1
|
Zhang J, Yang W, Liu X, Su F, Wang G, Zhan S, Li Y. Iron hydroxyphosphate electro-Fenton catalyst for efficient removal of sulfamethoxazole and resource recycling into slow-release fertiliser ammonium ferrous phosphate. ENVIRONMENTAL RESEARCH 2024; 244:117908. [PMID: 38092238 DOI: 10.1016/j.envres.2023.117908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Although the electro-Fenton (EF) process is effective for wastewater treatment, recycling spent catalysts remain a major challenge. Therefore, we introduce a reuse strategy for spent catalysts where an iron hydroxyphosphate [Fe5(PO4)4(OH)3·2H2O] catalyst is utilized. Fe5(PO4)4(OH)3·2H2O obtained •OH and •O2- by activating in-situ produced H2O2, and the degradation rate of sulfamethoxazole reached 94.5% after 120 min and showed excellent stability (maintained above 90%) for 10 cycles. Finally, the used catalyst was converted into slow-release ammonium ferrous phosphate (NH4FePO4·H2O) fertiliser at a conversion rate of 85.6%. NH4FePO4·H2O significantly promoted plant and seed growth within 6 days, highlighting the contribution of the resource recycling of the spent catalyst. This study serves as a valuable reference for the efficient utilization of spent catalysts. This study successfully applied EF catalysts and explored the recycling of spent catalysts.
Collapse
Affiliation(s)
- Jinlong Zhang
- School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining, 810007, People's Republic of China; Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Wenjing Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xingyu Liu
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Fan Su
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, People's Republic of China
| | - Gang Wang
- School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining, 810007, People's Republic of China.
| | - Sihui Zhan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
2
|
Yang D, Bian X, Kim HS, Jin R, Gao F, Chen J, Ma J, Tang W, Zhang C, Sun H, Xie Y, Li Z, Kwak SS, Ma D. IbINV Positively Regulates Resistance to Black Rot Disease Caused by Ceratocystis fimbriata in Sweet Potato. Int J Mol Sci 2023; 24:16454. [PMID: 38003642 PMCID: PMC10671118 DOI: 10.3390/ijms242216454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Black rot disease, caused by Ceratocystis fimbriata Ellis & Halsted, severely affects both plant growth and post-harvest storage of sweet potatoes. Invertase (INV) enzymes play essential roles in hydrolyzing sucrose into glucose and fructose and participate in the regulation of plant defense responses. However, little is known about the functions of INV in the growth and responses to black rot disease in sweet potato. In this study, we identified and characterized an INV-like gene, named IbINV, from sweet potato. IbINV contained a pectin methylesterase-conserved domain. IbINV transcripts were most abundant in the stem and were significantly induced in response to C. fimbriata, salicylic acid, and jasmonic acid treatments. Overexpressing IbINV in sweet potato (OEV plants) led to vigorous growth and high resistance to black rot disease, while the down-regulation of IbINV by RNA interference (RiV plants) resulted in reduced plant growth and high sensitivity to black rot disease. Furthermore, OEV plants contained a decreased sucrose content and increased hexoses content, which might be responsible for the increased INV activities; not surprisingly, RiV plants showed the opposite effects. Taken together, these results indicate that IbINV positively regulates plant growth and black rot disease resistance in sweet potato, mainly by modulating sugar metabolism.
Collapse
Affiliation(s)
- Dongjing Yang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Xiaofeng Bian
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Republic of Korea;
| | - Rong Jin
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Fangyuan Gao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Jingwei Chen
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Jukui Ma
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Wei Tang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Chengling Zhang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Houjun Sun
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Yiping Xie
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| | - Zongyun Li
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China;
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Republic of Korea;
| | - Daifu Ma
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China; (D.Y.); (R.J.); (F.G.); (J.C.); (J.M.); (W.T.); (C.Z.); (H.S.); (Y.X.)
| |
Collapse
|
3
|
Lamaro GP, Tsehaye Y, Girma A, Vannini A, Fedeli R, Loppi S. Evaluation of Yield and Nutraceutical Traits of Orange-Fleshed Sweet Potato Storage Roots in Two Agro-Climatic Zones of Northern Ethiopia. PLANTS (BASEL, SWITZERLAND) 2023; 12:1319. [PMID: 36987006 PMCID: PMC10052921 DOI: 10.3390/plants12061319] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
This study evaluated the genotype by environment interactions in the yield and nutraceutical traits of the orange-fleshed sweet potato (OFSP) storage root in different agro-climatic zones of northern Ethiopia. Five OFSP genotypes were cultivated at three different locations following a randomized complete block design, and the yield, dry matter, beta-carotene, flavonoids, polyphenols, soluble sugars, starch, soluble proteins, and free radical scavenging activity were measured in the storage root. The results showed consistent variations in the nutritional traits of the OFSP storage root depending on both the genotype and the location, as well as on their interaction. Ininda, Gloria, and Amelia were the genotypes that provided the higher yield and dry matter, as well as the higher content of starch and beta-carotene; they also showed a high antioxidant power. These findings suggest that the studied genotypes have the potential to alleviate vitamin A deficiency. This study demonstrated a high possibility of sweet potato production for storage root yield in arid agro-climate regions with limited production inputs. Moreover, the results suggest that it is possible to enhance the yield, dry matter content, beta-carotene, starch, and polyphenols of the OFSP storage root through genotype selection.
Collapse
Affiliation(s)
- Gloria Peace Lamaro
- Institute of Climate and Society, Mekelle University, Mekelle P.O. Box 231, Ethiopia
| | - Yemane Tsehaye
- College of Dryland Agriculture and Natural Resources, Department of Dryland Crops and Horticultural Sciences, Mekelle University, Mekelle P.O. Box 231, Ethiopia
| | - Atkilt Girma
- Institute of Climate and Society, Mekelle University, Mekelle P.O. Box 231, Ethiopia
- College of Dryland Agriculture and Natural Resources, Department of Land Resources Management and Environmental Protection (LaRMEP), Mekelle University, Mekelle P.O. Box 231, Ethiopia
| | - Andrea Vannini
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy
| | - Riccardo Fedeli
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy
| | - Stefano Loppi
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80138 Napoli, Italy
| |
Collapse
|