1
|
Jeremias G, Muñiz-González AB, Mendes Gonçalves FJ, Martínez-Guitarte JL, Asselman J, Luísa Pereira J. History of exposure to copper influences transgenerational gene expression responses in Daphnia magna. Epigenetics 2024; 19:2296275. [PMID: 38154067 PMCID: PMC10761054 DOI: 10.1080/15592294.2023.2296275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023] Open
Abstract
The establishment of transgenerational effects following chemical exposure is a powerful phenomenon, capable of modulating ecosystem health beyond exposure periods. This study assessed the transgenerational effects occurring due to copper exposure in the invertebrate D. magna at the transcriptional level, while evaluating the role of exposure history on such responses. Thus, daphnids acclimated for several generations in a copper vs. clean medium were then exposed for one generation (F0) to this metal, and monitored for the following non-exposed generations (F1, F2 and F3). Organisms differing in exposure histories showed remarkably different transcriptional profiles at the F0, with naïve organisms being more profoundly affected. These trends were confirmed for F3 treatments, which presented different transcriptional patterns for genes involved in detoxification, oxidative stress, DNA damage repair, circadian clock functioning and epigenetic regulation. Furthermore, regardless of exposure history, a great number of histone modifier genes were always found transcriptionally altered, thus suggesting the involvement of histone modifications in the response of Daphnia to metal exposure. Lastly, remarkably distinct transgenerational transcriptional responses were found between naïve and non-naïve organisms, thereby highlighting the influence of exposure history on gene expression and confirming the capacity of metals to determine transgenerational transcriptional effects across non-exposed generations.
Collapse
Affiliation(s)
- Guilherme Jeremias
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Ana-Belén Muñiz-González
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
- Biology & Toxicology Group, Department of Mathematics, Physics, and Fluids, National Distance Education University (UNED), Madrid, Spain
| | | | - José-Luis Martínez-Guitarte
- Biology & Toxicology Group, Department of Mathematics, Physics, and Fluids, National Distance Education University (UNED), Madrid, Spain
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Ostend, Belgium
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
2
|
Kim J, Choi J. Histone Methylation-Mediated Reproductive Toxicity to Consumer Product Chemicals in Caenorhabditis elegans: An Epigenetic Adverse Outcome Pathway (AOP). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39445662 DOI: 10.1021/acs.est.4c04061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The significance of histone methylation in epigenetic inheritance underscores its relevance to disease and the chronic effects of environmental chemicals. However, limited evidence of the causal relationships between chemically induced epigenetic changes and organismal-level effects hinders the application of epigenetic markers in ecotoxicological assessments. This study explored the contribution of repressive histone marks to reproductive toxicity induced by chemicals in consumer products in Caenorhabditis elegans, applying the adverse outcome pathway (AOP) framework. Triclosan (TCS) and tetrabromobisphenol A (TBBPA) exposures caused reproductive toxicity and altered histone methyltransferase (HMT) and histone demethylase (HDM) activities, increasing the level of trimethylation of H3K9 and H3K27. Notably, treatment with an H3K27-specific HMT inhibitor alleviated reproductive defects and the transcriptional response of genes related to vitellogenin, xenobiotic metabolism, and oxidative stress. Comparison of points of departure (PODs) based on calculated benchmark concentrations (BMCs) revealed the sensitivity of histone-modifying enzyme activities to these chemicals. Our findings suggest that the 'disturbance of HMT and HDM' can serve as the molecular initiating event (MIE) leading to reproductive toxicity in the epigenetic AOP for TCS and TBBPA. The study extended the biological applicability of these enzymes by identifying model species with analogous protein sequences and functions. This combined approach enhances the essentiality, empirical support, and taxonomic domain of applicability (tDOA), which are crucial considerations for ecotoxicological AOPs. Given the widespread use and environmental distribution of chemicals in consumer products, this study proposes histone-modifying enzyme activity as an effective screening tool for reproductive toxicants and emphasizes the integration of epigenetic mechanisms into a prospective ERA.
Collapse
Affiliation(s)
- Jiwan Kim
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| |
Collapse
|
3
|
Heraghty SD, Rahman SR, Verble KM, Lozier JD. Examining the Effects of Environment, Geography, and Elevation on Patterns of DNA Methylation Across Populations of Two Widespread Bumble Bee Species. Genome Biol Evol 2024; 16:evae207. [PMID: 39327899 PMCID: PMC11474243 DOI: 10.1093/gbe/evae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/20/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024] Open
Abstract
Understanding the myriad avenues through which spatial and environmental factors shape evolution is a major focus in biological research. From a molecular perspective, much work has been focused on genomic sequence variation; however, recently there has been increased interest in how epigenetic variation may be shaped by different variables across the landscape. DNA methylation has been of particular interest given that it is dynamic and can alter gene expression, potentially offering a path for a rapid response to environmental change. We utilized whole genome enzymatic methyl sequencing to evaluate the distribution of CpG methylation across the genome and to analyze patterns of spatial and environmental association in the methylomes of two broadly distributed montane bumble bees (Bombus vancouverensis Cresson and Bombus vosnesenskii Radoszkowski) across elevational gradients in the western US. Methylation patterns in both species are similar at the genomic scale with ∼1% of CpGs being methylated and most methylation being found in exons. At the landscape scale, neither species exhibited strong spatial or population structuring in patterns of methylation, although some weak relationships between methylation and distance or environmental variables were detected. Differential methylation analysis suggests a stronger environment association in B. vancouverensis given the larger number of differentially methylated CpG's compared to B. vosnesenskii. We also observed only a handful of genes with both differentially methylated CpGs and previously detected environmentally associated outlier SNPs. Overall results reveal a weak but present pattern in variation in methylation over the landscape in both species.
Collapse
Affiliation(s)
- Sam D Heraghty
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Sarthok Rasique Rahman
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
- Department of Ecology and Evolutionary Biology, 106A Guyot Hall, Princeton University, Princeton, NJ 08544
| | - Kelton M Verble
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
4
|
McCaw BA, Leonard AM, Stevenson TJ, Lancaster LT. A role of epigenetic mechanisms in regulating female reproductive responses to temperature in a pest beetle. INSECT MOLECULAR BIOLOGY 2024; 33:516-533. [PMID: 38864655 DOI: 10.1111/imb.12933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/23/2024] [Indexed: 06/13/2024]
Abstract
Many species are threatened by climate change and must rapidly respond to survive in changing environments. Epigenetic modifications, such as DNA methylation, can facilitate plastic responses by regulating gene expression in response to environmental cues. Understanding epigenetic responses is therefore essential for predicting species' ability to rapidly adapt in the context of global environmental change. Here, we investigated the functional significance of different methylation-associated cellular processes on temperature-dependent life history in seed beetles, Callosobruchus maculatus Fabricius 1775 (Coleoptera: Bruchidae). We assessed changes under thermal stress in (1) DNA methyltransferase (Dnmt1 and Dnmt2) expression levels, (2) genome-wide methylation and (3) reproductive performance, with (2) and (3) following treatment with 3-aminobenzamide (3AB) and zebularine (Zeb) over two generations. These drugs are well-documented to alter DNA methylation across the tree of life. We found that Dnmt1 and Dnmt2 were expressed throughout the body in males and females, but were highly expressed in females compared with males and exhibited temperature dependence. However, whole-genome methylation did not significantly vary with temperature, and only marginally or inconclusively with drug treatment. Both 3AB and Zeb led to profound temperature-dependent shifts in female reproductive life history trade-off allocation, often increasing fitness compared with control beetles. Mismatch between magnitude of treatment effects on DNA methylation versus life history effects suggest potential of 3AB and Zeb to alter reproductive trade-offs via changes in DNA repair and recycling processes, rather than or in addition to (subtle) changes in DNA methylation. Together, our results suggest that epigenetic mechanisms relating to Dnmt expression, DNA repair and recycling pathways, and possibly DNA methylation, are strongly implicated in modulating insect life history trade-offs in response to temperature change.
Collapse
Affiliation(s)
- Beth A McCaw
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland
| | - Aoife M Leonard
- Centre for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Tyler J Stevenson
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland
| | - Lesley T Lancaster
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland
| |
Collapse
|
5
|
Castelon Konkiewitz E, Ziff EB. Brain Evolution in the Times of the Pandemic and Multimedia. Eur Neurol 2024:1-12. [PMID: 39265548 DOI: 10.1159/000541361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND In this paper, we argue that recent unprecedented social changes arising from social media and the internet represent powerful behavioral and environmental forces that are driving human evolutionary adaptive responses in a way that might reshape our brain and the way it perceives reality and interacts with it. These forces include decreases in physical activity, decreases in exposure to light, and face-to-face social interactions, as well as diminished predictability in biological rhythms (i.e., the sleep cycle is no longer dictated by natural light exposure and season). SUMMARY We discuss the roles of stress and of creativity and adaptability in Homo sapiens evolution and propose mechanisms for human adaptation to the new forces including epigenetic mechanisms, gene-culture coevolution, and novel mechanisms of evolution of the nervous system. KEY MESSAGES We present the provocative idea that evolution under the strong selective pressures of today's society could ultimately enable H. sapiens to thrive despite social, physical, circadian, and cultural deprivation and possible neurological disease, and thus withstand the loss of factors that contribute to H. sapiens survival of today. The new H. sapiens would flourish under a lifestyle in which the current form would feel undervalued and replaceable.
Collapse
Affiliation(s)
| | - Edward B Ziff
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
6
|
Habibi E, Miller MR, Schreier A, Campbell MA, Hung TC, Gille D, Baerwald M, Finger AJ. Single generation epigenetic change in captivity and reinforcement in subsequent generations in a delta smelt (Hypomesus transpacificus) conservation hatchery. Mol Ecol 2024; 33:e17449. [PMID: 38967124 DOI: 10.1111/mec.17449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/24/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024]
Abstract
A refugial population of the endangered delta smelt (Hypomesus transpacificus) has been maintained at the Fish Conservation and Culture Laboratory (FCCL) at UC Davis since 2008. Despite intense genetic management, fitness differences between wild and cultured fish have been observed at the FCCL. To investigate the molecular underpinnings of hatchery domestication, we used whole-genome bisulfite sequencing to quantify epigenetic differences between wild and hatchery-origin delta smelt. Differentially methylated regions (DMRs) were identified from 104 individuals by comparing the methylation patterns in different generations of hatchery fish (G1, G2, G3) with their wild parents (G0). We discovered a total of 132 significant DMRs (p < .05) between G0 and G1, 132 significant DMRs between G0 and G2, and 201 significant DMRs between G0 and G3. Our results demonstrate substantial differences in methylation patterns emerged between the wild and hatchery-reared fish in the early generations in the hatchery, with a higher proportion of hypermethylated DMRs in hatchery-reared fish. The rearing environment was found to be a stronger predictor of individual clustering based on methylation patterns than family, sex or generation. Our study indicates a reinforcement of the epigenetic status with successive generations in the hatchery environment, as evidenced by an increase in methylation in hypermethylated DMRs and a decrease in methylation in hypomethylated DMRs over time. Lastly, our results demonstrated heterogeneity in inherited methylation pattern in families across generations. These insights highlight the long-term consequences of hatchery practices on the epigenetic landscape, potentially impacting wild fish populations.
