1
|
Slavinska A, Kowalczyk M, Kirkliauskienė A, Vizuje G, Siedlecki P, Bikulčienė J, Tamošiūnienė K, Petrutienė A, Kuisiene N. Genetic characterization of Neisseria meningitidis isolates recovered from patients with invasive meningococcal disease in Lithuania. Front Cell Infect Microbiol 2024; 14:1432197. [PMID: 39469455 PMCID: PMC11513629 DOI: 10.3389/fcimb.2024.1432197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Neisseria meningitidis is a gram-negative bacterium responsible for life-threatening invasive infections known as invasive meningococcal disease and is associated with high fatality rates and serious lifelong disabilities among survivors. Methods This study aimed to characterize N. meningitidis isolates cultured from blood and cerebrospinal fluid collected between 2009 and 2021 in Lithuania, assess their genomic relationships with European strains, and evaluate the possibility of using a cost-effective method for strain characterization, thus improving the national molecular surveillance of invasive meningococcal disease. In total, 321 N. meningitidis isolates were collected and analyzed using multilocus restriction typing (MLRT). Amplification of the penA gene and restriction fragment length polymorphism analysis were performed to identify the modified penA genes. Based on the MLRT genotyping results, we selected 10 strains for additional analysis using whole-genome sequencing. The sequenced genomes were incorporated into a dataset of publicly available N. meningitidis genomes to evaluate genomic diversity and establish phylogenetic relationships within the Lithuanian and European circulating strains. Results We identified 83 different strains using MLRT genotyping. Genomic diversity of N. meningitidis genomes analysed revealed 21 different sequence types (STs) circulating in Lithuania. Among these, ST34 was the most prevalent. Notably, three isolates displayed unique combinations of seven housekeeping genes and were identified as novel STs: ST16969, ST16901, and ST16959. The analyzed strains were found to possess virulence factors not commonly found in N. meningitidis. Six distinct penA profiles were identified, each with different frequencies. In the present study, we also identified N. meningitidis strains with new penA, NEIS0123, NEIS1320, NEIS1525, NEIS1600, and NEIS1753 loci variants. In our study, using the cgMLST scheme, Minimum Spanning Tree (MST) analysis did not identify significant geographic relationships between Lithuanian N. meningitidis isolates and strains from Europe. Discussion Discussion: To our knowledge, this is the first study to employ whole genome sequencing (WGS) method for a comprehensive genetic characterization of invasive N. meningitidis isolates from Lithuania. This approach provides a more detailed and precise analysis of genomic relationships and diversity compared to prior studies relying on traditional molecular typing methods and antigen analysis.
Collapse
Affiliation(s)
- Anželika Slavinska
- Department of Microbiology and Biotechnology, Institute of Biosciences of Vilnius University Life Sciences Centre, Vilnius, Lithuania
| | - Magdalena Kowalczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnė Kirkliauskienė
- Faculty of Medicine, Institute of Biomedical Science, Vilnius University, Vilnius, Lithuania
| | - Greta Vizuje
- Microbiology Laboratory, Republican Vilnius University Hospital, Vilnius, Lithuania
| | - Paweł Siedlecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Kristina Tamošiūnienė
- Department of Microbiology and Biotechnology, Institute of Biosciences of Vilnius University Life Sciences Centre, Vilnius, Lithuania
| | - Aurelija Petrutienė
- Department of Clinical Investigations of the National Public Health Surveillance Laboratory, Vilnius, Lithuania
| | - Nomeda Kuisiene
- Department of Microbiology and Biotechnology, Institute of Biosciences of Vilnius University Life Sciences Centre, Vilnius, Lithuania
| |
Collapse
|
2
|
Khan MW, Cruz de Jesus V, Mittermuller BA, Sareen S, Lee V, Schroth RJ, Hu P, Chelikani P. Role of socioeconomic factors and interkingdom crosstalk in the dental plaque microbiome in early childhood caries. Cell Rep 2024; 43:114635. [PMID: 39154338 DOI: 10.1016/j.celrep.2024.114635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/04/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Early childhood caries (ECC) is influenced by microbial and host factors, including social, behavioral, and oral health. In this cross-sectional study, we analyze interkingdom dynamics in the dental plaque microbiome and its association with host variables. We use 16S rRNA and ITS1 amplicon sequencing on samples collected from preschool children and analyze questionnaire data to examine the social determinants of oral health. The results indicate a significant enrichment of Streptococcus mutans and Candida dubliniensis in ECC samples, in contrast to Neisseria oralis in caries-free children. Our interkingdom correlation analysis reveals that Candida dubliniensis is strongly correlated with both Neisseria bacilliformis and Prevotella veroralis in ECC. Additionally, ECC shows significant associations with host variables, including oral health status, age, place of residence, and mode of childbirth. This study provides empirical evidence associating the oral microbiome with socioeconomic and behavioral factors in relation to ECC, offering insights for developing targeted prevention strategies.
Collapse
Affiliation(s)
- Mohd Wasif Khan
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Vivianne Cruz de Jesus
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada; Department of Preventive Dental Science, University of Manitoba, Winnipeg, MB, Canada
| | - Betty-Anne Mittermuller
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada; Department of Preventive Dental Science, University of Manitoba, Winnipeg, MB, Canada
| | - Shaan Sareen
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Victor Lee
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Department of Preventive Dental Science, University of Manitoba, Winnipeg, MB, Canada
| | - Robert J Schroth
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada; Department of Preventive Dental Science, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Pingzhao Hu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Department of Biochemistry, Western University, London, ON, Canada.
| | - Prashen Chelikani
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
3
|
Rhodes KA, Rendón MA, Ma MC, Agellon A, Johnson AC, So M. Type IV pilus retraction is required for Neisseria musculi colonization and persistence in a natural mouse model of infection. mBio 2024; 15:e0279223. [PMID: 38084997 PMCID: PMC10790696 DOI: 10.1128/mbio.02792-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE We describe the importance of Type IV pilus retraction to colonization and persistence by a mouse commensal Neisseria, N. musculi, in its native host. Our findings have implications for the role of Tfp retraction in mediating interactions of human-adapted pathogenic and commensal Neisseria with their human host due to the relatedness of these species.
