1
|
Meng LH, Awakawa T, Li XM, Quan Z, Yang SQ, Wang BG, Abe I. Discovery of (±)-Penindolenes Reveals an Unusual Indole Ring Cleavage Pathway Catalyzed by P450 Monooxygenase. Angew Chem Int Ed Engl 2024; 63:e202403963. [PMID: 38635317 DOI: 10.1002/anie.202403963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/19/2024]
Abstract
(±)-Penindolenes A-D (1-4), the first representatives of indole terpenoids featuring a γ-lactam skeleton, were isolated from the mangrove-derived endophytic fungus Penicillium brocae MA-231. Our bioactivity tests revealed their potent antimicrobial and acetylcholinesterase inhibitory activities. The biosynthetic reactions by the five enzymes PbaABCDE leading to γ-lactam ring formation were identified with heterologous expression and in vitro enzymatic assays. Remarkably, the cytochrome P450 monooxygenase PbaB and its homolog in Aspergillus oryzae catalyzed the 2,3-cleavage of the indole ring to generate two keto groups in 1. This is the first example of the oxidative cleavage of indole by a P450 monooxygenase. In addition, rare secondary amide bond formation by the glutamine synthetase-like enzyme PbaD was reported. These findings will contribute to the engineered biosynthesis of unnatural, bioactive indole terpenoids.
Collapse
Affiliation(s)
- Ling-Hong Meng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, China
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- RIKEN Center for Sustainable Resource Science 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, China
| | - Zhiyang Quan
- RIKEN Center for Sustainable Resource Science 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
2
|
Koçak G, Yildiz C. The Effects of Ferulic Acid, Tryptophan, and L-Glutamine on the Cryopreservation of Mouse Spermatozoa. Biopreserv Biobank 2024; 22:286-293. [PMID: 38150493 DOI: 10.1089/bio.2023.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
In this study, the effects of ferulic acid (0.1, 1, ve 10 mM), tryptophan (5, 25, ve 50 mM), and L-glutamine (10, 50, ve 100 mM) at different doses added to 18% raffinose + 3% skimmed milk powder sperm extender on the freezing of mouse spermatozoa in liquid nitrogen were investigated. The combination of 18% raffinose + 3% skimmed milk powder without additives was used as the control group. Frozen spermatozoa were thawed in a 37°C water bath for 30 seconds. After freeze-thawing, motility, dead spermatozoa ratio, plasma membrane integrity, abnormal acrosome ratio, motility endurance (for 4 hours), and cell apoptosis tests were performed in Human Tubal Fluid (HTF). Compared with the control group after freezing and thawing, the highest motility and plasma membrane integrity were obtained in the 10 mM L-glutamine group with 56.6% ± 2.11% and 77.8% ± 0.87%, respectively (p < 0.05). In addition, when compared to the control group, the lowest rate of dead spermatozoa and abnormal acrosome was found in the 10 mM L-glutamine group as 26.0% ± 1.46% and 6.3% ± 1.09%, respectively (p < 0.05). The highest motility values for spermatozoa endurance were determined in the 10 and 50 mM L-glutamine groups up to the 4th hour compared to the control group (p < 0.05). In the evaluation of apoptosis in semen samples, there was no significant difference between the control, 0.1 mM ferulic acid, and 10 mM L-glutamine groups (p > 0.05). As a result, it was determined that the addition of 10 mM L-glutamine to the spermatozoa extender increased the motility, viable spermatozoa, functional membrane integrity, intact acrosome ratios, or motility endurance after freeze-thawing and could be used successfully in the freezing extender of mouse spermatozoa.
Collapse
Affiliation(s)
- Gökhan Koçak
- Laboratory and Veterinary Health Program, Department of Medical Services and Techniques, Tuzluca Vocational High School, Iğdır University, Iğdır, Turkey
| | - Cengiz Yildiz
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, University of Mustafa Kemal, Hatay, Turkey
| |
Collapse
|
3
|
Jones AG, Aquilino M, Tinker RJ, Duncan L, Jenkins Z, Carvill GL, DeWard SJ, Grange DK, Hajianpour MJ, Halliday BJ, Holder-Espinasse M, Horvath J, Maitz S, Nigro V, Morleo M, Paul V, Spencer C, Esterhuizen AI, Polster T, Spano A, Gómez-Lozano I, Kumar A, Poke G, Phillips JA, Underhill HR, Gimenez G, Namba T, Robertson SP. Clustered de novo start-loss variants in GLUL result in a developmental and epileptic encephalopathy via stabilization of glutamine synthetase. Am J Hum Genet 2024; 111:729-741. [PMID: 38579670 PMCID: PMC11023914 DOI: 10.1016/j.ajhg.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024] Open
Abstract
Glutamine synthetase (GS), encoded by GLUL, catalyzes the conversion of glutamate to glutamine. GS is pivotal for the generation of the neurotransmitters glutamate and gamma-aminobutyric acid and is the primary mechanism of ammonia detoxification in the brain. GS levels are regulated post-translationally by an N-terminal degron that enables the ubiquitin-mediated degradation of GS in a glutamine-induced manner. GS deficiency in humans is known to lead to neurological defects and death in infancy, yet how dysregulation of the degron-mediated control of GS levels might affect neurodevelopment is unknown. We ascertained nine individuals with severe developmental delay, seizures, and white matter abnormalities but normal plasma and cerebrospinal fluid biochemistry with de novo variants in GLUL. Seven out of nine were start-loss variants and two out of nine disrupted 5' UTR splicing resulting in splice exclusion of the initiation codon. Using transfection-based expression systems and mass spectrometry, these variants were shown to lead to translation initiation of GS from methionine 18, downstream of the N-terminal degron motif, resulting in a protein that is stable and enzymatically competent but insensitive to negative feedback by glutamine. Analysis of human single-cell transcriptomes demonstrated that GLUL is widely expressed in neuro- and glial-progenitor cells and mature astrocytes but not in post-mitotic neurons. One individual with a start-loss GLUL variant demonstrated periventricular nodular heterotopia, a neuronal migration disorder, yet overexpression of stabilized GS in mice using in utero electroporation demonstrated no migratory deficits. These findings underline the importance of tight regulation of glutamine metabolism during neurodevelopment in humans.
Collapse
Affiliation(s)
- Amy G Jones
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Matilde Aquilino
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Rory J Tinker
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Laura Duncan
- Center for Individualized Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Zandra Jenkins
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Gemma L Carvill
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | - Benjamin J Halliday
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | | | - Silvia Maitz
- Medical Genetics Service, Oncology Department of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Manuela Morleo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | | | - Careni Spencer
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Department of Medicine, Division of Human Genetics, Groote Schuur Hospital, Cape Town, South Africa
| | - Alina I Esterhuizen
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Cape Town, South Africa; National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Tilman Polster
- Department of Epileptology (Krankenhaus Mara, Bethel Epilepsy Center) Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Alice Spano
- Maggiore Della Carità Hospital, Novara, Italy
| | - Inés Gómez-Lozano
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Abhishek Kumar
- Centre for Protein Research, University of Otago, Dunedin, New Zealand
| | - Gemma Poke
- Genetics Health Service New Zealand, Wellington Hospital, Wellington, New Zealand
| | | | | | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Takashi Namba
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
4
|
Gąssowska-Dobrowolska M, Chlubek M, Kolasa A, Tomasiak P, Korbecki J, Skowrońska K, Tarnowski M, Masztalewicz M, Baranowska-Bosiacka I. Microglia and Astroglia-The Potential Role in Neuroinflammation Induced by Pre- and Neonatal Exposure to Lead (Pb). Int J Mol Sci 2023; 24:9903. [PMID: 37373050 DOI: 10.3390/ijms24129903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Neuroinflammation is one of the postulated mechanisms for Pb neurotoxicity. However, the exact molecular mechanisms responsible for its pro-inflammatory effect are not fully elucidated. In this study, we examined the role of glial cells in neuroinflammation induced by Pb exposure. We investigated how microglia, a type of glial cell, responded to the changes caused by perinatal exposure to Pb by measuring the expression of Iba1 at the mRNA and protein levels. To assess the state of microglia, we analyzed the mRNA levels of specific markers associated with the cytotoxic M1 phenotype (Il1b, Il6, and Tnfa) and the cytoprotective M2 phenotype (Arg1, Chi3l1, Mrc1, Fcgr1a, Sphk1, and Tgfb1). Additionally, we measured the concentration of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α). To assess the reactivity and functionality status of astrocytes, we analyzed the GFAP (mRNA expression and protein concentration) as well as glutamine synthase (GS) protein level and activity. Using an electron microscope, we assessed ultrastructural abnormalities in the examined brain structures (forebrain cortex, cerebellum, and hippocampus). In addition, we measured the mRNA levels of Cxcl1 and Cxcl2, and their receptor, Cxcr2. Our data showed that perinatal exposure to Pb at low doses affected both microglia and astrocyte cells' status (their mobilization, activation, function, and changes in gene expression profile) in a brain-structure-specific manner. The results suggest that both microglia and astrocytes represent a potential target for Pb neurotoxicity, thus being key mediators of neuroinflammation and further neuropathology evoked by Pb poisoning during perinatal brain development.