Collapse
Affiliation(s)
- Ensieh Habibi
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Michael R Miller
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Andrea Schreier
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Matthew A Campbell
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Tien-Chieh Hung
- Fish Conservation and Culture Laboratory, Biological and Agricultural Engineering Department, University of California Davis, Davis, California, USA
| | - Daphne Gille
- California Department of Water Resources, Division of Integrated Science and Engineering, West Sacramento, California, USA
| | - Melinda Baerwald
- California Department of Water Resources, Division of Integrated Science and Engineering, West Sacramento, California, USA
| | - Amanda J Finger
- Department of Animal Science, University of California Davis, Davis, California, USA
| |
Collapse
|
7
|
Zetzsche J, Fallet M. To live or let die? Epigenetic adaptations to climate change-a review. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae009. [PMID: 39139701 PMCID: PMC11321362 DOI: 10.1093/eep/dvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
Anthropogenic activities are responsible for a wide array of environmental disturbances that threaten biodiversity. Climate change, encompassing temperature increases, ocean acidification, increased salinity, droughts, and floods caused by frequent extreme weather events, represents one of the most significant environmental alterations. These drastic challenges pose ecological constraints, with over a million species expected to disappear in the coming years. Therefore, organisms must adapt or face potential extinctions. Adaptations can occur not only through genetic changes but also through non-genetic mechanisms, which often confer faster acclimatization and wider variability ranges than their genetic counterparts. Among these non-genetic mechanisms are epigenetics defined as the study of molecules and mechanisms that can perpetuate alternative gene activity states in the context of the same DNA sequence. Epigenetics has received increased attention in the past decades, as epigenetic mechanisms are sensitive to a wide array of environmental cues, and epimutations spread faster through populations than genetic mutations. Epimutations can be neutral, deleterious, or adaptative and can be transmitted to subsequent generations, making them crucial factors in both long- and short-term responses to environmental fluctuations, such as climate change. In this review, we compile existing evidence of epigenetic involvement in acclimatization and adaptation to climate change and discuss derived perspectives and remaining challenges in the field of environmental epigenetics. Graphical Abstract.
Collapse
Affiliation(s)
- Jonas Zetzsche
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manon Fallet
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| |
Collapse
|
8
|
Xin X, Li P, Zhao X, Yu Y, Wang W, Jin G, Wang J, Sun L, Zhang D, Zhang F, Yu S, Su T. Temperature-dependent jumonji demethylase modulates flowering time by targeting H3K36me2/3 in Brassica rapa. Nat Commun 2024; 15:5470. [PMID: 38937441 PMCID: PMC11211497 DOI: 10.1038/s41467-024-49721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
Global warming has a severe impact on the flowering time and yield of crops. Histone modifications have been well-documented for their roles in enabling plant plasticity in ambient temperature. However, the factor modulating histone modifications and their involvement in habitat adaptation have remained elusive. In this study, through genome-wide pattern analysis and quantitative-trait-locus (QTL) mapping, we reveal that BrJMJ18 is a candidate gene for a QTL regulating thermotolerance in thermotolerant B. rapa subsp. chinensis var. parachinensis (or Caixin, abbreviated to Par). BrJMJ18 encodes an H3K36me2/3 Jumonji demethylase that remodels H3K36 methylation across the genome. We demonstrate that the BrJMJ18 allele from Par (BrJMJ18Par) influences flowering time and plant growth in a temperature-dependent manner via characterizing overexpression and CRISPR/Cas9 mutant plants. We further show that overexpression of BrJMJ18Par can modulate the expression of BrFLC3, one of the five BrFLC orthologs. Furthermore, ChIP-seq and transcriptome data reveal that BrJMJ18Par can regulate chlorophyll biosynthesis under high temperatures. We also demonstrate that three amino acid mutations may account for function differences in BrJMJ18 between subspecies. Based on these findings, we propose a working model in which an H3K36me2/3 demethylase, while not affecting agronomic traits under normal conditions, can enhance resilience under heat stress in Brassica rapa.
Collapse
Affiliation(s)
- Xiaoyun Xin
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Peirong Li
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Xiuyun Zhao
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Yangjun Yu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Weihong Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Guihua Jin
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| | - Jiao Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| | - Liling Sun
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| | - Deshuang Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Fenglan Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China.
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China.
| | - Shuancang Yu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China.
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China.
| | - Tongbing Su
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China.
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China.
| |
Collapse
|
9
|
Shahmohamadloo RS, Fryxell JM, Rudman SM. Transgenerational epigenetic inheritance increases trait variation but is not adaptive. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589575. [PMID: 38659883 PMCID: PMC11042258 DOI: 10.1101/2024.04.15.589575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Understanding processes that can produce adaptive phenotypic shifts in response to rapid environmental change is critical to reducing biodiversity loss. The ubiquity of environmentally induced epigenetic marks has led to speculation that epigenetic inheritance could potentially enhance population persistence in response to environmental change. Yet, the magnitude and fitness consequences of epigenetic marks carried beyond maternal inheritance are largely unknown. Here, we tested how transgenerational epigenetic inheritance (TEI) shapes the phenotypic response of Daphnia clones to the environmental stressor Microcystis. We split individuals from each of eight genotypes into exposure and control treatments (F0 generation) and tracked the fitness of their descendants to the F3 generation. We found transgenerational epigenetic exposure to Microcystis led to reduced rates of survival and individual growth and no consistent effect on offspring production. Increase in trait variance in the F3 relative to F0 generations suggests potential for heritable bet hedging driven by TEI, which could impact population dynamics. Our findings are counter to the working hypothesis that TEI is a generally adaptive mechanism likely to prevent extinction for populations inhabiting rapidly changing environments.
Collapse
Affiliation(s)
- René S. Shahmohamadloo
- School of Biological Sciences, Washington State University, Vancouver, WA, United States
| | - John M. Fryxell
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Seth M. Rudman
- School of Biological Sciences, Washington State University, Vancouver, WA, United States
| |
Collapse
|
10
|
Göpel T, Burggren WW. Temperature and hypoxia trigger developmental phenotypic plasticity of cardiorespiratory physiology and growth in the parthenogenetic marbled crayfish, Procambarus virginalis Lyko, 2017. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111562. [PMID: 38113959 DOI: 10.1016/j.cbpa.2023.111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/06/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Attempting to differentiate phenotypic variation caused by environmentally-induced alterations in gene expression from that caused by actual allelic differences can be experimentally difficult. Environmental variables must be carefully controlled and then interindividual genetic differences ruled out as sources of phenotypic variation. We investigated phenotypic variability of cardiorespiratory physiology as well as biometric traits in the parthenogenetically-reproducing marbled crayfish Procambarus virginalis Lyko, 2017, all offspring being genetically identical clones. Populations of P. virginalis were reared from eggs tank-bred at four different temperatures (16, 19, 22 and 25 °C) or two different oxygen levels (9.5 and 20 kPa). Then, at Stage 3 and 4 juvenile stages, physiological (heart rate, oxygen consumption) and morphological (carapace length, body mass) variables were measured. Heart rate and oxygen consumption measured at 23 °C showed only small effects of rearing temperature in Stage 3 juveniles, with larger effects evident in older, Stage 4 juveniles. Additionally, coefficients of variation were calculated to compare our data to previously published data on P. virginalis as well as sexually-reproducing crayfish. Comparison revealed that carapace length, body mass and heart rate (but not oxygen consumption) indeed showed lower, yet notable coefficients of variation in clonal crayfish. Yet, despite being genetically identical, significant variation in their morphology and physiology in response to different rearing conditions nonetheless occurred in marbled crayfish. This suggests that epigenetically induced phenotypic variation might play a significant role in asexual but also sexually reproducing species.
Collapse
Affiliation(s)
- Torben Göpel
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, USA; Multiscale Biology, Georg-August-Universität Göttingen, Göttingen, Germany.
| | - Warren W Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| |
Collapse
|
11
|
Konstantinidis I, Sætrom P, Brieuc S, Jakobsen KS, Liedtke H, Pohlmann C, Tsoulia T, Fernandes JMO. DNA hydroxymethylation differences underlie phenotypic divergence of somatic growth in Nile tilapia reared in common garden. Epigenetics 2023; 18:2282323. [PMID: 38010265 PMCID: PMC10732659 DOI: 10.1080/15592294.2023.2282323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Phenotypic plasticity of metabolism and growth are essential for adaptation to new environmental conditions, such as those experienced during domestication. Epigenetic regulation plays a key role in this process but the underlying mechanisms are poorly understood, especially in the case of hydroxymethylation. Using reduced representation 5-hydroxymethylcytosine profiling, we compared the liver hydroxymethylomes in full-sib Nile tilapia with distinct growth rates (3.8-fold difference) and demonstrated that DNA hydroxymethylation is strongly associated with phenotypic divergence of somatic growth during the early stages of domestication. The 2677 differentially hydroxymethylated cytosines between fast- and slow-growing fish were enriched within gene bodies (79%), indicating a pertinent role in transcriptional regulation. Moreover, they were found in genes involved in biological processes related to skeletal system and muscle structure development, and there was a positive association between somatic growth and 5hmC levels in genes coding for growth factors, kinases and receptors linked to myogenesis. Single nucleotide polymorphism analysis revealed no genetic differentiation between fast- and slow-growing fish. In addition to unveiling a new link between DNA hydroxymethylation and epigenetic regulation of growth in fish during the initial stages of domestication, this study suggests that epimarkers may be applied in selective breeding programmes for superior phenotypes.