Collapse
Affiliation(s)
- Katherine A. Rhodes
- Immunobiology Department, University of Arizona College of Medicine, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - María A. Rendón
- Immunobiology Department, University of Arizona College of Medicine, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Man Cheong Ma
- Immunobiology Department, University of Arizona College of Medicine, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Al Agellon
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Andrew C.E. Johnson
- Immunobiology Department, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Magdalene So
- Immunobiology Department, University of Arizona College of Medicine, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
4
|
Fohmann I, Weinmann A, Schumacher F, Peters S, Prell A, Weigel C, Spiegel S, Kleuser B, Schubert-Unkmeir A. Sphingosine kinase 1/S1P receptor signaling axis is essential for cellular uptake of Neisseria meningitidis in brain endothelial cells. PLoS Pathog 2023; 19:e1011842. [PMID: 38033162 PMCID: PMC10715668 DOI: 10.1371/journal.ppat.1011842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/12/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023] Open
Abstract
Invasion of brain endothelial cells (BECs) is central to the pathogenicity of Neisseria meningitidis infection. Here, we established a key role for the bioactive sphingolipid sphingosine-1-phosphate (S1P) and S1P receptor (S1PR) 2 in the uptake process. Quantitative sphingolipidome analyses of BECs infected with N. meningitidis revealed elevated S1P levels, which could be attributed to enhanced expression of the enzyme sphingosine kinase 1 and its activity. Increased activity was dependent on the interaction of meningococcal type IV pilus with the endothelial receptor CD147. Concurrently, infection led to increased expression of the S1PR2. Blocking S1PR2 signaling impaired epidermal growth factor receptor (EGFR) phosphorylation, which has been shown to be involved in cytoskeletal remodeling and bacterial endocytosis. Strikingly, targeting S1PR1 or S1PR3 also interfered with bacterial uptake. Collectively, our data support a critical role of the SphK/S1P/S1PR axis in the invasion of N. meningitidis into BECs, defining a potential target for adjuvant therapy.
Collapse
Affiliation(s)
- Ingo Fohmann
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Alina Weinmann
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Simon Peters
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Agata Prell
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Burkhard Kleuser
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
5
|
Endres LM, Jungblut M, Divyapicigil M, Sauer M, Stigloher C, Christodoulides M, Kim BJ, Schubert-Unkmeir A. Development of a multicellular in vitro model of the meningeal blood-CSF barrier to study Neisseria meningitidis infection. Fluids Barriers CNS 2022; 19:81. [PMID: 36289516 PMCID: PMC9597984 DOI: 10.1186/s12987-022-00379-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/06/2022] [Indexed: 12/01/2022] Open
Abstract
Background Bacterial meningitis is a life-threatening disease that occurs when pathogens such as Neisseria meningitidis cross the meningeal blood cerebrospinal fluid barrier (mBCSFB) and infect the meninges. Due to the human-specific nature of N. meningitidis, previous research investigating this complex host–pathogen interaction has mostly been done in vitro using immortalized brain endothelial cells (BECs) alone, which often do not retain relevant barrier properties in culture. Here, we developed physiologically relevant mBCSFB models using BECs in co-culture with leptomeningeal cells (LMCs) to examine N. meningitidis interaction. Methods We used BEC-like cells derived from induced pluripotent stem cells (iBECs) or hCMEC/D3 cells in co-culture with LMCs derived from tumor biopsies. We employed TEM and structured illumination microscopy to characterize the models as well as bacterial interaction. We measured TEER and sodium fluorescein (NaF) permeability to determine barrier tightness and integrity. We then analyzed bacterial adherence and penetration of the cell barrier and examined changes in host gene expression of tight junctions as well as chemokines and cytokines in response to infection. Results Both cell types remained distinct in co-culture and iBECs showed characteristic expression of BEC markers including tight junction proteins and endothelial markers. iBEC barrier function as determined by TEER and NaF permeability was improved by LMC co-culture and remained stable for seven days. BEC response to N. meningitidis infection was not affected by LMC co-culture. We detected considerable amounts of BEC-adherent meningococci and a relatively small number of intracellular bacteria. Interestingly, we discovered bacteria traversing the BEC-LMC barrier within the first 24 h post-infection, when barrier integrity was still high, suggesting a transcellular route for N. meningitidis into the CNS. Finally, we observed deterioration of barrier properties including loss of TEER and reduced expression of cell-junction components at late time points of infection. Conclusions Here, we report, for the first time, on co-culture of human iPSC derived BECs or hCMEC/D3 with meningioma derived LMCs and find that LMC co-culture improves barrier properties of iBECs. These novel models allow for a better understanding of N. meningitidis interaction at the mBCSFB in a physiologically relevant setting. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00379-z.
Collapse
Affiliation(s)
- Leo M. Endres
- grid.8379.50000 0001 1958 8658Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Marvin Jungblut
- grid.8379.50000 0001 1958 8658Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Mustafa Divyapicigil
- grid.411015.00000 0001 0727 7545Department of Biological Sciences, University of Alabama, Tuscaloosa, AL USA ,grid.265892.20000000106344187Department of Microbiology Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,grid.411015.00000 0001 0727 7545Center for Convergent Biosciences & Medicine, University of Alabama, Tuscaloosa, AL USA ,grid.411015.00000 0001 0727 7545Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL USA
| | - Markus Sauer
- grid.8379.50000 0001 1958 8658Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Christian Stigloher
- grid.8379.50000 0001 1958 8658Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - Myron Christodoulides
- grid.5491.90000 0004 1936 9297Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Brandon J. Kim
- grid.411015.00000 0001 0727 7545Department of Biological Sciences, University of Alabama, Tuscaloosa, AL USA ,grid.265892.20000000106344187Department of Microbiology Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,grid.411015.00000 0001 0727 7545Center for Convergent Biosciences & Medicine, University of Alabama, Tuscaloosa, AL USA ,grid.411015.00000 0001 0727 7545Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL USA
| | - Alexandra Schubert-Unkmeir
- grid.8379.50000 0001 1958 8658Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| |
Collapse
|
6
|
Auricular Perichondritis of an Unusual Etiology. Indian J Otolaryngol Head Neck Surg 2022; 74:307-310. [PMID: 36032879 PMCID: PMC9411398 DOI: 10.1007/s12070-020-02080-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022] Open
Abstract
Auricular perichondritis leading to perichondral abscess is an unusual complication of periauricular surgery. Early identification of the condition with aggressive and timely management is mandated to prevent permanent damage to the auricle. This article demonstrates the first reported case in literature of auricular perichondritis due to Neisseria flava. We discuss the presentation, diagnosis and management of auricular perichondritis in this patient and review mechanisms by which commensals acquire pathogenicity as seen in this report. An awareness of this unusual etiology and mechanisms of acquiring pathogenic nature by commensals will help guide clinicians in optimizing management of such conditions.
Collapse
|
7
|
Mullally CA, Mikucki A, Wise MJ, Kahler CM. Modelling evolutionary pathways for commensalism and hypervirulence in Neisseria meningitidis. Microb Genom 2021; 7. [PMID: 34704920 PMCID: PMC8627216 DOI: 10.1099/mgen.0.000662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neisseria meningitidis, the meningococcus, resides exclusively in humans and causes invasive meningococcal disease (IMD). The population of N. meningitidis is structured into stable clonal complexes by limited horizontal recombination in this naturally transformable species. N. meningitidis is an opportunistic pathogen, with some clonal complexes, such as cc53, effectively acting as commensal colonizers, while other genetic lineages, such as cc11, are rarely colonizers but are over-represented in IMD and are termed hypervirulent. This study examined theoretical evolutionary pathways for pathogenic and commensal lineages by examining the prevalence of horizontally acquired genomic islands (GIs) and loss-of-function (LOF) mutations. Using a collection of 4850 genomes from the BIGSdb database, we identified 82 GIs in the pan-genome of 11 lineages (10 hypervirulent and one commensal lineage). A new computational tool, Phaser, was used to identify frameshift mutations, which were examined for statistically significant association with genetic lineage. Phaser identified a total of 144 frameshift loci of which 105 were shown to have a statistically significant non-random distribution in phase status. The 82 GIs, but not the LOF loci, were associated with genetic lineage and invasiveness using the disease carriage ratio metric. These observations have been integrated into a new model that infers the early events of the evolution of the human adapted meningococcus. These pathways are enriched for GIs that are involved in modulating attachment to the host, growth rate, iron uptake and toxin expression which are proposed to increase competition within the meningococcal population for the limited environmental niche of the human nasopharynx. We surmise that competition for the host mucosal surface with the nasopharyngeal microbiome has led to the selection of isolates with traits that enable access to cell types (non-phagocytic and phagocytic) in the submucosal tissues leading to an increased risk for IMD.