Collapse
Affiliation(s)
- Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Mikołaj Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Patrycja Tomasiak
- Department of Physiology in Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| | - Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Katarzyna Skowrońska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| | - Marta Masztalewicz
- Department of Neurology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
5
|
Andersen JV, Schousboe A. Glial Glutamine Homeostasis in Health and Disease. Neurochem Res 2023; 48:1100-1128. [PMID: 36322369 DOI: 10.1007/s11064-022-03771-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Glutamine is an essential cerebral metabolite. Several critical brain processes are directly linked to glutamine, including ammonia homeostasis, energy metabolism and neurotransmitter recycling. Astrocytes synthesize and release large quantities of glutamine, which is taken up by neurons to replenish the glutamate and GABA neurotransmitter pools. Astrocyte glutamine hereby sustains the glutamate/GABA-glutamine cycle, synaptic transmission and general brain function. Cerebral glutamine homeostasis is linked to the metabolic coupling of neurons and astrocytes, and relies on multiple cellular processes, including TCA cycle function, synaptic transmission and neurotransmitter uptake. Dysregulations of processes related to glutamine homeostasis are associated with several neurological diseases and may mediate excitotoxicity and neurodegeneration. In particular, diminished astrocyte glutamine synthesis is a common neuropathological component, depriving neurons of an essential metabolic substrate and precursor for neurotransmitter synthesis, hereby leading to synaptic dysfunction. While astrocyte glutamine synthesis is quantitatively dominant in the brain, oligodendrocyte-derived glutamine may serve important functions in white matter structures. In this review, the crucial roles of glial glutamine homeostasis in the healthy and diseased brain are discussed. First, we provide an overview of cellular recycling, transport, synthesis and metabolism of glutamine in the brain. These cellular aspects are subsequently discussed in relation to pathological glutamine homeostasis of hepatic encephalopathy, epilepsy, Alzheimer's disease, Huntington's disease and amyotrophic lateral sclerosis. Further studies on the multifaceted roles of cerebral glutamine will not only increase our understanding of the metabolic collaboration between brain cells, but may also aid to reveal much needed therapeutic targets of several neurological pathologies.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Proteomic and Bioinformatic Tools to Identify Potential Hub Proteins in the Audiogenic Seizure-Prone Hamster GASH/Sal. Diagnostics (Basel) 2023; 13:diagnostics13061048. [PMID: 36980356 PMCID: PMC10047193 DOI: 10.3390/diagnostics13061048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
The GASH/Sal (Genetic Audiogenic Seizure Hamster, Salamanca) is a model of audiogenic seizures with the epileptogenic focus localized in the inferior colliculus (IC). The sound-induced seizures exhibit a short latency (7–9 s), which implies innate protein disturbances in the IC as a basis for seizure susceptibility and generation. Here, we aim to study the protein profile in the GASH/Sal IC in comparison to controls. Protein samples from the IC were processed for enzymatic digestion and then analyzed by mass spectrometry in Data-Independent Acquisition mode. After identifying the proteins using the UniProt database, we selected those with differential expression and performed ontological analyses, as well as gene-protein interaction studies using bioinformatics tools. We identified 5254 proteins; among them, 184 were differentially expressed proteins (DEPs), with 126 upregulated and 58 downregulated proteins, and 10 of the DEPs directly related to epilepsy. Moreover, 12 and 7 proteins were uniquely found in the GASH/Sal or the control. The results indicated a protein profile alteration in the epileptogenic nucleus that might underlie the inborn occurring audiogenic seizures in the GASH/Sal model. In summary, this study supports the use of bioinformatics methods in proteomics to delve into the relationship between molecular-level protein mechanisms and the pathobiology of rodent models of audiogenic seizures.
Collapse
|
7
|
Martini T, Naef F, Tchorz JS. Spatiotemporal Metabolic Liver Zonation and Consequences on Pathophysiology. ANNUAL REVIEW OF PATHOLOGY 2023; 18:439-466. [PMID: 36693201 DOI: 10.1146/annurev-pathmechdis-031521-024831] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hepatocytes are the main workers in the hepatic factory, managing metabolism of nutrients and xenobiotics, production and recycling of proteins, and glucose and lipid homeostasis. Division of labor between hepatocytes is critical to coordinate complex complementary or opposing multistep processes, similar to distributed tasks at an assembly line. This so-called metabolic zonation has both spatial and temporal components. Spatial distribution of metabolic function in hepatocytes of different lobular zones is necessary to perform complex sequential multistep metabolic processes and to assign metabolic tasks to the right environment. Moreover, temporal control of metabolic processes is critical to align required metabolic processes to the feeding and fasting cycles. Disruption of this complex spatiotemporal hepatic organization impairs key metabolic processes with both local and systemic consequences. Many metabolic diseases, such as nonalcoholic steatohepatitis and diabetes, are associated with impaired metabolic liver zonation. Recent technological advances shed new light on the spatiotemporal gene expression networks controlling liver function and how their deregulation may be involved in a large variety of diseases. We summarize the current knowledge about spatiotemporal metabolic liver zonation and consequences on liver pathobiology.
Collapse
Affiliation(s)
- Tomaz Martini
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland;
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland;
| | - Jan S Tchorz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland;
| |
Collapse
|
8
|
Vitali T, Vanoni MA, Bellosta P. Quantitation of Glutamine Synthetase 1 Activity in Drosophila melanogaster. Methods Mol Biol 2023; 2675:237-260. [PMID: 37258768 DOI: 10.1007/978-1-0716-3247-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Protocols to assay the activity of glutamine synthetase (GS) are presented as they have been used in our laboratory to correlate the expression levels of the gene encoding Drosophila GS1 gene, the GS1 protein levels, and its activity in extracts of larvae and heads from Drosophila melanogaster. The assays are based on the glutamine synthetase-catalyzed formation of γ-glutamylhydroxylamine in the presence of ATP, L-glutamate, and hydroxylamine, in which hydroxylamine substitutes for ammonia in the reaction. Formation of γ-glutamylhydroxylamine is monitored spectrophotometrically in discontinuous assays upon complex formation with FeCl3. Fixed-time assays and those based on monitoring the time-course of product formation at different reaction times are described. The protocols can be adapted to quantify glutamine synthetase activity on biological materials other than Drosophila.
Collapse
Affiliation(s)
- Teresa Vitali
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
- Department of Medicine, New York University-Langone Medical Center, New York, NY, USA.
| |
Collapse
|
9
|
Feng Y, Zhang C, Wei Z, Li G, Gan Y, Liu C, Deng Y. Gene variations of glutamate metabolism pathway and epilepsy. ACTA EPILEPTOLOGICA 2022. [DOI: 10.1186/s42494-022-00103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Epilepsy is a paroxysmal disorder of the brain, caused by an imbalance of neuronal excitation and inhibition. Glutamate is the most important excitatory neurotransmitter in the brain and plays an important role in epileptogenesis. Mutations in genes at any step/component of the glutamate metabolic pathway may lead to the development of epilepsy or epileptic encephalopathy.