Collapse
Affiliation(s)
| | - Pål Sætrom
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
- Bioinformatics core facility-BioCore, Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim, Norway
| | - S.O. Brieuc
- Center for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kjetill S. Jakobsen
- Center for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Hannes Liedtke
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Caroline Pohlmann
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Thomais Tsoulia
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | |
Collapse
|
12
|
Hall D. MIL-CELL: a tool for multi-scale simulation of yeast replication and prion transmission. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:673-704. [PMID: 37670150 PMCID: PMC10682183 DOI: 10.1007/s00249-023-01679-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023]
Abstract
The single-celled baker's yeast, Saccharomyces cerevisiae, can sustain a number of amyloid-based prions, the three most prominent examples being [URE3], [PSI+], and [PIN+]. In the laboratory, haploid S. cerevisiae cells of a single mating type can acquire an amyloid prion in one of two ways (i) spontaneous nucleation of the prion within the yeast cell, and (ii) receipt via mother-to-daughter transmission during the cell division cycle. Similarly, prions can be lost due to (i) dissolution of the prion amyloid by its breakage into non-amyloid monomeric units, or (ii) preferential donation/retention of prions between the mother and daughter during cell division. Here we present a computational tool (Monitoring Induction and Loss of prions in Cells; MIL-CELL) for modelling these four general processes using a multiscale approach describing both spatial and kinetic aspects of the yeast life cycle and the amyloid-prion behavior. We describe the workings of the model, assumptions upon which it is based and some interesting simulation results pertaining to the wave-like spread of the epigenetic prion elements through the yeast population. MIL-CELL is provided as a stand-alone GUI executable program for free download with the paper. MIL-CELL is equipped with a relational database allowing all simulated properties to be searched, collated and graphed. Its ability to incorporate variation in heritable properties means MIL-CELL is also capable of simulating loss of the isogenic nature of a cell population over time. The capability to monitor both chronological and reproductive age also makes MIL-CELL potentially useful in studies of cell aging.
Collapse
Affiliation(s)
- Damien Hall
- WPI Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1164, Japan.
| |
Collapse
|
13
|
Burggren WW, Mendez-Sanchez JF. "Bet hedging" against climate change in developing and adult animals: roles for stochastic gene expression, phenotypic plasticity, epigenetic inheritance and adaptation. Front Physiol 2023; 14:1245875. [PMID: 37869716 PMCID: PMC10588650 DOI: 10.3389/fphys.2023.1245875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Animals from embryos to adults experiencing stress from climate change have numerous mechanisms available for enhancing their long-term survival. In this review we consider these options, and how viable they are in a world increasingly experiencing extreme weather associated with climate change. A deeply understood mechanism involves natural selection, leading to evolution of new adaptations that help cope with extreme and stochastic weather events associated with climate change. While potentially effective at staving off environmental challenges, such adaptations typically occur very slowly and incrementally over evolutionary time. Consequently, adaptation through natural selection is in most instances regarded as too slow to aid survival in rapidly changing environments, especially when considering the stochastic nature of extreme weather events associated with climate change. Alternative mechanisms operating in a much shorter time frame than adaptation involve the rapid creation of alternate phenotypes within a life cycle or a few generations. Stochastic gene expression creates multiple phenotypes from the same genotype even in the absence of environmental cues. In contrast, other mechanisms for phenotype change that are externally driven by environmental clues include well-understood developmental phenotypic plasticity (variation, flexibility), which can enable rapid, within-generation changes. Increasingly appreciated are epigenetic influences during development leading to rapid phenotypic changes that can also immediately be very widespread throughout a population, rather than confined to a few individuals as in the case of favorable gene mutations. Such epigenetically-induced phenotypic plasticity can arise rapidly in response to stressors within a generation or across a few generations and just as rapidly be "sunsetted" when the stressor dissipates, providing some capability to withstand environmental stressors emerging from climate change. Importantly, survival mechanisms resulting from adaptations and developmental phenotypic plasticity are not necessarily mutually exclusive, allowing for classic "bet hedging". Thus, the appearance of multiple phenotypes within a single population provides for a phenotype potentially optimal for some future environment. This enhances survival during stochastic extreme weather events associated with climate change. Finally, we end with recommendations for future physiological experiments, recommending in particular that experiments investigating phenotypic flexibility adopt more realistic protocols that reflect the stochastic nature of weather.
Collapse
Affiliation(s)
- Warren W. Burggren
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Jose Fernando Mendez-Sanchez
- Laboratorio de Ecofisiología Animal, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
14
|
Laine VN, Sepers B, Lindner M, Gawehns F, Ruuskanen S, van Oers K. An ecologist's guide for studying DNA methylation variation in wild vertebrates. Mol Ecol Resour 2023; 23:1488-1508. [PMID: 35466564 DOI: 10.1111/1755-0998.13624] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/29/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022]
Abstract
The field of molecular biology is advancing fast with new powerful technologies, sequencing methods and analysis software being developed constantly. Commonly used tools originally developed for research on humans and model species are now regularly used in ecological and evolutionary research. There is also a growing interest in the causes and consequences of epigenetic variation in natural populations. Studying ecological epigenetics is currently challenging, especially for vertebrate systems, because of the required technical expertise, complications with analyses and interpretation, and limitations in acquiring sufficiently high sample sizes. Importantly, neglecting the limitations of the experimental setup, technology and analyses may affect the reliability and reproducibility, and the extent to which unbiased conclusions can be drawn from these studies. Here, we provide a practical guide for researchers aiming to study DNA methylation variation in wild vertebrates. We review the technical aspects of epigenetic research, concentrating on DNA methylation using bisulfite sequencing, discuss the limitations and possible pitfalls, and how to overcome them through rigid and reproducible data analysis. This review provides a solid foundation for the proper design of epigenetic studies, a clear roadmap on the best practices for correct data analysis and a realistic view on the limitations for studying ecological epigenetics in vertebrates. This review will help researchers studying the ecological and evolutionary implications of epigenetic variation in wild populations.
Collapse
Affiliation(s)
- Veronika N Laine
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Bernice Sepers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Behavioural Ecology Group, Wageningen University & Research (WUR), Wageningen, The Netherlands
| | - Melanie Lindner
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Fleur Gawehns
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Suvi Ruuskanen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Department of Biology, University of Turku, Finland
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Behavioural Ecology Group, Wageningen University & Research (WUR), Wageningen, The Netherlands
| |
Collapse
|
15
|
Ciurea AV, Mohan AG, Covache-Busuioc RA, Costin HP, Glavan LA, Corlatescu AD, Saceleanu VM. Unraveling Molecular and Genetic Insights into Neurodegenerative Diseases: Advances in Understanding Alzheimer's, Parkinson's, and Huntington's Diseases and Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:10809. [PMID: 37445986 DOI: 10.3390/ijms241310809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Neurodegenerative diseases are, according to recent studies, one of the main causes of disability and death worldwide. Interest in molecular genetics has started to experience exponential growth thanks to numerous advancements in technology, shifts in the understanding of the disease as a phenomenon, and the change in the perspective regarding gene editing and the advantages of this action. The aim of this paper is to analyze the newest approaches in genetics and molecular sciences regarding four of the most important neurodegenerative disorders: Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. We intend through this review to focus on the newest treatment, diagnosis, and predictions regarding this large group of diseases, in order to obtain a more accurate analysis and to identify the emerging signs that could lead to a better outcome in order to increase both the quality and the life span of the patient. Moreover, this review could provide evidence of future possible novel therapies that target the specific genes and that could be useful to be taken into consideration when the classical approaches fail to shed light.
Collapse
Affiliation(s)
- Alexandru Vlad Ciurea
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| | - Aurel George Mohan
- Department of Neurosurgery, Bihor County Emergency Clinical Hospital, 410167 Oradea, Romania
- Department of Neurosurgery, Faculty of Medicine, Oradea University, 410610 Oradea, Romania
| | | | - Horia-Petre Costin
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Luca-Andrei Glavan
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Antonio-Daniel Corlatescu
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Vicentiu Mircea Saceleanu
- Neurosurgery Department, Sibiu County Emergency Hospital, 550245 Sibiu, Romania
- Neurosurgery Department, "Lucian Blaga" University of Medicine, 550024 Sibiu, Romania
| |
Collapse
|
16
|
Peterson DR, Seemann F, Wan MT, Ye RR, Chen L, Lai KP, Yu P, Kong RYC, Au DWT. Multigenerational impacts of EE2 on reproductive fitness and immune competence of marine medaka. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106584. [PMID: 37267806 DOI: 10.1016/j.aquatox.2023.106584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/16/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023]
Abstract
Estrogenic endocrine disrupting chemicals (EEDC) have been suspected to impact offspring in a transgenerational manner via modifications of the germline epigenome in the directly exposed generations. A holistic assessment of the concentration/ exposure duration-response, threshold level, and critical exposure windows (parental gametogenesis and embryogenesis) for the transgenerational evaluation of reproduction and immune compromise concomitantly will inform the overall EEDC exposure risk. We conducted a multigenerational study using the environmental estrogen, 17α-ethinylestradiol (EE2), and the marine laboratory model fish Oryzias melastigma (adult, F0) and their offspring (F1-F4) to identify transgenerationally altered offspring generations and phenotype persistence. Three exposure scenarios were used: short parental exposure, long parental exposure, and a combined parental and embryonic exposure using two concentrations of EE2 (33ng/L, 113ng/L). The reproductive fitness of fish was evaluated by assessing fecundity, fertilization rate, hatching success, and sex ratio. Immune competence was assessed in adults via a host-resistance assay. EE2 exposure during both parental gametogenesis and embryogenesis was found to induce concentration/ exposure duration-dependent transgenerational reproductive effects in the unexposed F4 offspring. Furthermore, embryonic exposure to 113 ng/L EE2 induced feminization of the directly exposed F1 generation, followed by subsequent masculinization of the F2 and F3 generations. A sex difference was found in the transgenerationally impaired reproductive output with F4 females being sensitive to the lowest concentration of EE2 (33 ng/L) upon long-term ancestral parent exposure (21 days). Conversely, F4 males were affected by ancestral embryonic EE2 exposure. No definitive transgenerational impacts on immune competence were identified in male or female offspring. In combination, these results indicate that EEDCs can be transgenerational toxicants that may negatively impact the reproductive success and population sustainability of fish populations.