Collapse
Affiliation(s)
- Christopher A. Mullally
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - August Mikucki
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Michael J. Wise
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, Australia
| | - Charlene M. Kahler
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
- Telethon Kids Institute, Perth Children’s Hospital, Perth, Australia
- *Correspondence: Charlene M. Kahler,
| |
Collapse
|
8
|
Lim KYL, Mullally CA, Haese EC, Kibble EA, McCluskey NR, Mikucki EC, Thai VC, Stubbs KA, Sarkar-Tyson M, Kahler CM. Anti-Virulence Therapeutic Approaches for Neisseria gonorrhoeae. Antibiotics (Basel) 2021; 10:antibiotics10020103. [PMID: 33494538 PMCID: PMC7911339 DOI: 10.3390/antibiotics10020103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 01/15/2023] Open
Abstract
While antimicrobial resistance (AMR) is seen in both Neisseria gonorrhoeae and Neisseria meningitidis, the former has become resistant to commonly available over-the-counter antibiotic treatments. It is imperative then to develop new therapies that combat current AMR isolates whilst also circumventing the pathways leading to the development of AMR. This review highlights the growing research interest in developing anti-virulence therapies (AVTs) which are directed towards inhibiting virulence factors to prevent infection. By targeting virulence factors that are not essential for gonococcal survival, it is hypothesized that this will impart a smaller selective pressure for the emergence of resistance in the pathogen and in the microbiome, thus avoiding AMR development to the anti-infective. This review summates the current basis of numerous anti-virulence strategies being explored for N. gonorrhoeae.
Collapse
Affiliation(s)
- Katherine Y. L. Lim
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Christopher A. Mullally
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Ethan C. Haese
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Emily A. Kibble
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Nicolie R. McCluskey
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Edward C. Mikucki
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Van C. Thai
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Keith A. Stubbs
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia;
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Charlene M. Kahler
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
- Correspondence:
| |
Collapse
|
9
|
Calder A, Menkiti CJ, Çağdaş A, Lisboa Santos J, Streich R, Wong A, Avini AH, Bojang E, Yogamanoharan K, Sivanesan N, Ali B, Ashrafi M, Issa A, Kaur T, Latif A, Mohamed HAS, Maqsood A, Tamang L, Swager E, Stringer AJ, Snyder LAS. Virulence genes and previously unexplored gene clusters in four commensal Neisseria spp. isolated from the human throat expand the neisserial gene repertoire. Microb Genom 2020; 6. [PMID: 32845827 PMCID: PMC7643975 DOI: 10.1099/mgen.0.000423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Commensal non-pathogenic Neisseria spp. live within the human host alongside the pathogenic Neisseria meningitidis and Neisseria gonorrhoeae and due to natural competence, horizontal gene transfer within the genus is possible and has been observed. Four distinct Neisseria spp. isolates taken from the throats of two human volunteers have been assessed here using a combination of microbiological and bioinformatics techniques. Three of the isolates have been identified as Neisseria subflava biovar perflava and one as Neisseria cinerea. Specific gene clusters have been identified within these commensal isolate genome sequences that are believed to encode a Type VI Secretion System, a newly identified CRISPR system, a Type IV Secretion System unlike that in other Neisseria spp., a hemin transporter, and a haem acquisition and utilization system. This investigation is the first to investigate these systems in either the non-pathogenic or pathogenic Neisseria spp. In addition, the N. subflava biovar perflava possess previously unreported capsule loci and sequences have been identified in all four isolates that are similar to genes seen within the pathogens that are associated with virulence. These data from the four commensal isolates provide further evidence for a Neisseria spp. gene pool and highlight the presence of systems within the commensals with functions still to be explored.
Collapse
Affiliation(s)
- Alan Calder
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Chukwuma Jude Menkiti
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Aylin Çağdaş
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Jefferson Lisboa Santos
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Ricarda Streich
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Alice Wong
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Amir H Avini
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Ebrima Bojang
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Karththeepan Yogamanoharan
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Nivetha Sivanesan
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Besma Ali
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Mariam Ashrafi
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Abdirizak Issa
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Tajinder Kaur
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Aisha Latif
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Hani A Sheik Mohamed
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Atifa Maqsood
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Laxmi Tamang
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Emily Swager
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Alex J Stringer
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Lori A S Snyder
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
10
|
Characteristics of Neisseria Species Colonized in the Human’s Nasopharynx. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.99915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Context: Neisseria meningitidis is the causative agent of a life-threatening infection with high mortality and morbidity worldwide. The most common types of this bacterium are serogroups A, B, C, W135, X, and Y. Although in some countries, such as Iran, the meningococcal meningitis has been well monitored and controlled by the use of divalent and quadrivalent vaccines, other fatal infections caused by these bacteria are still an important threat. For the above reason, this review focused on the differences of Neisseria characteristics, particularly in capsular composition, pathogenic and commensal stages to a better understanding of how to manage Neisseria infections. Evidence Acquisition: In this review, PubMed, EMBASE, ScienceDirect, Scopus, and Google Scholar were searched for English-language publications on pathogenic or commensal strains of Neisseria, meningococcal disease, Neisseria biology, genetic diversity, molecular typing, serogroups, diagnostic, and epidemiology around the world up to July 2019. All articles and academic reports in the defined area of this research were considered too. The data were extracted and descriptively discussed. Results: We included 85 studies in the survey. The data analysis revealed that the distribution of meningococcal serogroups was different regionally. For example, the serogroups C and W-135 accounted for Africa and Latin America regions, serogroup B in the European countries, and rarely in the Western Pacific, and serogroups A and C were dominant in Asian countries. Although data set for laboratory-based diagnosis of N. meningitidis are available for all countries, only 30% of the countries rely on reference laboratories for serogroup determination, and more than half of the countries lack the ability of surveillance system. Nevertheless, molecular detection procedure is also available for all countries. The use of the meningococcal vaccine is a variable country by country, but most countries have applied the meningococcal vaccine, either divalent or quadrivalent, for the protection of high-risk groups. Conclusions: Owing to the geographical distribution of N. meningitidis serogroups in circulating, each country has to monitor for changes in serogroups diversity and its control management. Furthermore, laboratories should scale up the epidemiology and disease burden. It should be mentioned that quadrivalent meningococcal vaccines reduce the meningococcal disease burden sharply.
