
- Laboratory of Bacterial Metagenomic, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9160000, Chile; (S.S.-A.); (R.V.)
- Aquaculture Production Unit, Universidad of Los Lagos, Osorno 5290000, Chile
| | - Juan Guerrero
- Laboratory of Coordination Compounds and Supramolecularity, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9160000, Chile; (M.A.); (P.A.); (J.G.)
| | - Mario Tello
- Laboratory of Bacterial Metagenomic, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9160000, Chile; (S.S.-A.); (R.V.)
| | - Brenda Modak
- Laboratory of Natural Products Chemistry, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9160000, Chile;
| |
Collapse
|
7
|
Jaramillo D, Busby BP, Bestbier M, Bennett P, Waddington Z. New Zealand rickettsia-like organism and Tenacibaculum maritimum vaccine efficacy study. JOURNAL OF FISH DISEASES 2024; 47:e13883. [PMID: 37975241 DOI: 10.1111/jfd.13883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
A cohort of Chinook salmon juveniles was vaccinated, with an autogenous bivalent vaccine against New Zealand RLOs (NZ-RLO1) and Tenacibaculum maritimum. A proportion of the cohort was not vaccinated to act as controls. At smoltification, the fish were challenged with NZ-RLO1, NZ-RLO2, or T. maritimum. We found that challenge with T. maritimum by immersion in (7.5 × 105 cfu/mL of water) did not yield any pathology. Challenge with RLOs produced clinical signs that were more or less severe depending on the challenge route, dose or vaccination status. Survival was significantly higher for vaccinated fish within the groups challenged with NZ-RLO1 by intraperitoneal injection with a relative percent survival (RPS) of 48.84%. Survival was not significantly different between vaccinated and non-vaccinated fish for groups challenged with NZ-RLO2 by intraperitoneal injection or by NZ-RLO1 by immersion. Yet, anecdotally the clinical disease presentation (manifesting as haemorrhagic, ulcerative skin lesions) was more severe for the non-vaccinated fish. This study demonstrates that autogenous vaccine against NZ-RLO is protective against severe disease and death by NZ-RLO1 challenge which warrants implementation and further evaluation under field conditions. Yet, this study also highlights the importance of the route of administration and dose when evaluating pathogenicity and vaccine efficacy.
Collapse
Affiliation(s)
- D Jaramillo
- Biosecurity New Zealand, Ministry for Primary Industries, Wellington, New Zealand
| | - B P Busby
- Animal Health Laboratory, Ministry for Primary Industries, Upper Hutt, New Zealand
| | - M Bestbier
- Animal Health Laboratory, Ministry for Primary Industries, Upper Hutt, New Zealand
| | - P Bennett
- Animal Health Laboratory, Ministry for Primary Industries, Upper Hutt, New Zealand
| | - Z Waddington
- New Zealand King Salmon Ltd, Picton, New Zealand
| |
Collapse
|
8
|
Campbell JH, Dang X, Rodríguez-Ramos T, Carpio Y, Estrada MP, Dixon B. The effect of PACAP administration on LPS-induced cytokine expression in the Atlantic salmon SHK-1 cell line. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 5:100116. [PMID: 37753327 PMCID: PMC10518582 DOI: 10.1016/j.fsirep.2023.100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 09/28/2023] Open
Abstract
Recent work has identified pituitary adenylate cyclase activating polypeptide (PACAP) as a potential antimicrobial and immune stimulating agent which may be suitable for use in aquaculture. However, its effects on teleost immunity are not well studied and may be significantly different than what has been observed in mammals. In this study we examined the effects of PACAP on the Atlantic salmon macrophage cell line SHK-1. PACAP was able to increase the expression of LPS-induced il-1β in at concentrations of 1 uM when administered 24h prior to LPS stimulation. Furthermore, concentrations as low as 40nM had an effect when administered both 24h prior and in tandem with LPS. PACAP was also capable of increasing the expression of il-1β and tnf-α in SHK-1 cells challenged with a low dose of heat-killed Flavobacterium columnare. We attempted to get a better understanding of the mechanism underlying this enhancement of il-1β expression by manipulating downstream signaling of PACAP with inhibitors of phosphodiesterase and phospholipase C activity. We found that inducing cAMP accumulation with phosphodiesterase inhibitors failed to recapitulate the effect of PACAP administration on LPS-mediated il-1β expression by PACAP, while use of a phospholipase C inhibitor caused a PACAP-like enhancement in LPS-mediated il-1β expression. Interestingly, the VPAC1 receptor inhibitor PG97-269, but not the PAC1 inhibitor max.d.4, also was capable of causing a PACAP-like enhancement in LPS-mediated il-1β expression. This suggests that fish do not utilize the PACAP receptors in the same manner as mammals, but that it still exerts an immunostimulatory effect that make it a good immunostimulant for use in aquaculture.