Collapse
Affiliation(s)
- Drew R Peterson
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Frauke Seemann
- Center for Coastal Studies, Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412-5800, USA.
| | - Miles T Wan
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Roy R Ye
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Lianguo Chen
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Keng P Lai
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR; Guilin Medical University, Guilin, 541004, PR China
| | - Peter Yu
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Richard Y C Kong
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Doris W T Au
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR
| |
Collapse
|
17
|
Xu P, Lin H, Jiao H, Zhao J, Wang X. Chicken embryo thermal manipulation alleviates postnatal heat stress-induced jejunal inflammation by inhibiting Transient Receptor Potential V4. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114851. [PMID: 37004430 DOI: 10.1016/j.ecoenv.2023.114851] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/16/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Intestinal inflammation induced by heat stress is an important factor restricting the healthy growth of broilers. The aim of this study was to evaluate the effect of chicken embryo thermal manipulation (39.5 ℃ and 65 % RH for 3 h daily during 16-18 th embryonic age) on intestinal inflammation in broilers under postnatal heat stress and to investigate whether transient receptor potential V4 (TRPV4) plays a role in this process. Our results suggest that broilers with embryo thermal manipulation experience could delay the rising of rectal temperature during postnatal heat stress (P < 0.05), and had better production performance (P < 0.05), intestinal morphological parameters (P < 0.05) and higher expression of tight junction related genes (P < 0.05). The increased serum lipopolysaccharide (LPS) content, activation of nuclear factor-kappa B (NF-κB) signaling pathway and the increased expression of pro-inflammatory cytokines interleukin (IL)-1β, IL-6 and tumor necrosis factor alpha (TNF-α) in jejunum during postnatal heat stress were alleviated by embryo thermal manipulation (P < 0.05). Postnatal heat stress induced an increase in mRNA and protein expression of TRPV4 in jejunum (P < 0.05), but had no effect on broilers which experienced embryo thermal manipulation (P > 0.05). Inhibition of TRPV4 reduced LPS-induced Ca2+ influx and restrained the activation of NF-κB signaling pathway and the expression of downstream pro-inflammatory cytokines (P < 0.05). The expression of DNA methyltransferase (DNMT) in the jejunum of broilers exposed to postnatal heat stress was increased by embryo thermal manipulation (P < 0.05). The DNA methylation level of TRPV4 promoter region was detected, and the results showed that embryo thermal manipulation increased the DNA methylation level of TRPV4 promoter region (P < 0.05). In conclusion, Chicken embryo thermal manipulation can alleviate jejunal inflammation in broilers under postnatal heat stress. This may be due to the decreased circulating LPS or the increased DNA methylation level in the promoter region of TRPV4, which inhibits TRPV4 expression, thereby reducing Ca2+ influx, and finally alleviating inflammation by affecting NF-κB signaling pathway. The work is an attempt to understand the mechanism involved in alleviation of adverse effects of heat stress during postnatal life through prenatal thermal manipulation and to reveal the important role of epigenetics.
Collapse
Affiliation(s)
- Peng Xu
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| | - Hai Lin
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| | - Hongchao Jiao
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| | - Jingpeng Zhao
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| | - Xiaojuan Wang
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
18
|
van Oers K, van den Heuvel K, Sepers B. The Epigenetics of Animal Personality. Neurosci Biobehav Rev 2023; 150:105194. [PMID: 37094740 DOI: 10.1016/j.neubiorev.2023.105194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
Animal personality, consistent individual differences in behaviour, is an important concept for understanding how individuals vary in how they cope with environmental challenges. In order to understand the evolutionary significance of animal personality, it is crucial to understand the underlying regulatory mechanisms. Epigenetic marks such as DNA methylation are hypothesised to play a major role in explaining variation in phenotypic changes in response to environmental alterations. Several characteristics of DNA methylation also align well with the concept of animal personality. In this review paper, we summarise the current literature on the role that molecular epigenetic mechanisms may have in explaining personality variation. We elaborate on the potential for epigenetic mechanisms to explain behavioural variation, behavioural development and temporal consistency in behaviour. We then suggest future routes for this emerging field and point to potential pitfalls that may be encountered. We conclude that a more inclusive approach is needed for studying the epigenetics of animal personality and that epigenetic mechanisms cannot be studied without considering the genetic background.
Collapse
Affiliation(s)
- Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Behavioural Ecology Group, Wageningen University & Research (WUR), Wageningen, the Netherlands.
| | - Krista van den Heuvel
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Behavioural Ecology Group, Wageningen University & Research (WUR), Wageningen, the Netherlands
| | - Bernice Sepers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Behavioural Ecology Group, Wageningen University & Research (WUR), Wageningen, the Netherlands
| |
Collapse
|
19
|
Kim J, Choi J. Trans- and Multigenerational Effects of Isothiazolinone Biocide CMIT/MIT on Genotoxicity and Epigenotoxicity in Daphnia magna. TOXICS 2023; 11:388. [PMID: 37112615 PMCID: PMC10140887 DOI: 10.3390/toxics11040388] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
The mixture of 5-chloro-2-methylisothiazol-3(2H)-one and 2-methylisothiazol-3(2H)-one, CMIT/MIT, is an isothiazolinone biocide that is consistently detected in aquatic environments because of its broad-spectrum usage in industrial fields. Despite concerns about ecotoxicological risks and possible multigenerational exposure, toxicological information on CMIT/MIT is very limited to human health and within-generational toxicity. Furthermore, epigenetic markers altered by chemical exposure can be transmitted over generations, but the role of these changes in phenotypic responses and toxicity with respect to trans- and multigenerational effects is poorly understood. In this study, the toxicity of CMIT/MIT on Daphnia magna was evaluated by measuring various endpoints (mortality, reproduction, body size, swimming behavior, and proteomic expression), and its trans- and multigenerational effects were investigated over four consecutive generations. The genotoxicity and epigenotoxicity of CMIT/MIT were examined using a comet assay and global DNA methylation measurements. The results show deleterious effects on various endpoints and differences in response patterns according to different exposure histories. Parental effects were transgenerational or recovered after exposure termination, while multigenerational exposure led to acclimatory/defensive responses. Changes in DNA damage were closely associated with altered reproduction in daphnids, but their possible relationship with global DNA methylation was not found. Overall, this study provides ecotoxicological information on CMIT/MIT relative to multifaceted endpoints and aids in understanding multigenerational phenomena under CMIT/MIT exposure. It also emphasizes the consideration of exposure duration and multigenerational observations in evaluating ecotoxicity and the risk management of isothiazolinone biocides.
Collapse
|
20
|
Wilson R, Le Bourgeois M, Perez M, Sarkies P. Fluctuations in chromatin state at regulatory loci occur spontaneously under relaxed selection and are associated with epigenetically inherited variation in C. elegans gene expression. PLoS Genet 2023; 19:e1010647. [PMID: 36862744 PMCID: PMC10013927 DOI: 10.1371/journal.pgen.1010647] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/14/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023] Open
Abstract
Some epigenetic information can be transmitted between generations without changes in the underlying DNA sequence. Changes in epigenetic regulators, termed epimutations, can occur spontaneously and be propagated in populations in a manner reminiscent of DNA mutations. Small RNA-based epimutations occur in C. elegans and persist for around 3-5 generations on average. Here, we explored whether chromatin states also undergo spontaneous change and whether this could be a potential alternative mechanism for transgenerational inheritance of gene expression changes. We compared the chromatin and gene expression profiles at matched time points from three independent lineages of C. elegans propagated at minimal population size. Spontaneous changes in chromatin occurred in around 1% of regulatory regions each generation. Some were heritable epimutations and were significantly enriched for heritable changes in expression of nearby protein-coding genes. Most chromatin-based epimutations were short-lived but a subset had longer duration. Genes subject to long-lived epimutations were enriched for multiple components of xenobiotic response pathways. This points to a possible role for epimutations in adaptation to environmental stressors.
Collapse
Affiliation(s)
- Rachel Wilson
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London, United Kingdom.,Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Marcos Perez
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Peter Sarkies
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
The Influence of Conventional and Innovative Rehabilitation Methods on Brain Plasticity Induction in Patients with Multiple Sclerosis. J Clin Med 2023; 12:jcm12051880. [PMID: 36902665 PMCID: PMC10003891 DOI: 10.3390/jcm12051880] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/15/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
Physical rehabilitation and physical activity are known non-pharmacological methods of treating multiple sclerosis. Both lead to an improvement in physical fitness in patients with movement deficits while improving cognitive function and coordination. These changes occur through the induction of brain plasticity. This review presents the basics of the induction of brain plasticity in response to physical rehabilitation. It also analyzes the latest literature evaluating the impact of traditional physical rehabilitation methods, as well as innovative virtual reality-based rehabilitation methods, on the induction of brain plasticity in patients with multiple sclerosis.
Collapse
|
22
|
Lopes NA, Ambeskovic M, King SE, Faraji J, Soltanpour N, Falkenberg EA, Scheidl T, Patel M, Fang X, Metz GAS, Olson DM. Environmental Enrichment Promotes Transgenerational Programming of Uterine Inflammatory and Stress Markers Comparable to Gestational Chronic Variable Stress. Int J Mol Sci 2023; 24:ijms24043734. [PMID: 36835144 PMCID: PMC9962069 DOI: 10.3390/ijms24043734] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Prenatal maternal stress is linked to adverse pregnancy and infant outcomes, including shortened gestation lengths, low birth weights, cardio-metabolic dysfunction, and cognitive and behavioural problems. Stress disrupts the homeostatic milieu of pregnancy by altering inflammatory and neuroendocrine mediators. These stress-induced phenotypic changes can be passed on to the offspring epigenetically. We investigated the effects of gestational chronic variable stress (CVS) in rats using restraint and social isolation stress in the parental F0 generation and its transgenerational transmission across three generations of female offspring (F1-F3). A subset of F1 rats was housed in an enriched environment (EE) to mitigate the adverse effects of CVS. We found that CVS is transmitted across generations and induces inflammatory changes in the uterus. CVS did not alter any gestational lengths or birth weights. However, inflammatory and endocrine markers changed in the uterine tissues of stressed mothers and their offspring, suggesting that stress is transgenerationally transmitted. The F2 offspring reared in EE had increased birth weights, but their uterine gene expression patterns remained comparable to those of stressed animals. Thus, ancestral CVS induced changes transgenerationally in fetal programming of uterine stress markers over three generations of offspring, and EE housing did not mitigate these effects.