Collapse
|
11
|
Portilho AI, Trzewikoswki de Lima G, De Gaspari E. Neisseria meningitidis: analysis of pili and LPS in emerging Brazilian strains. Ther Adv Vaccines Immunother 2020; 8:2515135520919195. [PMID: 32435751 PMCID: PMC7225800 DOI: 10.1177/2515135520919195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/23/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Neisseria meningitidis is the main cause of bacterial meningitis in Brazil, where the main serogroups isolated are B and C; however, the serogroup W has recently emerged. LPS and type IV pili are important virulence factors that increase meningococci pathogenicity. METHODS The characterization of Lipopolysaccharide (LPS) and type IV pili in 19 meningococci strains of serogroup B, 21 of serogroup C, 45 of serogroup W and 28 of serogroup Y, isolated in Brazil between 2011 and 2017, was conducted using the Enzyme-linked Immunosorbent Assay (Dot- ELISA) technique and monoclonal antibodies. RESULTS We would like to emphasize the importance of characterizing relevant antigens, such as pili and LPS, the use of monoclonal antibodies to support it, and how such studies improve vaccine development and monitoring. Most of the strains studied presented L3,7,9 LPS and type IV pili; both antigens are associated with the capacity to cause invasive disease. CONCLUSION Due to the impact of meningococcal disease, it is important to maintain and improve vaccine studies. Epitopes characterization provides data about the virulence of circulating strains. The use of monoclonal antibodies and serological techniques are relevant and support vaccine development.
Collapse
Affiliation(s)
- Amanda Izeli Portilho
- Departament of Immunology, Adolfo Lutz Institute, São Paulo, Brazil Post-Graduate Program Interunity in Biotechnology, Biomedical Sciences Institute, São Paulo University, São Paulo, Brazil
| | - Gabriela Trzewikoswki de Lima
- Departament of Immunology, Adolfo Lutz Institute, São Paulo, Brazil Post-Graduate Program Interunity in Biotechnology, Biomedical Sciences Institute, São Paulo University, São Paulo, Brazil
| | - Elizabeth De Gaspari
- Departament of Immunology, Adolfo Lutz Institute, Dr Arnaldo Avenue 355, 11 floor, São Paulo, SP 01246-902, Brazil
- Post-Graduate Program Interunity in Biotechnology, Biomedical Sciences Institute, São Paulo University, São Paulo, Brazil
| |
Collapse
|
12
|
Cho SH, Lee KM, Kim CH, Kim SS. Construction of a Lectin-Glycan Interaction Network from Enterohemorrhagic Escherichia coli Strains by Multi-omics Analysis. Int J Mol Sci 2020; 21:ijms21082681. [PMID: 32290560 PMCID: PMC7215717 DOI: 10.3390/ijms21082681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 11/17/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) causes hemorrhagic colitis and hemolytic uremic syndrome. EHEC infection begins with bacterial adherence to the host intestine via lectin-like adhesins that bind to the intestinal wall. However, EHEC-related lectin–glycan interactions (LGIs) remain unknown. Here, we conducted a genome-wide investigation of putative adhesins to construct an LGI network. We performed microarray-based transcriptomic and proteomic analyses with E. coli EDL933. Using PSORTb-based analysis, potential outer-membrane-embedded adhesins were predicted from the annotated genes of 318 strains. Predicted proteins were classified using TMHMM v2.0, SignalP v5.0, and LipoP v1.0. Functional and protein–protein interaction analyses were performed using InterProScan and String databases, respectively. Structural information of lectin candidate proteins was predicted using Iterative Threading ASSEmbly Refinement (I-TASSER) and Spatial Epitope Prediction of Protein Antigens (SEPPA) tools based on 3D structure and B-cell epitopes. Pathway analysis returned 42,227 Gene Ontology terms; we then selected 2585 lectin candidate proteins by multi-omics analysis and performed homology modeling and B-cell epitope analysis. We predicted a total of 24,400 outer-membrane-embedded proteins from the genome of 318 strains and integrated multi-omics information into the genomic information of the proteins. Our integrated multi-omics data will provide a useful resource for the construction of LGI networks of E. coli.
Collapse
Affiliation(s)
- Seung-Hak Cho
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Chungchungbuk-do 28160, Korea; (S.-H.C.); (K.M.L.)
| | - Kang Mo Lee
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Chungchungbuk-do 28160, Korea; (S.-H.C.); (K.M.L.)
| | - Cheorl-Ho Kim
- Glycobiology Unit, Department of Biological Science, Sungkyunkwan University and Samsung Advanced Institute for Health Science and Technology (SAIHST), Suwon, Gyeonggi-do 16419, Korea
- Correspondence: (C.-H.K.); (S.S.K.); Tel.: +82-031-290-7002 (C.-H.K.); +82-043-719-8400 (S.S.K.); Fax: +82-043-719-8402 (S.S.K.)
| | - Sung Soon Kim
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Chungchungbuk-do 28160, Korea; (S.-H.C.); (K.M.L.)
- Correspondence: (C.-H.K.); (S.S.K.); Tel.: +82-031-290-7002 (C.-H.K.); +82-043-719-8400 (S.S.K.); Fax: +82-043-719-8402 (S.S.K.)
| |
Collapse
|
13
|
Lactobacillus crispatus and its enolase and glutamine synthetase influence interactions between Neisseria gonorrhoeae and human epithelial cells. J Microbiol 2020; 58:405-414. [PMID: 32279277 DOI: 10.1007/s12275-020-9505-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 01/06/2023]
Abstract
Neisseria gonorrhoeae, an obligatory human pathogen causes the sexually transmitted disease gonorrhea, which remains a global health problem. N. gonorrhoeae primarily infects the mucosa of the genitourinary tract, which in women, is colonized by natural microbiota, dominated by Lactobacillus spp., that protect human cells against pathogens. In this study, we demonstrated that precolonization of human epithelial cells with Lactobacillus crispatus, one of the most prevalent bacteria in the female urogenital tract, or preincubation with the L. crispatus enolase or glutamine synthetase impairs the adhesion and invasiveness of N. gonorrhoeae toward epithelial cells, two crucial steps in gonococcal pathogenesis. Furthermore, decreased expression of genes encoding the proinflam-matory cytokines, TNFα and CCL20, which are secreted as a consequence of N. gonorrhoeae infection, was observed in N. gonorrhoeae-infected epithelial cells that had been preco-lonized with L. crispatus or preincubated with enolase and glutamine synthetase. Thus, our results indicate that the protection of human cells against N. gonorrhoeae infection is a complex process and that L. crispatus and its proteins enolase and glutamine synthetase can have a potential role in protecting epithelial cells against gonococcal infection. Therefore, these results are important since disturbances of the micro-biota or of its proteins can result in dysbiosis, which is associated with increased susceptibility of epithelium to pathogens.