Methods
Clinical history of 3 epilepsy patients with genetic variations of the glutamate metabolism pathway was collected. Electroencephalogram recording and magnetic resonance imaging were performed in each patient. We also reviewed recent literature for a variety of the genetic variations involved in epilepsy.
Results
Case 1 was a SLC1A2 mutation-carrier diagnosed with developmental and epileptic encephalopathy (DEE) 41, whose seizures decreased after start of the ketogenic diet. Case 2 carried a GRIN2A gene mutation and was seizure-free for three years after taking levetiracetam and vitamin B6. Case 3 was a GRIN2B mutation-carrier diagnosed with DEE 27, who seizures diminished after taking oxcarbazepine.
Conclusions
Preclinical and clinical evidence supports the therapeutic potential of glutamatergic signaling-targeting treatments for epilepsy. More studies are needed to discover novel DEE-related genetic mutations in the glutamate metabolic pathway.
Collapse
|
10
|
Zielińska M, Albrecht J, Popek M. Dysregulation of Astrocytic Glutamine Transport in Acute Hyperammonemic Brain Edema. Front Neurosci 2022; 16:874750. [PMID: 35733937 PMCID: PMC9207324 DOI: 10.3389/fnins.2022.874750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Acute liver failure (ALF) impairs ammonia clearance from blood, which gives rise to acute hyperammonemia and increased ammonia accumulation in the brain. Since in brain glutamine synthesis is the only route of ammonia detoxification, hyperammonemia is as a rule associated with increased brain glutamine content (glutaminosis) which correlates with and contributes along with ammonia itself to hyperammonemic brain edema-associated with ALF. This review focuses on the effects of hyperammonemia on the two glutamine carriers located in the astrocytic membrane: Slc38a3 (SN1, SNAT3) and Slc7a6 (y + LAT2). We emphasize the contribution of the dysfunction of either of the two carriers to glutaminosis- related aspects of brain edema: retention of osmotically obligated water (Slc38a3) and induction of oxidative/nitrosative stress (Slc7a6). The changes in glutamine transport link glutaminosis- evoked mitochondrial dysfunction to oxidative-nitrosative stress as formulated in the “Trojan Horse” hypothesis.
Collapse
|
11
|
Sunkar S, Namratha K, Neeharika D. Identification of hub genes associated with human osteoarthritis cartilage: An in silico approach. Meta Gene 2022. [DOI: 10.1016/j.mgene.2022.101015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
12
|
Farina MG, Sandhu MRS, Parent M, Sanganahalli BG, Derbin M, Dhaher R, Wang H, Zaveri HP, Zhou Y, Danbolt NC, Hyder F, Eid T. Small loci of astroglial glutamine synthetase deficiency in the postnatal brain cause epileptic seizures and impaired functional connectivity. Epilepsia 2021; 62:2858-2870. [PMID: 34536233 DOI: 10.1111/epi.17072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The astroglial enzyme glutamine synthetase (GS) is deficient in small loci in the brain in adult patients with different types of focal epilepsy; however, the role of this deficiency in the pathogenesis of epilepsy has been difficult to assess due to a lack of sufficiently sensitive and specific animal models. The aim of this study was to develop an in vivo approach for precise and specific deletions of the GS gene in the postnatal brain. METHODS We stereotaxically injected various adeno-associated virus (AAV)-Cre recombinase constructs into the hippocampal formation and neocortex in 22-70-week-old GSflox/flox mice to knock out the GS gene in a specific and focal manner. The mice were subjected to seizure threshold determination, continuous video-electroencephalographic recordings, advanced in vivo neuroimaging, and immunocytochemistry for GS. RESULTS The construct AAV8-glial fibrillary acidic protein-green fluorescent protein-Cre eliminated GS in >99% of astrocytes in the injection center with a gradual return to full GS expression toward the periphery. Such focal GS deletion reduced seizure threshold, caused spontaneous recurrent seizures, and diminished functional connectivity. SIGNIFICANCE These results suggest that small loci of GS deficiency in the postnatal brain are sufficient to cause epilepsy and impaired functional connectivity. Additionally, given the high specificity and precise spatial resolution of our GS knockdown approach, we anticipate that this model will be extremely useful for rigorous in vivo and ex vivo studies of astroglial GS function at the brain-region and single-cell levels.
Collapse
Affiliation(s)
- Maxwell G Farina
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mani Ratnesh S Sandhu
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Maxime Parent
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Basavaraju G Sanganahalli
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Matthew Derbin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Roni Dhaher
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Helen Wang
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hitten P Zaveri
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yun Zhou
- Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Niels C Danbolt
- Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
13
|
Frieg B, Görg B, Gohlke H, Häussinger D. Glutamine synthetase as a central element in hepatic glutamine and ammonia metabolism: novel aspects. Biol Chem 2021; 402:1063-1072. [PMID: 33962502 DOI: 10.1515/hsz-2021-0166] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/22/2021] [Indexed: 12/27/2022]
Abstract
Glutamine synthetase (GS) in the liver is expressed in a small perivenous, highly specialized hepatocyte population and is essential for the maintenance of low, non-toxic ammonia levels in the organism. However, GS activity can be impaired by tyrosine nitration of the enzyme in response to oxidative/nitrosative stress in a pH-sensitive way. The underlying molecular mechanism as investigated by combined molecular simulations and in vitro experiments indicates that tyrosine nitration can lead to a fully reversible and pH-sensitive regulation of protein function. This approach was also used to understand the functional consequences of several recently described point mutations of human GS with clinical relevance and to suggest an approach to restore impaired GS activity.
Collapse
Affiliation(s)
- Benedikt Frieg
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Holger Gohlke
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
14
|
Chvilicek MM, Titos I, Rothenfluh A. The Neurotransmitters Involved in Drosophila Alcohol-Induced Behaviors. Front Behav Neurosci 2020; 14:607700. [PMID: 33384590 PMCID: PMC7770116 DOI: 10.3389/fnbeh.2020.607700] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Alcohol is a widely used and abused substance with numerous negative consequences for human health and safety. Historically, alcohol's widespread, non-specific neurobiological effects have made it a challenge to study in humans. Therefore, model organisms are a critical tool for unraveling the mechanisms of alcohol action and subsequent effects on behavior. Drosophila melanogaster is genetically tractable and displays a vast behavioral repertoire, making it a particularly good candidate for examining the neurobiology of alcohol responses. In addition to being experimentally amenable, Drosophila have high face and mechanistic validity: their alcohol-related behaviors are remarkably consistent with humans and other mammalian species, and they share numerous conserved neurotransmitters and signaling pathways. Flies have a long history in alcohol research, which has been enhanced in recent years by the development of tools that allow for manipulating individual Drosophila neurotransmitters. Through advancements such as the GAL4/UAS system and CRISPR/Cas9 mutagenesis, investigation of specific neurotransmitters in small subsets of neurons has become ever more achievable. In this review, we describe recent progress in understanding the contribution of seven neurotransmitters to fly behavior, focusing on their roles in alcohol response: dopamine, octopamine, tyramine, serotonin, glutamate, GABA, and acetylcholine. We chose these small-molecule neurotransmitters due to their conservation in mammals and their importance for behavior. While neurotransmitters like dopamine and octopamine have received significant research emphasis regarding their contributions to behavior, others, like glutamate, GABA, and acetylcholine, remain relatively unexplored. Here, we summarize recent genetic and behavioral findings concerning these seven neurotransmitters and their roles in the behavioral response to alcohol, highlighting the fitness of the fly as a model for human alcohol use.