Collapse
Affiliation(s)
- Nayara A. Lopes
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Mirela Ambeskovic
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Stephanie E. King
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Jamshid Faraji
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Nasrin Soltanpour
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Erin A. Falkenberg
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Taylor Scheidl
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Mansi Patel
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Xin Fang
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Gerlinde A. S. Metz
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Correspondence: (G.A.S.M.); (D.M.O.); Tel.: +1-403-394-3992 (G.A.S.M.); +1-780-492-8559 (D.M.O.)
| | - David M. Olson
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence: (G.A.S.M.); (D.M.O.); Tel.: +1-403-394-3992 (G.A.S.M.); +1-780-492-8559 (D.M.O.)
| |
Collapse
|
23
|
Vogt G. Environmental Adaptation of Genetically Uniform Organisms with the Help of Epigenetic Mechanisms-An Insightful Perspective on Ecoepigenetics. EPIGENOMES 2022; 7:1. [PMID: 36648862 PMCID: PMC9844400 DOI: 10.3390/epigenomes7010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Organisms adapt to different environments by selection of the most suitable phenotypes from the standing genetic variation or by phenotypic plasticity, the ability of single genotypes to produce different phenotypes in different environments. Because of near genetic identity, asexually reproducing populations are particularly suitable for the investigation of the potential and molecular underpinning of the latter alternative in depth. Recent analyses on the whole-genome scale of differently adapted clonal animals and plants demonstrated that epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNAs are among the molecular pathways supporting phenotypic plasticity and that epigenetic variation is used to stably adapt to different environments. Case studies revealed habitat-specific epigenetic fingerprints that were maintained over subsequent years pointing at the existence of epigenetic ecotypes. Environmentally induced epimutations and corresponding gene expression changes provide an ideal means for fast and directional adaptation to changing or new conditions, because they can synchronously alter phenotypes in many population members. Because microorganisms inclusive of human pathogens also exploit epigenetically mediated phenotypic variation for environmental adaptation, this phenomenon is considered a universal biological principle. The production of different phenotypes from the same DNA sequence in response to environmental cues by epigenetic mechanisms also provides a mechanistic explanation for the "general-purpose genotype hypothesis" and the "genetic paradox of invasions".
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| |
Collapse
|
24
|
Baranov VY, Vasil’ev AG. Phenotypic Plasticity of the Amur Sleeper (Perccottus glenii) Invasive Populations during the Colonization of Water Bodies. RUSSIAN JOURNAL OF BIOLOGICAL INVASIONS 2022. [DOI: 10.1134/s2075111722040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
Comas-Armangue G, Makharadze L, Gomez-Velazquez M, Teperino R. The Legacy of Parental Obesity: Mechanisms of Non-Genetic Transmission and Reversibility. Biomedicines 2022; 10:biomedicines10102461. [PMID: 36289722 PMCID: PMC9599218 DOI: 10.3390/biomedicines10102461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022] Open
Abstract
While a dramatic increase in obesity and related comorbidities is being witnessed, the underlying mechanisms of their spread remain unresolved. Epigenetic and other non-genetic mechanisms tend to be prominent candidates involved in the establishment and transmission of obesity and associated metabolic disorders to offspring. Here, we review recent findings addressing those candidates, in the context of maternal and paternal influences, and discuss the effectiveness of preventive measures.
Collapse
Affiliation(s)
- Gemma Comas-Armangue
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
| | - Lela Makharadze
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
| | - Melisa Gomez-Velazquez
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
- Correspondence: (M.G.-V.); (R.T.)
| | - Raffaele Teperino
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
- Correspondence: (M.G.-V.); (R.T.)
| |
Collapse
|
26
|
Chapelle V, Silvestre F. Population Epigenetics: The Extent of DNA Methylation Variation in Wild Animal Populations. EPIGENOMES 2022; 6:31. [PMID: 36278677 PMCID: PMC9589984 DOI: 10.3390/epigenomes6040031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Population epigenetics explores the extent of epigenetic variation and its dynamics in natural populations encountering changing environmental conditions. In contrast to population genetics, the basic concepts of this field are still in their early stages, especially in animal populations. Epigenetic variation may play a crucial role in phenotypic plasticity and local adaptation as it can be affected by the environment, it is likely to have higher spontaneous mutation rate than nucleotide sequences do, and it may be inherited via non-mendelian processes. In this review, we aim to bring together natural animal population epigenetic studies to generate new insights into ecological epigenetics and its evolutionary implications. We first provide an overview of the extent of DNA methylation variation and its autonomy from genetic variation in wild animal population. Second, we discuss DNA methylation dynamics which create observed epigenetic population structures by including basic population genetics processes. Then, we highlight the relevance of DNA methylation variation as an evolutionary mechanism in the extended evolutionary synthesis. Finally, we suggest new research directions by highlighting gaps in the knowledge of the population epigenetics field. As for our results, DNA methylation diversity was found to reveal parameters that can be used to characterize natural animal populations. Some concepts of population genetics dynamics can be applied to explain the observed epigenetic structure in natural animal populations. The set of recent advancements in ecological epigenetics, especially in transgenerational epigenetic inheritance in wild animal population, might reshape the way ecologists generate predictive models of the capacity of organisms to adapt to changing environments.
Collapse
Affiliation(s)
- Valentine Chapelle
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth, and Environment, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | | |
Collapse
|
27
|
Gudynaitė-Franckevičienė V, Pliūra A. Performance and Genetic Parameters of Poplar Hybrids and Clones in a Field Trial Are Modified by Contrasting Environmental Conditions during the Vegetative Propagation Phase. PLANTS (BASEL, SWITZERLAND) 2022; 11:2401. [PMID: 36145802 PMCID: PMC9505758 DOI: 10.3390/plants11182401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022]
Abstract
This study investigates epigenetics-like phenomena: how performance phenotypic plasticity, genotypic variation, and the heritability of growth traits and total phenolic compounds of Populus hybrids and clones in field trials may be modified by contrasting temperature conditions at their vegetation propagation phase. The significant effect of rooting-growing conditions on further tree performance in field trials was found for height increment in 2020, although the interaction hybrid by rooting-growing conditions was highly significant for phenolic compounds, tree height, and diameter, meaning that the performance of some hybrids was affected by rooting-growing conditions, thus demonstrating epigenetic-like effects. For phenolic compounds, interactions were also significant at the clonal level. High estimates of ecovalency indicate that some hybrids are ecologically sensitive, and epigenetic-like phenomena might occur. Hybrid P. balsamifera × P. trichocarpa is characterized by high ecovalency and specific adaptations according to mean tree height when vegetatively propagated under different rooting-growing conditions. Low estimates of P. deltoides × P. trichocarpa ecovalency demonstrate a general adaptation according to mean tree height in a field trial. Vegetative propagation conditions have also altered the genetic variation of traits in trees being planted in field trials.
Collapse
|
28
|
PHENOTYPIC PLASTICITY OF THE AMUR SLEEPER (<i>PERCCOTTUS GLENII</i>) INVASIVE POPULATIONS DURING THE COLONISATION OF WATER BODIES. RUSSIAN JOURNAL OF BIOLOGICAL INVASIONS 2022. [DOI: 10.35885/1996-1499-15-3-18-37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The variability of the body shape in invasive fish species - Amur sleeper (Perccottus glenii) - from natural and anthropogenic water bodies of the Middle Urals with different completeness of the species composition was studied by the use of geometric morphometrics methods. We compared samples of the Amur sleeper from neighboring adjacent water bodies - Lake Shitovskoye and two peat quarries filled with water. Samples of different seasons and years of collection were taken in the lake, which allowed us to correlate the influence of climate and season on the morphogenesis of the Amur sleeper. According to the control catches, the fish community of the lake is represented by 10 species, i.e. it has a poly-species composition: 6 native species (roach, river perch, ruff, tench, crucian carp, and pike) and 4 alien species (bream, belica, Amur sleeper, carp). The share of the Amur sleeper in the control catches in the lake was no more than 3-5%. In the water bodies of peat quarries, oligoid communities of 2 species were formed (Amur sleeper and crucian carp). Discriminant analysis of the body shape of fish from the lake and peat pits allowed us to reveal the origin of 93-98% of individuals. Comparing the samples of the younger (2+-3+ years) and older (4+-7+ years) age groups of fish divided by sex and biotope, different directions of changes in the shape of the Amur sleeper body in ontogenesis were revealed between the biotopic groups. The range of age variability was almost 5 times lesser than the intergroup biotopic differences of fish from ecologically contrasting water bodies. Seasonal and inter-annual intra-population variability of body shape in the Amur sleeper in the lake is significantly lesser pronounced than the intergroup differences between samples from the lake and peat quarries. Sex differences accounted for only 6% of the intergroup variance (3 times lower than the level of age differences), and in the poly-species lake community, sex differences decrease with age, and in the water bodies of quarries, on the contrary, they increase. Within-group morphological disparity ( MNND ) is significantly higher in samples from peat quarries. The data obtained are of a key character, since they characterize a high degree of phenotypic plasticity of the Amur sleeper and a rapid adaptive restructuring of its morphogenesis to different conditions of natural and anthropogenic water bodies of the Middle Urals.
Collapse
|
29
|
Göpel T, Burggren WW. Insufficient reporting of experimental variables as a cause for nonreproducibility in animal physiology? A case study. Am J Physiol Regul Integr Comp Physiol 2022; 323:R363-R374. [PMID: 35816721 PMCID: PMC9467468 DOI: 10.1152/ajpregu.00026.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/22/2022]
Abstract
Nonreproducibility in scientific investigations has been explained by inadequately reporting methodology, honest error, and even misconduct. We hypothesized that, within the field of animal physiology, the most parsimonious explanation for nonreproducibility is inadequate reporting of key methodological details. We further hypothesized that implementation of relatively recently released reporting guidelines has positively impacted journal article quality, as measured by completeness of the methodology descriptions. We analyzed 84 research articles published in five primarily organismal animal physiology journals in 2008-2010 (generally before current guidelines) and 2018-2020. Compliance for reporting 34 variables referring to biology, experiments, and data collection was assessed. Reporting compliance was just ∼61% in 2008-2010, rising only slightly to 67.5% for 2018-2020. Only 21% of the reported variables showed significant differences across the period from 2008-2020. We conclude that, despite attempts by societies and journals to promote greater reporting compliance, such efforts have so far been relatively unsuccessful in the field of animal physiology.