Collapse
|
14
|
van Wolferen M, Shajahan A, Heinrich K, Brenzinger S, Black IM, Wagner A, Briegel A, Azadi P, Albers SV. Species-Specific Recognition of Sulfolobales Mediated by UV-Inducible Pili and S-Layer Glycosylation Patterns. mBio 2020; 11:e03014-19. [PMID: 32156822 PMCID: PMC7064770 DOI: 10.1128/mbio.03014-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/21/2020] [Indexed: 01/07/2023] Open
Abstract
The UV-inducible pili system of Sulfolobales (Ups) mediates the formation of species-specific cellular aggregates. Within these aggregates, cells exchange DNA to repair DNA double-strand breaks via homologous recombination. Substitution of the Sulfolobus acidocaldarius pilin subunits UpsA and UpsB with their homologs from Sulfolobus tokodaii showed that these subunits facilitate species-specific aggregation. A region of low conservation within the UpsA homologs is primarily important for this specificity. Aggregation assays in the presence of different sugars showed the importance of N-glycosylation in the recognition process. In addition, the N-glycan decorating the S-layer of S. tokodaii is different from the one of S. acidocaldarius Therefore, each Sulfolobus species seems to have developed a unique UpsA binding pocket and unique N-glycan composition to ensure aggregation and, consequently, also DNA exchange with cells from only the same species, which is essential for DNA repair by homologous recombination.IMPORTANCE Type IV pili can be found on the cell surface of many archaea and bacteria where they play important roles in different processes. The UV-inducible pili system of Sulfolobales (Ups) pili from the crenarchaeal Sulfolobales species are essential in establishing species-specific mating partners, thereby assisting in genome stability. With this work, we show that different Sulfolobus species have specific regions in their Ups pili subunits, which allow them to interact only with cells from the same species. Additionally, different Sulfolobus species have unique surface-layer N-glycosylation patterns. We propose that the unique features of each species allow the recognition of specific mating partners. This knowledge for the first time gives insights into the molecular basis of archaeal self-recognition.
Collapse
Affiliation(s)
- Marleen van Wolferen
- Molecular Biology of Archaea, Institute of Biology II-Microbiology, University of Freiburg, Freiburg, Germany
| | - Asif Shajahan
- Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia, USA
| | - Kristina Heinrich
- Molecular Biology of Archaea, Institute of Biology II-Microbiology, University of Freiburg, Freiburg, Germany
| | | | - Ian M Black
- Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia, USA
| | - Alexander Wagner
- Molecular Biology of Archaea, Institute of Biology II-Microbiology, University of Freiburg, Freiburg, Germany
| | - Ariane Briegel
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia, USA
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II-Microbiology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Humbert MV, Christodoulides M. Atypical, Yet Not Infrequent, Infections with Neisseria Species. Pathogens 2019; 9:E10. [PMID: 31861867 PMCID: PMC7168603 DOI: 10.3390/pathogens9010010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/24/2022] Open
Abstract
Neisseria species are extremely well-adapted to their mammalian hosts and they display unique phenotypes that account for their ability to thrive within niche-specific conditions. The closely related species N. gonorrhoeae and N. meningitidis are the only two species of the genus recognized as strict human pathogens, causing the sexually transmitted disease gonorrhea and meningitis and sepsis, respectively. Gonococci colonize the mucosal epithelium of the male urethra and female endo/ectocervix, whereas meningococci colonize the mucosal epithelium of the human nasopharynx. The pathophysiological host responses to gonococcal and meningococcal infection are distinct. However, medical evidence dating back to the early 1900s demonstrates that these two species can cross-colonize anatomical niches, with patients often presenting with clinically-indistinguishable infections. The remaining Neisseria species are not commonly associated with disease and are considered as commensals within the normal microbiota of the human and animal nasopharynx. Nonetheless, clinical case reports suggest that they can behave as opportunistic pathogens. In this review, we describe the diversity of the genus Neisseria in the clinical context and raise the attention of microbiologists and clinicians for more cautious approaches in the diagnosis and treatment of the many pathologies these species may cause.
Collapse
Affiliation(s)
- Maria Victoria Humbert
- Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK;
| | | |
Collapse
|
16
|
Glycointeractome of Neisseria gonorrhoeae: Identification of Host Glycans Targeted by the Gonococcus To Facilitate Adherence to Cervical and Urethral Epithelial Cells. mBio 2019; 10:mBio.01339-19. [PMID: 31289181 PMCID: PMC6747729 DOI: 10.1128/mbio.01339-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multidrug-resistant strains of Neisseria gonorrhoeae are emerging worldwide, and novel treatment and prevention strategies are needed. Glycans are ubiquitously expressed by all human cells and can be specifically targeted by pathogens to facilitate association with host cells. Here we identify and characterize the N. gonorrhoeae host-glycan binding profile (glycointeractome), which revealed numerous interactions, including high-affinity binding to mannosyl glycans. We identify gonococcal potential mannose-binding proteins and show that N. gonorrhoeae uses mannosyl glycans expressed on the surface of cervical and urethral epithelia to facilitate adherence. Furthermore, a mannose-binding lectin or a mannoside compound was able to reduce this adherence. By characterizing the glycointeractome of N. gonorrhoeae, we were able to elucidate a novel mechanism used by this important pathogen to interact with human cells, and this interaction could be exploited to develop novel therapeutics to treat antibiotic-resistant gonorrhea. Neisseria gonorrhoeae is a significant threat to global health for which a vaccine and novel treatment options are urgently needed. Glycans expressed by human cells are commonly targeted by pathogens to facilitate interactions with the host, and thus characterization of these interactions can aid identification of bacterial receptors that can be exploited as vaccine and/or drug targets. Using glycan array analysis, we identified 247 specific interactions between N. gonorrhoeae and glycans representative of those found on human cells. Interactions included those with mannosylated, fucosylated, and sialylated glycans, glycosaminoglycans (GAGs), and glycans terminating with galactose (Gal), N-acetylgalactosamine (GalNAc), and N-acetylglucosamine (GlcNAc). By investigating the kinetics of interactions with selected glycans, we demonstrate that whole-cell N. gonorrhoeae has a high affinity for mannosylated glycans (dissociation constant [KD], 0.14 to 0.59 μM), which are expressed on the surface of cervical and urethral epithelial cells. Using chromatography coupled with mass spectrometric (MS) analysis, we identified potential mannose-binding proteins in N. gonorrhoeae. Pretreatment of cells with mannose-specific lectin (concanavalin A) or free mannose competitor (α-methyl-d-mannopyranoside) substantially reduced gonococcal adherence to epithelial cells. This suggests that N. gonorrhoeae targets mannosyl glycans to facilitate adherence to host cells and that mannosides or similar compounds have the potential to be used as a novel treatment option for N. gonorrhoeae.