Collapse
Affiliation(s)
- Maggie M. Chvilicek
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, United States
| | - Iris Titos
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, United States
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
15
|
Structural Insight into the Contributions of the N-Terminus and Key Active-Site Residues to the Catalytic Efficiency of Glutamine Synthetase 2. Biomolecules 2020; 10:biom10121671. [PMID: 33327463 PMCID: PMC7764910 DOI: 10.3390/biom10121671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Glutamine synthetase (GS) catalyzes the condensation of ammonia and glutamate, along with ATP, to form glutamine. Despite extensive studies on GSs from eukaryotes and prokaryotes, the roles of the N-terminus and other structural features in catalysis remain unclear. Here we report the decameric structure of Drosophila melanogaster GS 2 (DmGS2). The N-terminal short helices, α1 and α2, constitute a meander region, and form hydrogen bonds with residues 3–5 in the N-terminal loop, which are not present in the GSs of other species. Deletion of α1 or α1-α2 inactivates DmGS2. Notably, the Arg4 in each monomer of one pentamer forms hydrogen bonds with Glu7, and Asp8 in the adjacent monomer of the other pentamer. Replacement of Arg4 with Asp (R4D) abolishes activity. Analytical ultracentrifugation revealed that Arg4 is crucial for oligomerization. Circular dichroism spectra revealed that R4D may alter the secondary structure. We mutated key residues to identify the substrate-binding site. As Glu140 binds glutamate and Glu311 binds ammonia, mutants E140A and E311A have little activity. Conversely, mutant P214A (P contributes to ATP binding) has higher activity than wild-type DmGS2. These findings expand the understanding of the structural and functional features of the N-terminal meander region of DmGS2 and the residues important for catalytic efficiency.
Collapse
|
16
|
Egerton A, Dunn JT, Singh N, Yu Z, O'Doherty J, Koychev I, Webb J, Claridge S, Turkheimer FE, Marsden PK, Hammers A, Gee A. Evaluation of [ 13N]ammonia positron emission tomography as a potential method for quantifying glutamine synthetase activity in the human brain. EJNMMI Res 2020; 10:146. [PMID: 33270177 PMCID: PMC7714883 DOI: 10.1186/s13550-020-00731-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/21/2020] [Indexed: 11/22/2022] Open
Abstract
PURPOSE The conversion of synaptic glutamate to glutamine in astrocytes by glutamine synthetase (GS) is critical to maintaining healthy brain activity and may be disrupted in several brain disorders. As the GS catalysed conversion of glutamate to glutamine requires ammonia, we evaluated whether [13N]ammonia positron emission tomography (PET) could reliability quantify GS activity in humans. METHODS In this test-retest study, eight healthy volunteers each received two dynamic [13N]ammonia PET scans on the morning and afternoon of the same day. Each [13N]ammonia scan was preceded by a [15O]water PET scan to account for effects of cerebral blood flow (CBF). RESULTS Concentrations of radioactive metabolites in arterial blood were available for both sessions in five of the eight subjects. Our results demonstrated that kinetic modelling was unable to reliably distinguish estimates of the kinetic rate constant k3 (related to GS activity) from K1 (related to [13N]ammonia brain uptake), and indicated a non-negligible back-flux of [13N] to blood (k2). Model selection favoured a reversible one-tissue compartmental model, and [13N]ammonia K1 correlated reliably (r2 = 0.72-0.92) with [15O]water CBF. CONCLUSION The [13N]ammonia PET method was unable to reliably estimate GS activity in the human brain but may provide an alternative index of CBF.
Collapse
Affiliation(s)
- Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK.
| | - Joel T Dunn
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, SE1 7EH, UK
- King's College London & Guy's and St. Thomas' PET Centre, London, SE1 7EH, UK
| | - Nisha Singh
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, SE1 7EH, UK
- King's College London & Guy's and St. Thomas' PET Centre, London, SE1 7EH, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 7AF, UK
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
| | - Zilin Yu
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, SE1 7EH, UK
| | - Jim O'Doherty
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, SE1 7EH, UK
- King's College London & Guy's and St. Thomas' PET Centre, London, SE1 7EH, UK
- Clinical Imaging Research Centre, National University of Singapore, Singapore, 117599, Singapore
| | - Ivan Koychev
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
| | - Jessica Webb
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, SE1 7EH, UK
| | - Simon Claridge
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, SE1 7EH, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 7AF, UK
| | - Paul K Marsden
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, SE1 7EH, UK
- King's College London & Guy's and St. Thomas' PET Centre, London, SE1 7EH, UK
| | - Alexander Hammers
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, SE1 7EH, UK
- King's College London & Guy's and St. Thomas' PET Centre, London, SE1 7EH, UK
| | - Antony Gee
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, SE1 7EH, UK
- King's College London & Guy's and St. Thomas' PET Centre, London, SE1 7EH, UK
| |
Collapse
|
17
|
Zhou Y, Eid T, Hassel B, Danbolt NC. Novel aspects of glutamine synthetase in ammonia homeostasis. Neurochem Int 2020; 140:104809. [DOI: 10.1016/j.neuint.2020.104809] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
|
18
|
Bennett J, Gilkes C, Klassen K, Kerr M, Khan A. Two Siblings With Valproate-Related Hyperammonemia and Novel Mutations in Glutamine Synthetase (GLUL) Treated With Carglumic Acid. Child Neurol Open 2020; 7:2329048X20967880. [PMID: 33150193 PMCID: PMC7585879 DOI: 10.1177/2329048x20967880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This case report describes 2 siblings with myoclonic epilepsy who had novel mutations in the glutamine synthetase (GLUL) gene: c.316C>T, p.(Arg106*) and c.42G>C, p.(Lys14Asn). Valproic acid improved seizure control, but was associated with hyperammonemic encephalopathy. Addition of carglumic acid reduced ammonia levels but drug coverage was declined. We therefore designed a protocol to measure the reduction in plasma ammonia in response to carglumic acid therapy. After the first dose of carglumic acid, Patient 1 showed a reduction in plasma ammonia levels within 3 hours, from 114 umol/L to 68 umol/L (reference 12-47 umol/L), and Patient 2 from 108 umol/L to 80 umol/L, which was sustained over a 2 week period. Overall, there was a strong negative correlation between plasma ammonia levels and carglumic acid levels (r = -0.86, p = 0.0013), and recurrence of hyperammonemic encephalopathy was not observed while the patients were taking carglumic acid.
Collapse
Affiliation(s)
- Jennifer Bennett
- Department of Medical Genetics and Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christy Gilkes
- Department of Medical Genetics and Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Karin Klassen
- Department of Medical Genetics and Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marina Kerr
- Department of Medical Genetics and Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aneal Khan
- Department of Medical Genetics and Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Roifman M, Niles KM, MacNeil L, Blaser S, Noor A, Godoy R, van Mieghem T, Ryan G, Seaward G, Sondheimer N, Mercimek-Andrews S, Schulze A, Hewson S, Ovadia A, Chitayat D, Morgen EK, Hojilla C, Kolomietz E, Watkins N, Häberle J, Shannon P. Homozygous GLUL deletion is embryonically viable and leads to glutamine synthetase deficiency. Clin Genet 2020; 98:613-619. [PMID: 32888207 DOI: 10.1111/cge.13844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
Glutamine synthetase (GS) is the enzyme responsible for the biosynthesis of glutamine, providing the only source of endogenous glutamine necessary for several critical metabolic and developmental pathways. GS deficiency, caused by pathogenic variants in the glutamate-ammonia ligase (GLUL) gene, is a rare autosomal recessive inborn error of metabolism characterized by systemic glutamine deficiency, persistent moderate hyperammonemia, and clinically devastating seizures and multi-organ failure shortly after birth. The four cases reported thus far were caused by homozygous GLUL missense variants. We report a case of GS deficiency caused by homozygous GLUL gene deletion, diagnosed prenatally and likely representing the most severe end of the spectrum. We expand the known phenotype of this rare condition with novel dysmorphic, radiographic and neuropathologic features identified on post-mortem examination. The biallelic deletion identified in this case also included the RNASEL gene and was associated with immune dysfunction in the fetus. This case demonstrates that total absence of the GLUL gene in humans is viable beyond the embryonic period, despite the early embryonic lethality found in GLUL animal models.