Collapse
Affiliation(s)
- Torben Göpel
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, Texas
| | - Warren W Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, Texas
| |
Collapse
|
30
|
Gupta A, Nair S. Heritable Epigenomic Modifications Influence Stress Resilience and Rapid Adaptations in the Brown Planthopper ( Nilaparvata lugens). Int J Mol Sci 2022; 23:8728. [PMID: 35955860 PMCID: PMC9368798 DOI: 10.3390/ijms23158728] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/25/2022] Open
Abstract
DNA methylation in insects is integral to cellular differentiation, development, gene regulation, genome integrity, and phenotypic plasticity. However, its evolutionary potential and involvement in facilitating rapid adaptations in insects are enigmatic. Moreover, our understanding of these mechanisms is limited to a few insect species, of which none are pests of crops. Hence, we studied methylation patterns in the brown planthopper (BPH), a major rice pest, under pesticide and nutritional stress, across its life stages. Moreover, as the inheritance of epigenetic changes is fundamentally essential for acclimation, adaptability, and evolution, we determined the heritability and persistence of stress-induced methylation marks in BPH across generations. Our results revealed that DNA methylation pattern(s) in BPH varies/vary with environmental cues and is/are insect life-stage specific. Further, our findings provide novel insights into the heritability of stress-induced methylation marks in BPH. However, it was observed that, though heritable, these marks eventually fade in the absence of the stressors, thereby suggesting the existence of fitness cost(s) associated with the maintenance of the stressed epigenotype. Furthermore, we demonstrate how 5-azacytidine-mediated disruption of BPH methylome influences expression levels of stress-responsive genes and, thereby, highlight demethylation/methylation as a phenomenon underlying stress resilience of BPH.
Collapse
Affiliation(s)
| | - Suresh Nair
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
31
|
Xu P, Lin H, Jiao H, Zhao J, Wang X. Advances in epigenetic mechanisms of chick embryo heat acclimation. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2094845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Peng Xu
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
| | - Hai Lin
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
| | - Hongchao Jiao
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
| | - Jingpeng Zhao
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
| | - Xiaojuan Wang
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
32
|
Chandana BS, Mahto RK, Singh RK, Ford R, Vaghefi N, Gupta SK, Yadav HK, Manohar M, Kumar R. Epigenomics as Potential Tools for Enhancing Magnitude of Breeding Approaches for Developing Climate Resilient Chickpea. Front Genet 2022; 13:900253. [PMID: 35937986 PMCID: PMC9355295 DOI: 10.3389/fgene.2022.900253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Epigenomics has become a significant research interest at a time when rapid environmental changes are occurring. Epigenetic mechanisms mainly result from systems like DNA methylation, histone modification, and RNA interference. Epigenetic mechanisms are gaining importance in classical genetics, developmental biology, molecular biology, cancer biology, epidemiology, and evolution. Epigenetic mechanisms play important role in the action and interaction of plant genes during development, and also have an impact on classical plant breeding programs, inclusive of novel variation, single plant heritability, hybrid vigor, plant-environment interactions, stress tolerance, and performance stability. The epigenetics and epigenomics may be significant for crop adaptability and pliability to ambient alterations, directing to the creation of stout climate-resilient elegant crop cultivars. In this review, we have summarized recent progress made in understanding the epigenetic mechanisms in plant responses to biotic and abiotic stresses and have also tried to provide the ways for the efficient utilization of epigenomic mechanisms in developing climate-resilient crop cultivars, especially in chickpea, and other legume crops.
Collapse
Affiliation(s)
- B. S. Chandana
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | | | | | - Rebecca Ford
- Center for Planetary Health and Food Security, Griffith University, Brisbane, QLD, Australia
| | - Niloofar Vaghefi
- School of Agriculture and Food, University of Melbourne, Parkville, VIC, Australia
| | | | | | - Murli Manohar
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Rajendra Kumar
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| |
Collapse
|
33
|
Villagómez-Aranda AL, Feregrino-Pérez AA, García-Ortega LF, González-Chavira MM, Torres-Pacheco I, Guevara-González RG. Activating stress memory: eustressors as potential tools for plant breeding. PLANT CELL REPORTS 2022; 41:1481-1498. [PMID: 35305133 PMCID: PMC8933762 DOI: 10.1007/s00299-022-02858-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/26/2022] [Indexed: 05/08/2023]
Abstract
Plants are continuously exposed to stress conditions, such that they have developed sophisticated and elegant survival strategies, which are reflected in their phenotypic plasticity, priming capacity, and memory acquisition. Epigenetic mechanisms play a critical role in modulating gene expression and stress responses, allowing malleability, reversibility, stability, and heritability of favourable phenotypes to enhance plant performance. Considering the urgency to improve our agricultural system because of going impacting climate change, potential and sustainable strategies rely on the controlled use of eustressors, enhancing desired characteristics and yield and shaping stress tolerance in crops. However, for plant breeding purposes is necessary to focus on the use of eustressors capable of establishing stable epigenetic marks to generate a transgenerational memory to stimulate a priming state in plants to face the changing environment.
Collapse
Affiliation(s)
- A L Villagómez-Aranda
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico
| | - A A Feregrino-Pérez
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico
| | - L F García-Ortega
- Laboratory of Learning and Research in Biological Computing, Centre for Research and Advanced Studies, National Polytechnic Institute (CINVESTAV), Irapuato, Guanajuato, Mexico
| | - M M González-Chavira
- Molecular Markers Laboratory, Bajío Experimental Field, National Institute for Forestry, Agriculture and Livestock Research (INIFAP), Celaya-San Miguel de Allende, Celaya, Guanajuato, Mexico
| | - I Torres-Pacheco
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico
| | - R G Guevara-González
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico.
| |
Collapse
|
34
|
Canada's Colonial Genocide of Indigenous Peoples: A Review of the Psychosocial and Neurobiological Processes Linking Trauma and Intergenerational Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116455. [PMID: 35682038 PMCID: PMC9179992 DOI: 10.3390/ijerph19116455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022]
Abstract
The policies and actions that were enacted to colonize Indigenous Peoples in Canada have been described as constituting cultural genocide. When one considers the long-term consequences from the perspective of the social and environmental determinants of health framework, the impacts of such policies on the physical and mental health of Indigenous Peoples go well beyond cultural loss. This paper addresses the impacts of key historical and current Canadian federal policies in relation to the health and well-being of Indigenous Peoples. Far from constituting a mere lesson in history, the connections between colonialist policies and actions on present-day outcomes are evaluated in terms of transgenerational and intergenerational transmission processes, including psychosocial, developmental, environmental, and neurobiological mechanisms and trauma responses. In addition, while colonialist policies have created adverse living conditions for Indigenous Peoples, resilience and the perseverance of many aspects of culture may be maintained through intergenerational processes.
Collapse
|
35
|
Mounger JM, van Riemsdijk I, Boquete MT, Wagemaker CAM, Fatma S, Robertson MH, Voors SA, Oberstaller J, Gawehns F, Hanley TC, Grosse I, Verhoeven KJF, Sotka EE, Gehring CA, Hughes AR, Lewis DB, Schmid MW, Richards CL. Genetic and Epigenetic Differentiation Across Intertidal Gradients in the Foundation Plant Spartina alterniflora. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.868826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ecological genomics approaches have informed us about the structure of genetic diversity in natural populations that might underlie patterns in trait variation. However, we still know surprisingly little about the mechanisms that permit organisms to adapt to variable environmental conditions. The salt marsh foundation plant Spartina alterniflora exhibits a dramatic range in phenotype that is associated with a pronounced intertidal environmental gradient across a narrow spatial scale. Both genetic and non-genetic molecular mechanisms might underlie this phenotypic variation. To investigate both, we used epigenotyping-by-sequencing (epiGBS) to evaluate the make-up of natural populations across the intertidal environmental gradient. Based on recent findings, we expected that both DNA sequence and DNA methylation diversity would be explained by source population and habitat within populations. However, we predicted that epigenetic variation might be more strongly associated with habitat since similar epigenetic modifications could be rapidly elicited across different genetic backgrounds by similar environmental conditions. Overall, with PERMANOVA we found that population of origin explained a significant amount of the genetic (8.6%) and epigenetic (3.2%) variance. In addition, we found that a small but significant amount of genetic and epigenetic variance (<1%) was explained by habitat within populations. The interaction of population and habitat explained an additional 2.9% of the genetic variance and 1.4% of the epigenetic variance. By examining genetic and epigenetic variation within the same fragments (variation in close-cis), we found that population explained epigenetic variation in 9.2% of 8,960 tested loci, even after accounting for differences in the DNA sequence of the fragment. Habitat alone explained very little (<0.1%) of the variation in these close-cis comparisons, but the interaction of population and habitat explained 2.1% of the epigenetic variation in these loci. Using multiple matrix regression with randomization (MMRR) we found that phenotypic differences in natural populations were correlated with epigenetic and environmental differences even when accounting for genetic differences. Our results support the contention that sequence variation explains most of the variation in DNA methylation, but we have provided evidence that DNA methylation distinctly contributes to plant responses in natural populations.
Collapse
|
36
|
Fanter C, Madelaire C, Genereux DP, van Breukelen F, Levesque D, Hindle A. Epigenomics as a paradigm to understand the nuances of phenotypes. J Exp Biol 2022; 225:274619. [PMID: 35258621 DOI: 10.1242/jeb.243411] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Quantifying the relative importance of genomic and epigenomic modulators of phenotype is a focal challenge in comparative physiology, but progress is constrained by availability of data and analytic methods. Previous studies have linked physiological features to coding DNA sequence, regulatory DNA sequence, and epigenetic state, but few have disentangled their relative contributions or unambiguously distinguished causative effects ('drivers') from correlations. Progress has been limited by several factors, including the classical approach of treating continuous and fluid phenotypes as discrete and static across time and environment, and difficulty in considering the full diversity of mechanisms that can modulate phenotype, such as gene accessibility, transcription, mRNA processing and translation. We argue that attention to phenotype nuance, progressing to association with epigenetic marks and then causal analyses of the epigenetic mechanism, will enable clearer evaluation of the evolutionary path. This would underlie an essential paradigm shift, and power the search for links between genomic and epigenomic features and physiology. Here, we review the growing knowledge base of gene-regulatory mechanisms and describe their links to phenotype, proposing strategies to address widely recognized challenges.