Collapse
|
17
|
Martins Gomes SF, Westermann AJ, Sauerwein T, Hertlein T, Förstner KU, Ohlsen K, Metzger M, Shusta EV, Kim BJ, Appelt-Menzel A, Schubert-Unkmeir A. Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells as a Cellular Model to Study Neisseria meningitidis Infection. Front Microbiol 2019; 10:1181. [PMID: 31191497 PMCID: PMC6548865 DOI: 10.3389/fmicb.2019.01181] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/09/2019] [Indexed: 11/13/2022] Open
Abstract
Meningococcal meningitis is a severe central nervous system infection that occurs when Neisseria meningitidis (Nm) penetrates brain endothelial cells (BECs) of the meningeal blood-cerebrospinal fluid barrier. As a human-specific pathogen, in vivo models are greatly limited and pose a significant challenge. In vitro cell models have been developed, however, most lack critical BEC phenotypes limiting their usefulness. Human BECs generated from induced pluripotent stem cells (iPSCs) retain BEC properties and offer the prospect of modeling the human-specific Nm interaction with BECs. Here, we exploit iPSC-BECs as a novel cellular model to study Nm host-pathogen interactions, and provide an overview of host responses to Nm infection. Using iPSC-BECs, we first confirmed that multiple Nm strains and mutants follow similar phenotypes to previously described models. The recruitment of the recently published pilus adhesin receptor CD147 underneath meningococcal microcolonies could be verified in iPSC-BECs. Nm was also observed to significantly increase the expression of pro-inflammatory and neutrophil-specific chemokines IL6, CXCL1, CXCL2, CXCL8, and CCL20, and the secretion of IFN-γ and RANTES. For the first time, we directly observe that Nm disrupts the three tight junction proteins ZO-1, Occludin, and Claudin-5, which become frayed and/or discontinuous in BECs upon Nm challenge. In accordance with tight junction loss, a sharp loss in trans-endothelial electrical resistance, and an increase in sodium fluorescein permeability and in bacterial transmigration, was observed. Finally, we established RNA-Seq of sorted, infected iPSC-BECs, providing expression data of Nm-responsive host genes. Altogether, this model provides novel insights into Nm pathogenesis, including an impact of Nm on barrier properties and tight junction complexes, and suggests that the paracellular route may contribute to Nm traversal of BECs.
Collapse
Affiliation(s)
- Sara F Martins Gomes
- Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Alexander J Westermann
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Till Sauerwein
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.,ZB MED, Information Centre for Life Sciences, Cologne, Germany.,TH Köln, University of Applied Sciences, Faculty of Information Science and Communication Studies, Cologne, Germany
| | - Tobias Hertlein
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Konrad U Förstner
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.,ZB MED, Information Centre for Life Sciences, Cologne, Germany.,TH Köln, University of Applied Sciences, Faculty of Information Science and Communication Studies, Cologne, Germany
| | - Knut Ohlsen
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Marco Metzger
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany.,Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT), Würzburg, Germany
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Brandon J Kim
- Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany.,Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Antje Appelt-Menzel
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany.,Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT), Würzburg, Germany
| | | |
Collapse
|
18
|
Inhibitors of the Neisseria meningitidis PilF ATPase provoke type IV pilus disassembly. Proc Natl Acad Sci U S A 2019; 116:8481-8486. [PMID: 30948644 DOI: 10.1073/pnas.1817757116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite the availability of antibiotics and vaccines, Neisseria meningitidis remains a major cause of meningitis and sepsis in humans. Due to its extracellular lifestyle, bacterial adhesion to host cells constitutes an attractive therapeutic target. Here, we present a high-throughput microscopy-based approach that allowed the identification of compounds able to decrease type IV pilus-mediated interaction of bacteria with endothelial cells in the absence of bacterial or host cell toxicity. Compounds specifically inhibit the PilF ATPase enzymatic activity that powers type IV pilus extension but remain inefficient on the ATPase that promotes pilus retraction, thus leading to rapid pilus disappearance from the bacterial surface and loss of pili-mediated functions. Structure activity relationship of the most active compound identifies specific moieties required for the activity of this compound and highlights its specificity. This study therefore provides compounds targeting pilus biogenesis, thereby inhibiting bacterial adhesion, and paves the way for a novel therapeutic option for meningococcal infections.
Collapse
|
19
|
Abstract
The obligate human pathogen Neisseria gonorrhoeae colonizes primarily the mucosal columnar epithelium of the male urethra and the female endocervix. In addition, gonococci can infect the anorectal, pharyngeal, and gingival mucosae and epithelial cells of the conjunctiva. More rarely, the organism can disseminate through the bloodstream, which can involve interactions with other host cell types, including blood vessel endothelial cells and innate immune cells such as dendritic cells, macrophages, and neutrophils. "Disseminated gonococcal infection" is a serious condition with various manifestations resulting from the seeding of organs and tissues with the pathogen. The host response to gonococcal infection is inflammatory. Knowledge of the biology of gonococcal interactions has been served well through the use of a wide variety of ex vivo models using host tissues and eukaryotic cell monocultures. These models have helped identify bacterial surface adhesins and invasins and the corresponding cell surface receptors that play roles in gonococcal pathogenesis. Furthermore, they have been useful for understanding virulence mechanisms as well as innate and adaptive immune responses. In this chapter, readers are provided with protocols for examining the basic interactions between gonococci and a representative human cell line.
Collapse
|
20
|
Trzewikoswki de Lima G, De Gaspari E. Individual variability in humoral response of immunized outbred mice and cross-reactivity with prevalent Brazilian Neisseria meningitidis strains. Biologicals 2018; 55:19-26. [PMID: 30100326 DOI: 10.1016/j.biologicals.2018.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/11/2018] [Accepted: 08/02/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Gabriela Trzewikoswki de Lima
- Departamento de Imunologia do Instituto Adolfo Lutz, Av. Dr. Arnaldo 355, 11 Andar, 01246902, São Paulo, SP, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, São Paulo, SP, Brazil
| | - Elizabeth De Gaspari
- Departamento de Imunologia do Instituto Adolfo Lutz, Av. Dr. Arnaldo 355, 11 Andar, 01246902, São Paulo, SP, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, São Paulo, SP, Brazil.
| |
Collapse
|
21
|
Dick J, Hebling S, Becam J, Taha MK, Schubert-Unkmeir A. Comparison of the inflammatory response of brain microvascular and peripheral endothelial cells following infection with Neisseria meningitidis. Pathog Dis 2018; 75:3098218. [PMID: 28379411 DOI: 10.1093/femspd/ftx038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/29/2017] [Indexed: 11/12/2022] Open
Abstract
The interaction of Neisseria meningitidis with both peripheral and brain endothelial cells is a critical event in the development of invasive meningococcal disease. In this study, we used in vitro models based on human brain microvascular endothelial cells (HBMEC), and peripheral endothelial EA.hy926 cells, to investigate their roles in the inflammatory response towards meningococcal infection. Both cell lines were infected with two pathogenic N. meningitidis isolates and secretion of the cytokine interleukin-6 (IL-6), the CXC chemokine IL-8 and the monocyte chemoattractant protein-1 (MCP-1) were estimated by ELISA. Neisseria meningitidis was able to stimulate the production of IL-6 and IL-8 by HBMEC and EA.hy926 cells in a time- and concentration-dependent manner. Interestingly, HBMEC released significant higher amounts of IL-6 and IL-8. Moreover, we observed that heat-killed bacteria stimulated high levels of IL-8. In addition, capsule expression had an inhibitory effect on IL-8 release. We extended our study and included serogroup C strains belonging to sequence type 11 clonal complex (cc) from a recent outbreak in France, as well as isolates belonging to the hypervirulent clonal complexes cc8, cc18, cc32 and cc269 and analyzed their ability to induce the secretion of IL-8 from both cell lines. Although individual variations were observed among different isolates, no clear correlations were observed between strain origin, clinical presentation and IL-8 levels.