Collapse
Affiliation(s)
- Maian Roifman
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada.,Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Kirsten M Niles
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada.,Division of Maternal Fetal Medicine, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Lauren MacNeil
- Department of Pathology and Laboratory Medicine, Hospital for Sick Children, University of Toronto, Toronto, Canada.,Department of Medical Genetics, Alberta Precision Laboratories, University of Alberta, Edmonton, Alberta, Canada
| | - Susan Blaser
- Division of Neuroradiology, Department of Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Abdul Noor
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Ruth Godoy
- Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Tim van Mieghem
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Greg Ryan
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Gareth Seaward
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Neal Sondheimer
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Saadet Mercimek-Andrews
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Andreas Schulze
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Stacy Hewson
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Adi Ovadia
- Division of Immunology, Department of Pediatrics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel, Holon, Israel.,Department of Pediatrics, Edith Wolfson Medical Center, Holon, Israel
| | - David Chitayat
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada.,Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Eric K Morgen
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Canada.,BioAge Labs, Richmond, California, USA
| | - Carlo Hojilla
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Elena Kolomietz
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Nicholas Watkins
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Patrick Shannon
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| |
Collapse
|
20
|
Frieg B, Görg B, Qvartskhava N, Jeitner T, Homeyer N, Häussinger D, Gohlke H. Mechanism of Fully Reversible, pH-Sensitive Inhibition of Human Glutamine Synthetase by Tyrosine Nitration. J Chem Theory Comput 2020; 16:4694-4705. [PMID: 32551588 DOI: 10.1021/acs.jctc.0c00249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glutamine synthetase (GS) catalyzes an ATP-dependent condensation of glutamate and ammonia to form glutamine. This reaction-and therefore GS-are indispensable for the hepatic nitrogen metabolism. Nitration of tyrosine 336 (Y336) inhibits human GS activity. GS nitration and the consequent loss of GS function are associated with a broad range of neurological diseases. The mechanism by which Y336 nitration inhibits GS, however, is not understood. Here, we show by means of unbiased MD simulations, binding, and configurational free energy computations that Y336 nitration hampers ATP binding but only in the deprotonated and negatively charged state of residue 336. By contrast, for the protonated and neutral state, our computations indicate an increased binding affinity for ATP. pKa computations of nitrated Y336 within GS predict a pKa of ∼5.3. Thus, at physiological pH, nitrated Y336 exists almost exclusively in the deprotonated and negatively charged state. In vitro experiments confirm these predictions, in that, the catalytic activity of nitrated GS is decreased at pH 7 and 6 but not at pH 4. These results indicate a novel, fully reversible, pH-sensitive mechanism for the regulation of GS activity by tyrosine nitration.
Collapse
Affiliation(s)
- Benedikt Frieg
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Natalia Qvartskhava
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas Jeitner
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| | - Nadine Homeyer
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
21
|
Tavakkoli A, Abnous K, Vahdati Hassani F, Hosseinzadeh H, Birner-Gruenberger R, Mehri S. Alteration of protein profile in cerebral cortex of rats exposed to bisphenol a: a proteomics study. Neurotoxicology 2020; 78:1-10. [DOI: 10.1016/j.neuro.2020.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 12/17/2022]
|
22
|
Rumping L, Vringer E, Houwen RHJ, van Hasselt PM, Jans JJM, Verhoeven‐Duif NM. Inborn errors of enzymes in glutamate metabolism. J Inherit Metab Dis 2020; 43:200-215. [PMID: 31603991 PMCID: PMC7078983 DOI: 10.1002/jimd.12180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 12/29/2022]
Abstract
Glutamate is involved in a variety of metabolic pathways. We reviewed the literature on genetic defects of enzymes that directly metabolise glutamate, leading to inborn errors of glutamate metabolism. Seventeen genetic defects of glutamate metabolising enzymes have been reported, of which three were only recently identified. These 17 defects affect the inter-conversion of glutamine and glutamate, amino acid metabolism, ammonia detoxification, and glutathione metabolism. We provide an overview of the clinical and biochemical phenotypes of these rare defects in an effort to ease their recognition. By categorising these by biochemical pathway, we aim to create insight into the contributing role of deviant glutamate and glutamine levels to the pathophysiology. For those disorders involving the inter-conversion of glutamine and glutamate, these deviant levels are postulated to play a pivotal pathophysiologic role. For the other IEM however-with the exception of urea cycle defects-abnormal glutamate and glutamine concentrations were rarely reported. To create insight into the clinical consequences of disturbed glutamate metabolism-rather than individual glutamate and glutamine levels-the prevalence of phenotypic abnormalities within the 17 IEM was compared to their prevalence within all Mendelian disorders and subsequently all disorders with metabolic abnormalities notated in the Human Phenotype Ontology (HPO) database. For this, a hierarchical database of all phenotypic abnormalities of the 17 defects in glutamate metabolism based on HPO was created. A neurologic phenotypic spectrum of developmental delay, ataxia, seizures, and hypotonia are common in the inborn errors of enzymes in glutamate metabolism. Additionally, ophthalmologic and skin abnormalities are often present, suggesting that disturbed glutamate homeostasis affects tissues of ectodermal origin: brain, eye, and skin. Reporting glutamate and glutamine concentrations in patients with inborn errors of glutamate metabolism would provide additional insight into the pathophysiology.
Collapse
Affiliation(s)
- Lynne Rumping
- Department of GeneticsUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
- Center for Molecular MedicineUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
- Department of PediatricsUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| | - Esmee Vringer
- Department of GeneticsUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| | - Roderick H. J. Houwen
- Department of PediatricsUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| | - Peter M. van Hasselt
- Department of PediatricsUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| | - Judith J. M. Jans
- Department of GeneticsUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
- Center for Molecular MedicineUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| | - Nanda M. Verhoeven‐Duif
- Department of GeneticsUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
- Center for Molecular MedicineUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| |
Collapse
|
23
|
Vernizzi L, Paiardi C, Licata G, Vitali T, Santarelli S, Raneli M, Manelli V, Rizzetto M, Gioria M, Pasini ME, Grifoni D, Vanoni MA, Gellera C, Taroni F, Bellosta P. Glutamine Synthetase 1 Increases Autophagy Lysosomal Degradation of Mutant Huntingtin Aggregates in Neurons, Ameliorating Motility in a Drosophila Model for Huntington's Disease. Cells 2020; 9:cells9010196. [PMID: 31941072 PMCID: PMC7016901 DOI: 10.3390/cells9010196] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
Glutamine Synthetase 1 (GS1) is a key enzyme that catalyzes the ATP-dependent synthesis of l-glutamine from l-glutamate and is also member of the Glutamate Glutamine Cycle, a complex physiological process between glia and neurons that controls glutamate homeostasis and is often found compromised in neurodegenerative diseases including Huntington's disease (HD). Here we report that the expression of GS1 in neurons ameliorates the motility defects induced by the expression of the mutant Htt, using a Drosophila model for HD. This phenotype is associated with the ability of GS1 to favor the autophagy that we associate with the presence of reduced Htt toxic protein aggregates in neurons expressing mutant Htt. Expression of GS1 prevents the TOR activation and phosphorylation of S6K, a mechanism that we associate with the reduced levels of essential amino acids, particularly of arginine and asparagine important for TOR activation. This study reveals a novel function for GS1 to ameliorate neuronal survival by changing amino acids' levels that induce a "starvation-like" condition responsible to induce autophagy. The identification of novel targets that inhibit TOR in neurons is of particular interest for the beneficial role that autophagy has in preserving physiological neuronal health and in the mechanisms that eliminate the formation of toxic aggregates in proteinopathies.