Collapse
Affiliation(s)
- James Hugh Campbell
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1
| | - Xiaoqing Dang
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1
| | - Tania Rodríguez-Ramos
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1
| | - Yamila Carpio
- Center for Genetic Engineering and Biotechnology, Avenida 31 No. 15802, Havana, Cuba
| | - Mario P. Estrada
- Center for Genetic Engineering and Biotechnology, Avenida 31 No. 15802, Havana, Cuba
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1
| |
Collapse
|
9
|
Carril G, Winther-Larsen HC, Løvoll M, Sørum H. Cohabitation of Piscirickettsia salmonis genogroups (LF-89 and EM-90): synergistic effect on growth dynamics. Front Cell Infect Microbiol 2023; 13:1253577. [PMID: 37953796 PMCID: PMC10634514 DOI: 10.3389/fcimb.2023.1253577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 11/14/2023] Open
Abstract
Piscirickettsia salmonis, the biological agent of Salmonid Rickettsial Septicemia (SRS), is a facultative intracellular bacterium that can be divided into two genogroups (LF-89 and EM-90) with different virulence levels and patterns. Studies have found co-infection of these genogroups in salmonid farms in Chile, but it is essential to assess whether this interaction within the host is related to virulence and changes in pathogen dynamics. In this study, we studied four isolates from EM-90 and one LF-89 isolate chosen based on their genomic differences. The aim was to evaluate how co-cultivation affects bacterial growth performance and virulence factor expression in Atlantic salmon (Salmo salar) in vitro and in vivo. In vitro results using FN2 medium, showed a similar growth curve between co-cultures of LF-89 and EM-90 compared to EM-90 monocultures. This was explained by the higher ratio of EM-90 to LF-89 in all co-cultures. When evaluating the expression of virulence factors, it was discovered that the luxR gene was expressed only in EM-90-like isolates and that there were significant differences between mono- and co-cultures for flaA and cheA, suggesting a response to cohabitation. Moreover, during in vivo co-cultures, transcriptomic analysis revealed an upregulation of transposases, flagellum-related genes (fliI and flgK), transporters, and permeases that could unveil novel virulence effectors used in the early infection process of P. salmonis. Thus, our work has shown that cohabitation of P. salmonis genogroups can modulate their behavior and virulence effector expression. These data can contribute to new strategies and approaches to improve the current health treatments against this salmonid pathogen.
Collapse
Affiliation(s)
- Gabriela Carril
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Hanne C. Winther-Larsen
- Department of Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | | | - Henning Sørum
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
10
|
Sánchez-Roncancio C, García B, Gallardo-Hidalgo J, Yáñez JM. GWAS on Imputed Whole-Genome Sequence Variants Reveal Genes Associated with Resistance to Piscirickettsia salmonis in Rainbow Trout ( Oncorhynchus mykiss). Genes (Basel) 2022; 14:114. [PMID: 36672855 PMCID: PMC9859203 DOI: 10.3390/genes14010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Genome-wide association studies (GWAS) allow the identification of associations between genetic variants and important phenotypes in domestic animals, including disease-resistance traits. Whole Genome Sequencing (WGS) data can help increase the resolution and statistical power of association mapping. Here, we conduced GWAS to asses he facultative intracellular bacterium Piscirickettsia salmonis, which affects farmed rainbow trout, Oncorhynchus mykiss, in Chile using imputed genotypes at the sequence level and searched for candidate genes located in genomic regions associated with the trait. A total of 2130 rainbow trout were intraperitoneally challenged with P. salmonis under controlled conditions and genotyped using a 57K single nucleotide polymorphism (SNP) panel. Genotype imputation was performed in all the genotyped animals using WGS data from 102 individuals. A total of 488,979 imputed WGS variants were available in the 2130 individuals after quality control. GWAS revealed genome-wide significant quantitative trait loci (QTL) in Omy02, Omy03, Omy25, Omy26 and Omy27 for time to death and in Omy26 for binary survival. Twenty-four (24) candidate genes associated with P. salmonis resistance were identified, which were mainly related to phagocytosis, innate immune response, inflammation, oxidative response, lipid metabolism and apoptotic process. Our results provide further knowledge on the genetic variants and genes associated with resistance to intracellular bacterial infection in rainbow trout.