Collapse
Affiliation(s)
- Julia Dick
- Institute of Hygiene and Microbiology, Julius-Maximilians University, 97080 Würzburg, Germany
| | - Sabrina Hebling
- Institute of Hygiene and Microbiology, Julius-Maximilians University, 97080 Würzburg, Germany
| | - Jérôme Becam
- Institute of Hygiene and Microbiology, Julius-Maximilians University, 97080 Würzburg, Germany
| | - Muhamed-Kheir Taha
- Institut Pasteur, Unit of Invasive Bacterial Infections, Paris 75015, France
| | | |
Collapse
|
22
|
Lv LX, Fang DQ, Shi D, Chen DY, Yan R, Zhu YX, Chen YF, Shao L, Guo FF, Wu WR, Li A, Shi HY, Jiang XW, Jiang HY, Xiao YH, Zheng SS, Li LJ. Alterations and correlations of the gut microbiome, metabolism and immunity in patients with primary biliary cirrhosis. Environ Microbiol 2017; 18:2272-86. [PMID: 27243236 DOI: 10.1111/1462-2920.13401] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 02/22/2016] [Accepted: 05/26/2016] [Indexed: 12/20/2022]
Abstract
We selected 42 early-stage primary biliary cirrhosis (PBC) patients and 30 healthy controls (HC). Metagenomic sequencing of the 16S rRNA gene was used to characterize the fecal microbiome. UPLC-MS/MS assaying of small molecules was used to characterize the metabolomes of the serum, urine and feces. Liquid chip assaying of serum cytokines was used to characterize the immune profiles. The gut of PBC patients were depleted of some potentially beneficial bacteria, such as Acidobacteria, Lachnobacterium sp., Bacteroides eggerthii and Ruminococcus bromii, but were enriched in some bacterial taxa containing opportunistic pathogens, such as γ-Proteobacteria, Enterobacteriaceae, Neisseriaceae, Spirochaetaceae, Veillonella, Streptococcus, Klebsiella, Actinobacillus pleuropneumoniae, Anaeroglobus geminatus, Enterobacter asburiae, Haemophilus parainfluenzae, Megasphaera micronuciformis and Paraprevotella clara. Several altered gut bacterial taxa exhibited potential interactions with PBC through their associations with altered metabolism, immunity and liver function indicators, such as those of Klebsiella with IL-2A and Neisseriaceae with urinary indoleacrylate. Many gut bacteria, such as some members of Bacteroides, were altered in their associations with the immunity and metabolism of PBC patients, although their relative abundances were unchanged. Consequently, the gut microbiome is altered and may be critical for the onset or development of PBC by interacting with metabolism and immunity.
Collapse
Affiliation(s)
- Long-Xian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Dai-Qiong Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - De-Ying Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Yi-Xin Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Yan-Fei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Li Shao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Fei-Fei Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Wen-Rui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Ang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Hai-Yan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Xia-Wei Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Hui-Yong Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Yong-Hong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Shu-Sen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| |
Collapse
|
23
|
Humbert MV, Awanye AM, Lian LY, Derrick JP, Christodoulides M. Structure of the Neisseria Adhesin Complex Protein (ACP) and its role as a novel lysozyme inhibitor. PLoS Pathog 2017; 13:e1006448. [PMID: 28662181 PMCID: PMC5507604 DOI: 10.1371/journal.ppat.1006448] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/12/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022] Open
Abstract
Pathogenic and commensal Neisseria species produce an Adhesin Complex Protein, which was first characterised in Neisseria meningitidis (Nm) as a novel surface-exposed adhesin with vaccine potential. In the current study, the crystal structure of a recombinant (r)Nm-ACP Type I protein was determined to 1.4 Å resolution: the fold resembles an eight-stranded β-barrel, stabilized by a disulphide bond between the first (Cys38) and last (Cys121) β-strands. There are few main-chain hydrogen bonds linking β4-β5 and β8-β1, so the structure divides into two four-stranded anti-parallel β-sheets (β1-β4 and β5-β8). The computed surface electrostatic charge distribution showed that the β1-β4 sheet face is predominantly basic, whereas the β5-β8 sheet is apolar, apart from the loop between β4 and β5. Concentrations of rNm-ACP and rNeisseria gonorrhoeae-ACP proteins ≥0.25 μg/ml significantly inhibited by ~80–100% (P<0.05) the in vitro activity of human lysozyme (HL) over 24 h. Specificity was demonstrated by the ability of murine anti-Neisseria ACP sera to block ACP inhibition and restore HL activity. ACP expression conferred tolerance to HL activity, as demonstrated by significant 3–9 fold reductions (P<0.05) in the growth of meningococcal and gonococcal acp gene knock-out mutants in the presence of lysozyme. In addition, wild-type Neisseria lactamica treated with purified ACP-specific rabbit IgG antibodies showed similar fold reductions in bacterial growth, compared with untreated bacteria (P<0.05). Nm-ACPI is structurally similar to the MliC/PliC protein family of lysozyme inhibitors. However, Neisseria ACP proteins show <20% primary sequence similarity with these inhibitors and do not share any conserved MliC/PliC sequence motifs associated with lysozyme recognition. These observations suggest that Neisseria ACP adopts a different mode of lysozyme inhibition and that the ability of ACP to inhibit lysozyme activity could be important for host colonization by both pathogenic and commensal Neisseria organisms. Thus, ACP represents a dual target for developing Neisseria vaccines and drugs to inhibit host-pathogen interactions. The genus Neisseria contains two major human pathogens: N. meningitidis (Nm) causes meningitis and sepsis, and N. gonorrhoeae (Ng) causes the sexually transmitted disease gonorrhoea. In addition, the genus contains a larger number of commensal organisms, including N. lactamica (Nl). Common to all of these organisms is the ability to colonize exposed mucosal epithelia. Recently, we identified a novel surface-exposed adhesin in Neisseria spp., the Adhesin Complex Protein (ACP), which was capable also of generating a functional bactericidal antibody response in mice. In the current study, we have determined the crystal structure of a recombinant (r)Nm-ACP and shown that it shares structural homology to bacterial lysozyme inhibitors. We demonstrate that Neisseria ACP functions as an inhibitor of mammalian lysozyme but the mechanism appears to be different from other bacterial family lysozyme inhibitors. Expression of ACP enables Neisseria spp. to tolerate human lysozyme. We propose that ACP-mediated inhibition of lysozyme activity could be important for host colonization by both pathogenic and commensal Neisseria organisms and that ACP represents not only a target for developing Neisseria vaccines but also drugs to inhibit host-pathogen interactions.