Collapse
Affiliation(s)
- Luisa Vernizzi
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (L.V.); (C.P.); (T.V.); (M.R.); (V.M.); (M.G.); (M.E.P.); (M.A.V.)
| | - Chiara Paiardi
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (L.V.); (C.P.); (T.V.); (M.R.); (V.M.); (M.G.); (M.E.P.); (M.A.V.)
| | - Giusimaria Licata
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (L.V.); (C.P.); (T.V.); (M.R.); (V.M.); (M.G.); (M.E.P.); (M.A.V.)
| | - Teresa Vitali
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (L.V.); (C.P.); (T.V.); (M.R.); (V.M.); (M.G.); (M.E.P.); (M.A.V.)
| | - Stefania Santarelli
- Department of Cellular, Computational and Integrative Biology (CiBio), University of Trento, 38123 Trento, Italy;
| | - Martino Raneli
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (L.V.); (C.P.); (T.V.); (M.R.); (V.M.); (M.G.); (M.E.P.); (M.A.V.)
| | - Vera Manelli
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (L.V.); (C.P.); (T.V.); (M.R.); (V.M.); (M.G.); (M.E.P.); (M.A.V.)
| | - Manuela Rizzetto
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.R.); (C.G.); (F.T.)
| | - Mariarosa Gioria
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (L.V.); (C.P.); (T.V.); (M.R.); (V.M.); (M.G.); (M.E.P.); (M.A.V.)
| | - Maria E. Pasini
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (L.V.); (C.P.); (T.V.); (M.R.); (V.M.); (M.G.); (M.E.P.); (M.A.V.)
| | - Daniela Grifoni
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Maria A. Vanoni
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (L.V.); (C.P.); (T.V.); (M.R.); (V.M.); (M.G.); (M.E.P.); (M.A.V.)
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.R.); (C.G.); (F.T.)
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.R.); (C.G.); (F.T.)
| | - Paola Bellosta
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (L.V.); (C.P.); (T.V.); (M.R.); (V.M.); (M.G.); (M.E.P.); (M.A.V.)
- Department of Cellular, Computational and Integrative Biology (CiBio), University of Trento, 38123 Trento, Italy;
- Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
- Correspondence: ; Tel.: +39-0461-283070
| |
Collapse
|
24
|
Chen J, Zhang S, Wu J, Wu S, Xu G, Wei D. Essential Role of Nonessential Amino Acid Glutamine in Atherosclerotic Cardiovascular Disease. DNA Cell Biol 2019; 39:8-15. [PMID: 31825254 DOI: 10.1089/dna.2019.5034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is a major disease that seriously harms human health and is known as the "number one killer" in developed countries and the leading cause of death worldwide. Glutamine is the most abundant nonessential amino acid in the human blood that has multifaceted effects on the body. Recent studies showed that glutamine is negatively corrected with the progression of atherosclerotic lesions. In this review, we focused on the relationship of glutamine with macrophage polarization, nitrification stress, oxidative stress injury, myocardial ischemia-reperfusion injury, and therapeutic angiogenesis to review its roles in atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Jinna Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Province Innovative Training Base for Medical Postgraduates, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Shulei Zhang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Province Innovative Training Base for Medical Postgraduates, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jiaxiong Wu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Province Innovative Training Base for Medical Postgraduates, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Shiyuan Wu
- YueYang Maternal-Child Medicine Health Hospital Hunan, Province Innovative Training Base for Medical Postgraduates, Yueyang, Hunan, China
| | - Gaosheng Xu
- YueYang Maternal-Child Medicine Health Hospital Hunan, Province Innovative Training Base for Medical Postgraduates, Yueyang, Hunan, China
| | - Dangheng Wei
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Province Innovative Training Base for Medical Postgraduates, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| |
Collapse
|
25
|
Eid T, Lee TSW, Patrylo P, Zaveri HP. Astrocytes and Glutamine Synthetase in Epileptogenesis. J Neurosci Res 2019; 97:1345-1362. [PMID: 30022509 PMCID: PMC6338538 DOI: 10.1002/jnr.24267] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/15/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022]
Abstract
The cellular, molecular, and metabolic mechanisms that underlie the development of mesial temporal lobe epilepsy are incompletely understood. Here we review the role of astrocytes in epilepsy development (a.k.a. epileptogenesis), particularly astrocyte pathologies related to: aquaporin 4, the inwardly rectifying potassium channel Kir4.1, monocarboxylate transporters MCT1 and MCT2, excitatory amino acid transporters EAAT1 and EAAT2, and glutamine synthetase. We propose that inhibition, dysfunction or loss of astrocytic glutamine synthetase is an important causative factor for some epilepsies, particularly mesial temporal lobe epilepsy and glioblastoma-associated epilepsy. We postulate that the regulatory mechanisms of glutamine synthetase as well as the downstream effects of glutamine synthetase dysfunction, represent attractive, new targets for antiepileptogenic interventions. Currently, no antiepileptogenic therapies are available for human use. The discovery of such interventions is important as it will fundamentally change the way we approach epilepsy by preventing the disease from ever becoming manifest after an epileptogenic insult to the brain.
Collapse
Affiliation(s)
- Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine
- Department of Molecular Medicine, University of Oslo
| | | | - Peter Patrylo
- Department of Physiology, Southern Illinois University School of Medicine
| | | |
Collapse
|
26
|
Griffin JWD, Bradshaw PC. Effects of a high protein diet and liver disease in an in silico model of human ammonia metabolism. Theor Biol Med Model 2019; 16:11. [PMID: 31366360 PMCID: PMC6670211 DOI: 10.1186/s12976-019-0109-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/15/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND After proteolysis, the majority of released amino acids from dietary protein are transported to the liver for gluconeogenesis or to peripheral tissues where they are used for protein synthesis and eventually catabolized, producing ammonia as a byproduct. High ammonia levels in the brain are a major contributor to the decreased neural function that occurs in several pathological conditions such as hepatic encephalopathy when liver urea cycle function is compromised. Therefore, it is important to gain a deeper understanding of human ammonia metabolism. The objective of this study was to predict changes in blood ammonia levels resulting from alterations in dietary protein intake, from liver disease, or from partial loss of urea cycle function. METHODS A simple mathematical model was created using MATLAB SimBiology and data from published studies. Simulations were performed and results analyzed to determine steady state changes in ammonia levels resulting from varying dietary protein intake and varying liver enzyme activity levels to simulate liver disease. As a toxicity reference, viability was measured in SH-SY5Y neuroblastoma cells following differentiation and ammonium chloride treatment. RESULTS Results from control simulations yielded steady state blood ammonia levels within normal physiological limits. Increasing dietary protein intake by 72% resulted in a 59% increase in blood ammonia levels. Simulations of liver cirrhosis increased blood ammonia levels by 41 to 130% depending upon the level of dietary protein intake. Simulations of heterozygous individuals carrying a loss of function allele of the urea cycle carbamoyl phosphate synthetase I (CPS1) gene resulted in more than a tripling of blood ammonia levels (from roughly 18 to 60 μM depending on dietary protein intake). The viability of differentiated SH-SY5Y cells was decreased by 14% by the addition of a slightly higher amount of ammonium chloride (90 μM). CONCLUSIONS Data from the model suggest decreasing protein consumption may be one simple strategy to decrease blood ammonia levels and minimize the risk of developing hepatic encephalopathy for many liver disease patients. In addition, the model suggests subjects who are known carriers of disease-causing CPS1 alleles may benefit from monitoring blood ammonia levels and limiting the level of protein intake if ammonia levels are high.