Collapse
Affiliation(s)
- Cornelia Fanter
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Carla Madelaire
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Diane P Genereux
- Vertebrate Genome Biology, Broad Institute, Cambridge, MA 02142, USA
| | - Frank van Breukelen
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Danielle Levesque
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Allyson Hindle
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| |
Collapse
|
37
|
Abstract
Organisms mount the cellular stress response whenever environmental parameters exceed the range that is conducive to maintaining homeostasis. This response is critical for survival in emergency situations because it protects macromolecular integrity and, therefore, cell/organismal function. From an evolutionary perspective, the cellular stress response counteracts severe stress by accelerating adaptation via a process called stress-induced evolution. In this Review, we summarize five key physiological mechanisms of stress-induced evolution. Namely, these are stress-induced changes in: (1) mutation rates, (2) histone post-translational modifications, (3) DNA methylation, (4) chromoanagenesis and (5) transposable element activity. Through each of these mechanisms, organisms rapidly generate heritable phenotypes that may be adaptive, maladaptive or neutral in specific contexts. Regardless of their consequences to individual fitness, these mechanisms produce phenotypic variation at the population level. Because variation fuels natural selection, the physiological mechanisms of stress-induced evolution increase the likelihood that populations can avoid extirpation and instead adapt under the stress of new environmental conditions.
Collapse
Affiliation(s)
- Elizabeth A Mojica
- Department of Animal Science, University of California, Davis, One Shields Avenue, Meyer Hall, Davis, CA 95616, USA
| | - Dietmar Kültz
- Department of Animal Science, University of California, Davis, One Shields Avenue, Meyer Hall, Davis, CA 95616, USA
| |
Collapse
|
38
|
Bouchama A, Abuyassin B, Lehe C, Laitano O, Jay O, O'Connor FG, Leon LR. Classic and exertional heatstroke. Nat Rev Dis Primers 2022; 8:8. [PMID: 35115565 DOI: 10.1038/s41572-021-00334-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
In the past two decades, record-breaking heatwaves have caused an increasing number of heat-related deaths, including heatstroke, globally. Heatstroke is a heat illness characterized by the rapid rise of core body temperature above 40 °C and central nervous system dysfunction. It is categorized as classic when it results from passive exposure to extreme environmental heat and as exertional when it develops during strenuous exercise. Classic heatstroke occurs in epidemic form and contributes to 9-37% of heat-related fatalities during heatwaves. Exertional heatstroke sporadically affects predominantly young and healthy individuals. Under intensive care, mortality reaches 26.5% and 63.2% in exertional and classic heatstroke, respectively. Pathological studies disclose endothelial cell injury, inflammation, widespread thrombosis and bleeding in most organs. Survivors of heatstroke may experience long-term neurological and cardiovascular complications with a persistent risk of death. No specific therapy other than rapid cooling is available. Physiological and morphological factors contribute to the susceptibility to heatstroke. Future research should identify genetic factors that further describe individual heat illness risk and form the basis of precision-based public health response. Prioritizing research towards fundamental mechanism and diagnostic biomarker discovery is crucial for the design of specific management approaches.
Collapse
Affiliation(s)
- Abderrezak Bouchama
- King Abdullah International Medical Research Center, Experimental Medicine Department, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia.
| | - Bisher Abuyassin
- King Abdullah International Medical Research Center, Experimental Medicine Department, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Cynthia Lehe
- King Abdullah International Medical Research Center, Experimental Medicine Department, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Orlando Laitano
- Department of Nutrition & Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, USA
| | - Ollie Jay
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Francis G O'Connor
- Military and Emergency Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Lisa R Leon
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| |
Collapse
|
39
|
Monroe AA, Schunter C, Welch MJ, Munday PL, Ravasi T. Molecular basis of parental contributions to the behavioural tolerance of elevated pCO 2 in a coral reef fish. Proc Biol Sci 2021; 288:20211931. [PMID: 34875194 PMCID: PMC8651409 DOI: 10.1098/rspb.2021.1931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022] Open
Abstract
Knowledge of adaptive potential is crucial to predicting the impacts of ocean acidification (OA) on marine organisms. In the spiny damselfish, Acanthochromis polyacanthus, individual variation in behavioural tolerance to elevated pCO2 has been observed and is associated with offspring gene expression patterns in the brain. However, the maternal and paternal contributions of this variation are unknown. To investigate parental influence of behavioural pCO2 tolerance, we crossed pCO2-tolerant fathers with pCO2-sensitive mothers and vice versa, reared their offspring at control and elevated pCO2 levels, and compared the juveniles' brain transcriptional programme. We identified a large influence of parental phenotype on expression patterns of offspring, irrespective of environmental conditions. Circadian rhythm genes, associated with a tolerant parental phenotype, were uniquely expressed in tolerant mother offspring, while tolerant fathers had a greater role in expression of genes associated with histone binding. Expression changes in genes associated with neural plasticity were identified in both offspring types: the maternal line had a greater effect on genes related to neuron growth while paternal influence impacted the expression of synaptic development genes. Our results confirm cellular mechanisms involved in responses to varying lengths of OA exposure, while highlighting the parental phenotype's influence on offspring molecular phenotype.
Collapse
Affiliation(s)
- Alison A. Monroe
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Genomics Laboratory, Department of Life Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX 78412, USA
| | - Celia Schunter
- Swire Institute of Marine Science, The School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR
| | - Megan J. Welch
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Philip L. Munday
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Timothy Ravasi
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
40
|
Anastasiadi D, Venney CJ, Bernatchez L, Wellenreuther M. Epigenetic inheritance and reproductive mode in plants and animals. Trends Ecol Evol 2021; 36:1124-1140. [PMID: 34489118 DOI: 10.1016/j.tree.2021.08.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022]
Abstract
Epigenetic inheritance is another piece of the puzzle of nongenetic inheritance, although the prevalence, sources, persistence, and phenotypic consequences of heritable epigenetic marks across taxa remain unclear. We systematically reviewed over 500 studies from the past 5 years to identify trends in the frequency of epigenetic inheritance due to differences in reproductive mode and germline development. Genetic, intrinsic (e.g., disease), and extrinsic (e.g., environmental) factors were identified as sources of epigenetic inheritance, with impacts on phenotype and adaptation depending on environmental predictability. Our review shows that multigenerational persistence of epigenomic patterns is common in both plants and animals, but also highlights many knowledge gaps that remain to be filled. We provide a framework to guide future studies towards understanding the generational persistence and eco-evolutionary significance of epigenomic patterns.
Collapse
Affiliation(s)
- Dafni Anastasiadi
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten St, Nelson 7010, New Zealand
| | - Clare J Venney
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Québec, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Québec, QC, Canada
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten St, Nelson 7010, New Zealand; School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland 1010, New Zealand.
| |
Collapse
|
41
|
Olivares-Castro G, Cáceres-Jensen L, Guerrero-Bosagna C, Villagra C. Insect Epigenetic Mechanisms Facing Anthropogenic-Derived Contamination, an Overview. INSECTS 2021; 12:780. [PMID: 34564220 PMCID: PMC8468710 DOI: 10.3390/insects12090780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022]
Abstract
Currently, the human species has been recognized as the primary species responsible for Earth's biodiversity decline. Contamination by different chemical compounds, such as pesticides, is among the main causes of population decreases and species extinction. Insects are key for ecosystem maintenance; unfortunately, their populations are being drastically affected by human-derived disturbances. Pesticides, applied in agricultural and urban environments, are capable of polluting soil and water sources, reaching non-target organisms (native and introduced). Pesticides alter insect's development, physiology, and inheritance. Recently, a link between pesticide effects on insects and their epigenetic molecular mechanisms (EMMs) has been demonstrated. EMMs are capable of regulating gene expression without modifying genetic sequences, resulting in the expression of different stress responses as well as compensatory mechanisms. In this work, we review the main anthropogenic contaminants capable of affecting insect biology and of triggering EMMs. EMMs are involved in the development of several diseases in native insects affected by pesticides (e.g., anomalous teratogenic reactions). Additionally, EMMs also may allow for the survival of some species (mainly pests) under contamination-derived habitats; this may lead to biodiversity decline and further biotic homogenization. We illustrate these patterns by reviewing the effect of neonicotinoid insecticides, insect EMMs, and their ecological consequences.
Collapse
Affiliation(s)
- Gabriela Olivares-Castro
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Avenida José Pedro Alessandri 774, Santiago 7760197, Chile;
| | - Lizethly Cáceres-Jensen
- Laboratorio de Físicoquímica Analítica, Departamento de Química, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago 7760197, Chile;
| | - Carlos Guerrero-Bosagna
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden;
- Environmental Toxicology Program, Department of Integrative Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Cristian Villagra
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Avenida José Pedro Alessandri 774, Santiago 7760197, Chile;
| |
Collapse
|
42
|
Chan K, Li X. Current Epigenetic Insights in Kidney Development. Genes (Basel) 2021; 12:genes12081281. [PMID: 34440455 PMCID: PMC8391601 DOI: 10.3390/genes12081281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 12/31/2022] Open
Abstract
The kidney is among the best characterized developing tissues, with the genes and signaling pathways that regulate embryonic and adult kidney patterning and development having been extensively identified. It is now widely understood that DNA methylation and histone modification patterns are imprinted during embryonic development and must be maintained in adult cells for appropriate gene transcription and phenotypic stability. A compelling question then is how these epigenetic mechanisms play a role in kidney development. In this review, we describe the major genes and pathways that have been linked to epigenetic mechanisms in kidney development. We also discuss recent applications of single-cell RNA sequencing (scRNA-seq) techniques in the study of kidney development. Additionally, we summarize the techniques of single-cell epigenomics, which can potentially be used to characterize epigenomes at single-cell resolution in embryonic and adult kidneys. The combination of scRNA-seq and single-cell epigenomics will help facilitate the further understanding of early cell lineage specification at the level of epigenetic modifications in embryonic and adult kidney development, which may also be used to investigate epigenetic mechanisms in kidney diseases.
Collapse
Affiliation(s)
- Katrina Chan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA;
| | - Xiaogang Li
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-507-266-0110
| |
Collapse
|
43
|
High degree of non-genetic phenotypic variation in the vascular system of crayfish: a discussion of possible causes and implications. ZOOMORPHOLOGY 2021. [DOI: 10.1007/s00435-021-00536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractIn this study, the hemolymph vascular system (HVS) in two cambarid crayfishes, i.e. the Marbled Crayfish, Procambarus virginalis Lyko, 2017 and the Spiny Cheek Crayfish, Faxonius limosus (Rafinesque, 1817), is investigated in regard of areas of non-genetic phenotypic variation. Despite their genetic identity, specimens of P. virginalis show variability in certain features of the HVS. Thus, we describe varying branching patterns, sporadic anastomoses, and different symmetry states in the vascular system of the marbled crayfish. We visualize our findings by application of classical and modern morphological methods, e.g. injection of casting resin, micro-computed tomography and scanning electron microscopy. By comparing our findings for P. virginalis to the vasculature in sexually reproducing crayfishes, i.e. F. limosus and Astacus astacus, we discuss phenotypic variation of the HVS in arthropods in general. We conclude that constant features of the HVS are hereditary, whereas varying states identified by study of the clonal P. virginalis must be caused by non-genetic factors and, that congruent variations in sexually reproducing F. limosus and A. astacus are likely also non-genetic phenotypic variations. Both common causal factors for non-genetic phenotypic variation, i.e., phenotypic plasticity and stochastic developmental variation are discussed along our findings regarding the vascular systems. Further aspects, such as the significance of non-genetic phenotypic variation for phylogenetic interpretations are discussed.