Collapse
Affiliation(s)
- Charles Sánchez-Roncancio
- Doctorado en Acuicultura, Programa Cooperativo: Universidad de Chile. Universidad Católica del Norte. Pontificia Universidad Católica de Valparaíso, Chile
- Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago 8820808, Chile
| | - Baltasar García
- Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago 8820808, Chile
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago 8820808, Chile
| | - Jousepth Gallardo-Hidalgo
- Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago 8820808, Chile
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago 8820808, Chile
| | - José M. Yáñez
- Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago 8820808, Chile
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago 8820808, Chile
- Núcleo Milenio de Salmonidos Invasores Australes (INVASAL), Concepcion 4030000, Chile
| |
Collapse
|
11
|
Valenzuela-Aviles P, Torrealba D, Figueroa C, Mercado L, Dixon B, Conejeros P, Gallardo-Matus J. Why vaccines fail against Piscirickettsiosis in farmed salmon and trout and how to avoid it: A review. Front Immunol 2022; 13:1019404. [PMID: 36466828 PMCID: PMC9714679 DOI: 10.3389/fimmu.2022.1019404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/24/2022] [Indexed: 09/28/2023] Open
Abstract
Piscirickettsiosis is the most severe, persistent, and damaging disease that has affected the Chilean salmon industry since its origins in the 1980s. As a preventive strategy for this disease, different vaccines have been developed and used over the last 30 years. However, vaccinated salmon and trout frequently die in the sea cages and the use of antibiotics is still high demonstrating the low efficiency of the available vaccines. The reasons why the vaccines fail so often are still debated, but it could involve different extrinsic and intrinsic factors. Among the extrinsic factors, mainly associated with chronic stress, we can distinguish: 1) biotic including coinfection with sea lice, sealions attacks or harmful algal blooms; 2) abiotic including low oxygen or high temperature; and 3) farm-management factors including overcrowding or chemical delousing treatments. Among the intrinsic factors, we can distinguish: 1) fish-related factors including host's genetic variability (species, population and individual), sex or age; 2) pathogen-related factors including their variability and ability to evade host immune responses; and 3) vaccine-related factors including low immunogenicity and poor matches with the circulating pathogen strain. Based on the available evidence, in order to improve the development and the efficacy of vaccines against P. salmonis we recommend: a) Do not perform efficacy evaluations by intraperitoneal injection of pathogens because they generate an artificial protective immune response, instead cohabitation or immersion challenges must be used; b) Evaluate the diversity of pathogen strains in the field and ensure a good antigenic match with the vaccines; c) Investigate whether host genetic diversity could be improved, e.g. through selection, in favor of better and longer responses to vaccination; d) To reduce the stressful effects at the cage level, controlling the co-infection of pathogens and avoiding fish overcrowding. To date, we do not know the immunological mechanisms by which the vaccines against P. salmonis may or may not generate protection. More studies are required to identify what type of response, cellular or molecular, is required to develop effective vaccines.
Collapse
Affiliation(s)
- Paula Valenzuela-Aviles
- Laboratorio de Genética y Genómica Aplicada, Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Débora Torrealba
- Laboratorio de Genética y Genómica Aplicada, Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Carolina Figueroa
- Laboratorio de Genética y Genómica Aplicada, Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos en Organismos Acuáticos, Pontificia Universidad Católica de Valparaíso, Instituto de Biología, Valparaíso, Chile
| | - Brian Dixon
- Department of Biology, Faculty of Science, University of Waterloo, Waterloo, Canada
| | - Pablo Conejeros
- Centro de Investigación y Gestión de Recursos Naturales (CIGREN), Facultad de Ciencias, Instituto de Biología, Universidad de Valparaíso, Valparaíso, Chile
| | - José Gallardo-Matus
- Laboratorio de Genética y Genómica Aplicada, Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
12
|
Du Y, Hu X, Miao L, Chen J. Current status and development prospects of aquatic vaccines. Front Immunol 2022; 13:1040336. [PMID: 36439092 PMCID: PMC9684733 DOI: 10.3389/fimmu.2022.1040336] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Diseases are a significant impediment to aquaculture's sustainable and healthy growth. The aquaculture industry is suffering significant financial losses as a result of the worsening water quality and increasing frequency of aquatic disease outbreaks caused by the expansion of aquaculture. Drug control, immunoprophylaxis, ecologically integrated control, etc. are the principal control strategies for fish infections. For a long time, the prevention and control of aquatic diseases have mainly relied on the use of various antibiotics and chemical drugs. However, long-term use of chemical inputs not only increases pathogenic bacteria resistance but also damages the fish and aquaculture environments, resulting in drug residues in aquatic products, severely impeding the development of the aquaculture industry. The development and use of aquatic vaccines are the safest and most effective ways to prevent aquatic animal diseases and preserve the health and sustainability of aquaculture. To give references for the development and implementation of aquatic vaccines, this study reviews the development history, types, inoculation techniques, mechanisms of action, development prospects, and challenges encountered with aquatic vaccines.
Collapse
Affiliation(s)
- Yang Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoman Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Liang Miao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|