Collapse
Affiliation(s)
| | - Patrick C. Bradshaw
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN USA
| |
Collapse
|
27
|
The Pleiotropic Effects of Glutamine Metabolism in Cancer. Cancers (Basel) 2019; 11:cancers11060770. [PMID: 31167399 PMCID: PMC6627534 DOI: 10.3390/cancers11060770] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/18/2022] Open
Abstract
Metabolic programs are known to be altered in cancers arising from various tissues. Malignant transformation can alter signaling pathways related to metabolism and increase the demand for both energy and biomass for the proliferating cancerous cells. This scenario is further complexed by the crosstalk between transformed cells and the microenvironment. One of the most common metabolic alterations, which occurs in many tissues and in the context of multiple oncogenic drivers, is the increased demand for the amino acid glutamine. Many studies have attributed this increased demand for glutamine to the carbon backbone and its role in the tricarboxylic acid (TCA) cycle anaplerosis. However, an increasing number of studies are now emphasizing the importance of glutamine functioning as a proteogenic building block, a nitrogen donor and carrier, an exchanger for import of other amino acids, and a signaling molecule. Herein, we highlight the recent literature on glutamine’s versatile role in cancer, with a focus on nitrogen metabolism, and therapeutic implications of glutamine metabolism in cancer.
Collapse
|
28
|
Xin W, Mironova YA, Shen H, Marino RAM, Waisman A, Lamers WH, Bergles DE, Bonci A. Oligodendrocytes Support Neuronal Glutamatergic Transmission via Expression of Glutamine Synthetase. Cell Rep 2019; 27:2262-2271.e5. [PMID: 31116973 PMCID: PMC6544175 DOI: 10.1016/j.celrep.2019.04.094] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/16/2019] [Accepted: 04/22/2019] [Indexed: 11/30/2022] Open
Abstract
Glutamate has been implicated in a wide range of brain pathologies and is thought to be metabolized via the astrocyte-specific enzyme glutamine synthetase (GS). We show here that oligodendrocytes, the myelinating glia of the central nervous system, also express high levels of GS in caudal regions like the midbrain and the spinal cord. Selective removal of oligodendrocyte GS in mice led to reduced brain glutamate and glutamine levels and impaired glutamatergic synaptic transmission without disrupting myelination. Furthermore, animals lacking oligodendrocyte GS displayed deficits in cocaine-induced locomotor sensitization, a behavior that is dependent on glutamatergic signaling in the midbrain. Thus, oligodendrocytes support glutamatergic transmission through the actions of GS and may represent a therapeutic target for pathological conditions related to brain glutamate dysregulation.
Collapse
Affiliation(s)
- Wendy Xin
- Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Yevgeniya A Mironova
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hui Shen
- Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA
| | - Rosa A M Marino
- Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Wouter H Lamers
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, 1105 BK Amsterdam, the Netherlands
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Antonello Bonci
- Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Georgetown University Medical Center, School of Medicine, Washington, DC 20007, USA; Department of Psychiatry, University of Maryland, School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
29
|
Rumping L, Büttner B, Maier O, Rehmann H, Lequin M, Schlump JU, Schmitt B, Schiebergen-Bronkhorst B, Prinsen HCMT, Losa M, Fingerhut R, Lemke JR, Zwartkruis FJT, Houwen RHJ, Jans JJM, Verhoeven-Duif NM, van Hasselt PM, Jamra R. Identification of a Loss-of-Function Mutation in the Context of Glutaminase Deficiency and Neonatal Epileptic Encephalopathy. JAMA Neurol 2019; 76:342-350. [PMID: 30575854 PMCID: PMC6439720 DOI: 10.1001/jamaneurol.2018.2941] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
Abstract
Importance The identification and understanding of the monogenic causes of neurodevelopmental disorders are of high importance for personalized treatment and genetic counseling. Objective To identify and characterize novel genes for a specific neurodevelopmental disorder characterized by refractory seizures, respiratory failure, brain abnormalities, and death in the neonatal period; describe the outcome of glutaminase deficiency in humans; and understand the underlying pathological mechanisms. Design, Setting, and Participants We performed exome sequencing of cases of neurodevelopmental disorders without a clear genetic diagnosis, followed by genetic and bioinformatic evaluation of candidate variants and genes. Establishing pathogenicity of the variants was achieved by measuring metabolites in dried blood spots by a hydrophilic interaction liquid chromatography method coupled with tandem mass spectrometry. The participants are 2 families with a total of 4 children who each had lethal, therapy-refractory early neonatal seizures with status epilepticus and suppression bursts, respiratory insufficiency, simplified gyral structures, diffuse volume loss of the brain, and cerebral edema. Data analysis occurred from October 2017 to June 2018. Main Outcomes and Measures Early neonatal epileptic encephalopathy with glutaminase deficiency and lethal outcome. Results A total of 4 infants from 2 unrelated families, each of whom died less than 40 days after birth, were included. We identified a homozygous frameshift variant p.(Asp232Glufs*2) in GLS in the first family, as well as compound heterozygous variants p.(Gln81*) and p.(Arg272Lys) in GLS in the second family. The GLS gene encodes glutaminase (Enzyme Commission 3.5.1.2), which plays a major role in the conversion of glutamine into glutamate, the main excitatory neurotransmitter of the central nervous system. All 3 variants probably lead to a loss of function and thus glutaminase deficiency. Indeed, glutamine was increased in affected children (available z scores, 3.2 and 11.7). We theorize that the potential reduction of glutamate and the excess of glutamine were a probable cause of the described physiological and structural abnormalities of the central nervous system. Conclusions and Relevance We identified a novel autosomal recessive neurometabolic disorder of loss of function of glutaminase that leads to lethal early neonatal encephalopathy. This inborn error of metabolism underlines the importance of GLS for appropriate glutamine homeostasis and respiratory regulation, signal transduction, and survival.
Collapse
Affiliation(s)
- Lynne Rumping
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Pediatrics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Benjamin Büttner
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| | - Oliver Maier
- Department of Neuropediatrics, Development and Rehabilitation, Children's Hospital of Eastern Switzerland, St Gallen, Switzerland
| | - Holger Rehmann
- Center for Molecular Medicine, Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Expertise Centre for Structural Biology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maarten Lequin
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jan-Ulrich Schlump
- Division for Children and Adolescents, Evangelical Hospital Oberhausen, Oberhausen, Germany
| | - Bernhard Schmitt
- Department of Child Neurology, University Children's Hospital, Zurich, Switzerland
| | | | - Hubertus C. M. T. Prinsen
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Michele Losa
- Department of Pediatric Intensive Care and Neonatology, Children's Hospital of Eastern Switzerland, St Gallen, Switzerland
| | - Ralph Fingerhut
- Swiss Newborn Screening Laboratory and Children`s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Johannes R. Lemke
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| | - Fried J. T. Zwartkruis
- Center for Molecular Medicine, Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Roderick H. J. Houwen
- Department of Pediatrics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Judith J. M. Jans
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Nanda M. Verhoeven-Duif
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Peter M. van Hasselt
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Rami Jamra
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| |
Collapse
|
30
|
Insufficient glutamine synthetase activity during synaptogenesis causes spatial memory impairment in adult mice. Sci Rep 2019; 9:252. [PMID: 30670758 PMCID: PMC6342969 DOI: 10.1038/s41598-018-36619-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022] Open
Abstract
Glutamatergic synapses constitute a major excitatory neurotransmission system and are regulated by glutamate/glutamine (Gln) cycling between neurons and astrocytes. Gln synthetase (GS) produced by astrocytes plays an important role in maintaining the cycle. However, the significance of GS during synaptogenesis has not been clarified. GS activity and expression significantly increase from postnatal day (PD) 7 to 21, and GS is expressed prior to glial fibrillary acidic protein (GFAP) and is more abundant than GFAP throughout synaptogenesis. These observations suggest that GS plays an important role in synaptogenesis. We investigated this by inhibiting GS activity in neonatal mice and assessed the consequences in adult animals. Lower expression levels of GS and GFAP were found in the CA3 region of the hippocampus but not in the CA1 region. Moreover, synaptic puncta and glutamatergic neurotransmission were also decreased in CA3. Behaviorally, mice with inhibited GS during synaptogenesis showed spatial memory-related impairment as adults. These results suggest that postnatal GS activity is important for glutamatergic synapse development in CA3.