Collapse
|
44
|
Mounger J, Boquete MT, Schmid MW, Granado R, Robertson MH, Voors SA, Langanke KL, Alvarez M, Wagemaker CAM, Schrey AW, Fox GA, Lewis DB, Lira CF, Richards CL. Inheritance of DNA methylation differences in the mangrove Rhizophora mangle. Evol Dev 2021; 23:351-374. [PMID: 34382741 DOI: 10.1111/ede.12388] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/15/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022]
Abstract
The capacity to respond to environmental challenges ultimately relies on phenotypic variation which manifests from complex interactions of genetic and nongenetic mechanisms through development. While we know something about genetic variation and structure of many species of conservation importance, we know very little about the nongenetic contributions to variation. Rhizophora mangle is a foundation species that occurs in coastal estuarine habitats throughout the neotropics where it provides critical ecosystem functions and is potentially threatened by anthropogenic environmental changes. Several studies have documented landscape-level patterns of genetic variation in this species, but we know virtually nothing about the inheritance of nongenetic variation. To assess one type of nongenetic variation, we examined the patterns of DNA sequence and DNA methylation in maternal plants and offspring from natural populations of R. mangle from the Gulf Coast of Florida. We used a reduced representation bisulfite sequencing approach (epi-genotyping by sequencing; epiGBS) to address the following questions: (a) What are the levels of genetic and epigenetic diversity in natural populations of R. mangle? (b) How are genetic and epigenetic variation structured within and among populations? (c) How faithfully is epigenetic variation inherited? We found low genetic diversity but high epigenetic diversity from natural populations of maternal plants in the field. In addition, a large portion (up to ~25%) of epigenetic differences among offspring grown in common garden was explained by maternal family. Therefore, epigenetic variation could be an important source of response to challenging environments in the genetically depauperate populations of this foundation species.
Collapse
Affiliation(s)
- Jeannie Mounger
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - M Teresa Boquete
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA.,Department of Evolutionary Ecology, CSIC, Estación Biológica de Doñana, Sevilla, Spain
| | | | - Renan Granado
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA.,Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro/RJ, Brazil
| | - Marta H Robertson
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Sandy A Voors
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Kristen L Langanke
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Mariano Alvarez
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA.,Avalo, Durham, NC, USA
| | | | - Aaron W Schrey
- Department of Biology, Georgia Southern University, Armstrong Campus, Savannah, Georgia, USA
| | - Gordon A Fox
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - David B Lewis
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Catarina Fonseca Lira
- Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro/RJ, Brazil
| | - Christina L Richards
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA.,Plant Evolutionary Ecology, University of Tübingen, Institute of Evolution & Ecology, Tübingen, Germany
| |
Collapse
|
45
|
Drown MK, DeLiberto AN, Ehrlich MA, Crawford DL, Oleksiak MF. Interindividual plasticity in metabolic and thermal tolerance traits from populations subjected to recent anthropogenic heating. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210440. [PMID: 34295527 PMCID: PMC8292749 DOI: 10.1098/rsos.210440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/25/2021] [Indexed: 05/05/2023]
Abstract
To better understand temperature's role in the interaction between local evolutionary adaptation and physiological plasticity, we investigated acclimation effects on metabolic performance and thermal tolerance among natural Fundulus heteroclitus (small estuarine fish) populations from different thermal environments. Fundulus heteroclitus populations experience large daily and seasonal temperature variations, as well as local mean temperature differences across their large geographical cline. In this study, we use three populations: one locally heated (32°C) by thermal effluence (TE) from the Oyster Creek Nuclear Generating Station, NJ, and two nearby reference populations that do not experience local heating (28°C). After acclimation to 12 or 28°C, we quantified whole-animal metabolic (WAM) rate, critical thermal maximum (CTmax) and substrate-specific cardiac metabolic rate (CaM, substrates: glucose, fatty acids, lactate plus ketones plus ethanol, and endogenous (i.e. no added substrates)) in approximately 160 individuals from these three populations. Populations showed few significant differences due to large interindividual variation within populations. In general, for WAM and CTmax, the interindividual variation in acclimation response (log2 ratio 28/12°C) was a function of performance at 12°C and order of acclimation (12-28°C versus 28-12°C). CTmax and WAM were greater at 28°C than 12°C, although WAM had a small change (2.32-fold) compared with the expectation for a 16°C increase in temperature (expect 3- to 4.4-fold). By contrast, for CaM, the rates when acclimatized and assayed at 12 or 28°C were nearly identical. The small differences in CaM between 12 and 28°C temperature were partially explained by cardiac remodeling where individuals acclimatized to 12°C had larger hearts than individuals acclimatized to 28°C. Correlation among physiological traits was dependent on acclimation temperature. For example, WAM was negatively correlated with CTmax at 12°C but positively correlated at 28°C. Additionally, glucose substrate supported higher CaM than fatty acid, and fatty acid supported higher CaM than lactate, ketones and alcohol (LKA) or endogenous. However, these responses were highly variable with some individuals using much more FA than glucose. These findings suggest interindividual variation in physiological responses to temperature acclimation and indicate that additional research investigating interindividual may be relevant for global climate change responses in many species.
Collapse
Affiliation(s)
- Melissa K. Drown
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Amanda N. DeLiberto
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Moritz A. Ehrlich
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Douglas L. Crawford
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Marjorie F. Oleksiak
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| |
Collapse
|
46
|
Noble D. Cellular Darwinism: Regulatory networks, stochasticity, and selection in cancer development. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:66-71. [PMID: 34147550 DOI: 10.1016/j.pbiomolbio.2021.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023]
Abstract
There are strong parallels between the evolutionary origin of species within populations of organisms and new concepts for the origin of cancers within cell populations in the tissues of the body. The analogy is that cancers can be regarded as a new somatic species developing within the host organism. In both cases, understanding the processes involved requires a multi-scale analysis, including higher-level control of genetic and epigenetic changes. A key to developing successful therapeutic strategies will be to identify the processes that control heterogeneity in tissues. These include processes outside the currently dominant theory of evolution, i.e. the Modern Synthesis. Specifically, organisms can partially direct both genetic and epigenetic changes through the harnessing of chance. The loci and rates of mutation and of genome reorganisation are forms of targeted functional reorganisation of genomes. They are more likely to result in functional reorganisations compared to the slow accumulation of point mutations.
Collapse
Affiliation(s)
- Denis Noble
- Department of Physiology, Anatomy & Genetics, University of Oxford, OX1 3PT, UK.
| |
Collapse
|
47
|
Vasil’ev AG. The Concept of Morphoniche in Evolutionary Ecology. RUSS J ECOL+ 2021. [DOI: 10.1134/s1067413621030097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Histone Methylation Regulation in Neurodegenerative Disorders. Int J Mol Sci 2021; 22:ijms22094654. [PMID: 33925016 PMCID: PMC8125694 DOI: 10.3390/ijms22094654] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Advances achieved with molecular biology and genomics technologies have permitted investigators to discover epigenetic mechanisms, such as DNA methylation and histone posttranslational modifications, which are critical for gene expression in almost all tissues and in brain health and disease. These advances have influenced much interest in understanding the dysregulation of epigenetic mechanisms in neurodegenerative disorders. Although these disorders diverge in their fundamental causes and pathophysiology, several involve the dysregulation of histone methylation-mediated gene expression. Interestingly, epigenetic remodeling via histone methylation in specific brain regions has been suggested to play a critical function in the neurobiology of psychiatric disorders, including that related to neurodegenerative diseases. Prominently, epigenetic dysregulation currently brings considerable interest as an essential player in neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS) and drugs of abuse, including alcohol abuse disorder, where it may facilitate connections between genetic and environmental risk factors or directly influence disease-specific pathological factors. We have discussed the current state of histone methylation, therapeutic strategies, and future perspectives for these disorders. While not somatically heritable, the enzymes responsible for histone methylation regulation, such as histone methyltransferases and demethylases in neurons, are dynamic and reversible. They have become promising potential therapeutic targets to treat or prevent several neurodegenerative disorders. These findings, along with clinical data, may provide links between molecular-level changes and behavioral differences and provide novel avenues through which the epigenome may be targeted early on in people at risk for neurodegenerative disorders.
Collapse
|
49
|
Vogt G. Epigenetic variation in animal populations: Sources, extent, phenotypic implications, and ecological and evolutionary relevance. J Biosci 2021. [DOI: 10.1007/s12038-021-00138-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Liang J, Wang H, Zeng Y, Qu Y, Liu Q, Zhao F, Duan J, Jiang Y, Li S, Ying J, Li J, Mu D. Physical exercise promotes brain remodeling by regulating epigenetics, neuroplasticity and neurotrophins. Rev Neurosci 2021; 32:615-629. [PMID: 33583156 DOI: 10.1515/revneuro-2020-0099] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/26/2020] [Indexed: 02/05/2023]
Abstract
Exercise has been shown to have beneficial effects on brain functions in humans and animals. Exercise can improve memory and learning in age-related neurodegenerative diseases. In animal models, physical exercise regulates epigenetics, promotes synaptic plasticity and hippocampal neurogenesis, regulates the expression levels of neurotrophic factors, and improves cognitive function. Therefore, exercise is very important for brain rehabilitation and remodeling. The purpose of this review is to explore the mechanisms by which exercise exerts positive effects on brain function. This knowledge implies that physical exercise can be used as a non-drug therapy for neurological diseases.
Collapse
Affiliation(s)
- Juan Liang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Yan Zeng
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Qian Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Fengyan Zhao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Jianan Duan
- West China Hospital, Sichuan University, Chengdu610041, China
| | - Yin Jiang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Shiping Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Jinhui Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| |
Collapse
|