Collapse
Affiliation(s)
- María Victoria Humbert
- Neisseria Research, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Amaka Marian Awanye
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Lu-Yun Lian
- NMR Centre for Structural Biology, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jeremy P. Derrick
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Myron Christodoulides
- Neisseria Research, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Lees JA, Kremer PHC, Manso AS, Croucher NJ, Ferwerda B, Serón MV, Oggioni MR, Parkhill J, Brouwer MC, van der Ende A, van de Beek D, Bentley SD. Large scale genomic analysis shows no evidence for pathogen adaptation between the blood and cerebrospinal fluid niches during bacterial meningitis. Microb Genom 2017; 3:e000103. [PMID: 28348877 PMCID: PMC5361624 DOI: 10.1099/mgen.0.000103] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/18/2016] [Indexed: 12/26/2022] Open
Abstract
Recent studies have provided evidence for rapid pathogen genome diversification, some of which could potentially affect the course of disease. We have previously described such variation seen between isolates infecting the blood and cerebrospinal fluid (CSF) of a single patient during a case of bacterial meningitis. Here, we performed whole-genome sequencing of paired isolates from the blood and CSF of 869 meningitis patients to determine whether such variation frequently occurs between these two niches in cases of bacterial meningitis. Using a combination of reference-free variant calling approaches, we show that no genetic adaptation occurs in either invaded niche during bacterial meningitis for two major pathogen species, Streptococcus pneumoniae and Neisseria meningitidis. This study therefore shows that the bacteria capable of causing meningitis are already able to do this upon entering the blood, and no further sequence change is necessary to cross the blood–brain barrier. Our findings place the focus back on bacterial evolution between nasopharyngeal carriage and invasion, or diversity of the host, as likely mechanisms for determining invasiveness.
Collapse
Affiliation(s)
- John A Lees
- 1Pathogen Genomics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Philip H C Kremer
- 2Department of Neurology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
| | - Ana S Manso
- 3Department of Genetics, University of Leicester, Leicester, UK
| | - Nicholas J Croucher
- 4Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Bart Ferwerda
- 2Department of Neurology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
| | - Mercedes Valls Serón
- 2Department of Neurology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
| | - Marco R Oggioni
- 3Department of Genetics, University of Leicester, Leicester, UK
| | - Julian Parkhill
- 1Pathogen Genomics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Matthijs C Brouwer
- 2Department of Neurology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
| | - Arie van der Ende
- 5Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands.,6Netherlands Reference Laboratory for Bacterial Meningitis, Academic Medical Center, Amsterdam, The Netherlands
| | - Diederik van de Beek
- 2Department of Neurology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
25
|
Saeed AF, Wang R, Wang S. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol 2016; 6:1462. [PMID: 26779133 PMCID: PMC4700210 DOI: 10.3389/fmicb.2015.01462] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 12/07/2015] [Indexed: 12/27/2022] Open
Abstract
Microsatellites or short sequence repeats are widespread genetic markers which are hypermutable 1-6 bp long short nucleotide motifs. Significantly, their applications in genetics are extensive due to their ceaseless mutational degree, widespread length variations and hypermutability skills. These features make them useful in determining the driving forces of evolution by using powerful molecular techniques. Consequently, revealing important questions, for example, what is the significance of these abundant sequences in DNA, what are their roles in genomic evolution? The answers of these important questions are hidden in the ways these short motifs contributed in altering the microbial genomes since the origin of life. Even though their size ranges from 1 -to- 6 bases, these repeats are becoming one of the most popular genetic probes in determining their associations and phylogenetic relationships in closely related genomes. Currently, they have been widely used in molecular genetics, biotechnology and evolutionary biology. However, due to limited knowledge; there is a significant gap in research and lack of information concerning hypermutational mechanisms. These mechanisms play a key role in microsatellite loci point mutations and phase variations. This review will extend the understandings of impacts and contributions of microsatellite in genomic evolution and their universal applications in microbiology.
Collapse
Affiliation(s)
- Abdullah F. Saeed
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | | | | |
Collapse
|
26
|
Kwiatek A, Bacal P, Wasiluk A, Trybunko A, Adamczyk-Poplawska M. The dam replacing gene product enhances Neisseria gonorrhoeae FA1090 viability and biofilm formation. Front Microbiol 2014; 5:712. [PMID: 25566225 PMCID: PMC4269198 DOI: 10.3389/fmicb.2014.00712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/29/2014] [Indexed: 12/23/2022] Open
Abstract
Many Neisseriaceae do not exhibit Dam methyltransferase activity and, instead of the dam gene, possess drg (dam replacing gene) inserted in the leuS/dam locus. The drg locus in Neisseria gonorrhoeae FA1090 has a lower GC-pairs content (40.5%) compared to the whole genome of N. gonorrhoeae FA1090 (52%). The gonococcal drg gene encodes a DNA endonuclease Drg, with GmeATC specificity. Disruption of drg or insertion of the dam gene in gonococcal genome changes the level of expression of genes as shown by transcriptome analysis. For the drg-deficient N. gonorrhoeae mutant, a total of 195 (8.94% of the total gene pool) genes exhibited an altered expression compared to the wt strain by at least 1.5 fold. In dam-expressing N. gonorrhoeae mutant, the expression of 240 genes (11% of total genes) was deregulated. Most of these deregulated genes were involved in translation, DNA repair, membrane biogenesis and energy production as shown by cluster of orthologous group analysis. In vivo, the inactivation of drg gene causes the decrease of the number of live neisserial cells and long lag phase of growth. The insertion of dam gene instead of drg locus restores cell viability. We have also shown that presence of the drg gene product is important for N. gonorrhoeae FA1090 in adhesion, including human epithelial cells, and biofilm formation. Biofilm produced by drg-deficient strain is formed by more dispersed cells, compared to this one formed by parental strain as shown by scanning electron and confocal microscopy. Also adherence assays show a significantly smaller biomass of formed biofilm (OD570 = 0.242 ± 0.038) for drg-deficient strain, compared to wild-type strain (OD570 = 0.378 ± 0.057). Dam-expressing gonococcal cells produce slightly weaker biofilm with cells embedded in an extracellular matrix. This strain has also a five times reduced ability for adhesion to human epithelial cells. In this context, the presence of Drg is more advantageous for N. gonorrhoeae biology than Dam presence.
Collapse
Affiliation(s)
- Agnieszka Kwiatek
- Department of Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Pawel Bacal
- Laboratory of Theory and Applications of Electrodes, Faculty of Chemistry, University of Warsaw Warsaw, Poland
| | - Adrian Wasiluk
- Department of Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Anastasiya Trybunko
- Department of Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Monika Adamczyk-Poplawska
- Department of Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| |
Collapse
|