Collapse
|
31
|
Verkhratsky A, Ho MS, Vardjan N, Zorec R, Parpura V. General Pathophysiology of Astroglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:149-179. [PMID: 31583588 PMCID: PMC7188602 DOI: 10.1007/978-981-13-9913-8_7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Astroglial cells are involved in most if not in all pathologies of the brain. These cells can change the morpho-functional properties in response to pathology or innate changes of these cells can lead to pathologies. Overall pathological changes in astroglia are complex and diverse and often vary with different disease stages. We classify astrogliopathologies into reactive astrogliosis, astrodegeneration with astroglial atrophy and loss of function, and pathological remodelling of astrocytes. Such changes can occur in neurological, neurodevelopmental, metabolic and psychiatric disorders as well as in infection and toxic insults. Mutation in astrocyte-specific genes leads to specific pathologies, such as Alexander disease, which is a leukodystrophy. We discuss changes in astroglia in the pathological context and identify some molecular entities underlying pathology. These entities within astroglia may repent targets for novel therapeutic intervention in the management of brain pathologies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Margaret S Ho
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
- Celica BIOMEDICAL, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
- Celica BIOMEDICAL, Ljubljana, Slovenia
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
32
|
Savy N, Brossier D, Brunel-Guitton C, Ducharme-Crevier L, Du Pont-Thibodeau G, Jouvet P. Acute pediatric hyperammonemia: current diagnosis and management strategies. Hepat Med 2018; 10:105-115. [PMID: 30254497 PMCID: PMC6140721 DOI: 10.2147/hmer.s140711] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute hyperammonemia may induce a neurologic impairment leading to an acute life-threatening condition. Coma duration, ammonia peak level, and hyperammonemia duration are the main risk factors of hyperammonemia-related neurologic deficits and death. In children, hyperammonemia is mainly caused by severe liver failure and inborn errors of metabolism. In an acute setting, obtaining reliable plasma ammonia levels can be challenging because of the preanalytical difficulties that need to be addressed carefully. The management of hyperammonemia includes 1) identification of precipitating factors and cerebral edema presence, 2) a decrease in ammonia production by reducing protein intake and reversing catabolism, and 3) ammonia removal with pharmacologic treatment and, in the most severe cases, with extracorporeal therapies. In case of severe coma, transcranial Doppler ultrasound could be the method of choice to noninvasively monitor cerebral blood flow and titrate therapies.
Collapse
Affiliation(s)
- Nadia Savy
- Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Montreal, QC, Canada,
| | - David Brossier
- Department of Pediatrics, Pediatric Intensive Care Unit, CHU Caen, Caen, France
| | | | | | | | - Philippe Jouvet
- Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Montreal, QC, Canada,
| |
Collapse
|
33
|
Zhou Y, Dhaher R, Parent M, Hu QX, Hassel B, Yee SP, Hyder F, Gruenbaum SE, Eid T, Danbolt NC. Selective deletion of glutamine synthetase in the mouse cerebral cortex induces glial dysfunction and vascular impairment that precede epilepsy and neurodegeneration. Neurochem Int 2018; 123:22-33. [PMID: 30053506 DOI: 10.1016/j.neuint.2018.07.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 12/31/2022]
Abstract
Glutamate-ammonia ligase (glutamine synthetase; Glul) is enriched in astrocytes and serves as the primary enzyme for ammonia detoxification and glutamate inactivation in the brain. Loss of astroglial Glul is reported in hippocampi of epileptic patients, but the mechanism by which Glul deficiency might cause disease remains elusive. Here we created a novel mouse model by selectively deleting Glul in the hippocampus and neocortex. The Glul deficient mice were born without any apparent malformations and behaved unremarkably until postnatal week three. There were reductions in tissue levels of aspartate, glutamate, glutamine and GABA and in mRNA encoding glutamate receptor subunits GRIA1 and GRIN2A as well as in the glutamate transporter proteins EAAT1 and EAAT2. Adult Glul-deficient mice developed progressive neurodegeneration and spontaneous seizures which increased in frequency with age. Importantly, progressive astrogliosis occurred before neurodegeneration and was first noted in astrocytes along cerebral blood vessels. The responses to CO2-provocation were attenuated at four weeks of age and dilated microvessels were observed histologically in sclerotic areas of cKO. Thus, the abnormal glutamate metabolism observed in this model appeared to cause epilepsy by first inducing gliopathy and disrupting the neurovascular coupling.
Collapse
Affiliation(s)
- Yun Zhou
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317, Oslo, Norway.
| | - Roni Dhaher
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Maxime Parent
- Magnetic Resonance Research Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Qiu-Xiang Hu
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317, Oslo, Norway
| | - Bjørnar Hassel
- Department of Complex Neurology and Neurohabilitation, Oslo University Hospital, University of Oslo, N-0450, Oslo, Norway
| | - Siu-Pok Yee
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Shaun E Gruenbaum
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Tore Eid
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317, Oslo, Norway; Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA.
| | - Niels Christian Danbolt
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317, Oslo, Norway.
| |
Collapse
|
34
|
Kazmiruk NV, Boronovskiy SE, Nartsissov YR. Modeling the Regulation of the Activity of Glutamine Synthetase from Escherichia coli by Magnesium Ions. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918030090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
35
|
Sacharow SJ, Dudenhausen EE, Lomelino CL, Rodan L, El Achkar CM, Olson HE, Genetti CA, Agrawal PB, McKenna R, Kilberg MS. Characterization of a novel variant in siblings with Asparagine Synthetase Deficiency. Mol Genet Metab 2018; 123:317-325. [PMID: 29279279 PMCID: PMC5832599 DOI: 10.1016/j.ymgme.2017.12.433] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022]
Abstract
Asparagine Synthetase Deficiency (ASD) is a recently described inborn error of metabolism caused by bi-allelic pathogenic variants in the asparagine synthetase (ASNS) gene. ASD typically presents congenitally with microcephaly and severe, often medically refractory, epilepsy. Development is generally severely affected at birth. Tone is abnormal with axial hypotonia and progressive appendicular spasticity. Hyperekplexia has been reported. Neuroimaging typically demonstrates gyral simplification, abnormal myelination, and progressive cerebral atrophy. The present report describes two siblings from consanguineous parents with a homozygous Arg49Gln variant associated with a milder form of ASD that is characterized by later onset of symptoms. Both siblings had a period of normal development before onset of seizures, and development regression. Primary fibroblast studies of the siblings and their parents document that homozygosity for Arg49Gln blocks cell growth in the absence of extracellular asparagine. Functional studies with these cells suggest no impact of the Arg49Gln variant on basal ASNS mRNA or protein levels, nor on regulation of the gene itself. Molecular modelling of the ASNS protein structure indicates that the Arg49Gln variant lies near the substrate binding site for glutamine. Collectively, the results suggest that the Arg49Gln variant affects the enzymatic function of ASNS. The clinical, cellular, and molecular observations from these siblings expand the known phenotypic spectrum of ASD.
Collapse
Affiliation(s)
- Stephanie J Sacharow
- Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Elizabeth E Dudenhausen
- Department of Biochemistry & Molecular Biology, Genetics Institute, University of Florida College of Medicine, 1200 Newell Drive, FL 32608, USA
| | - Carrie L Lomelino
- Department of Biochemistry & Molecular Biology, Genetics Institute, University of Florida College of Medicine, 1200 Newell Drive, FL 32608, USA
| | - Lance Rodan
- Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States; Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Christelle Moufawad El Achkar
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States; Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Heather E Olson
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States; Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Casie A Genetti
- Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States; Manton Center for Orphan Disease Research, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States; Manton Center for Orphan Disease Research, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States; Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Robert McKenna
- Department of Biochemistry & Molecular Biology, Genetics Institute, University of Florida College of Medicine, 1200 Newell Drive, FL 32608, USA
| | - Michael S Kilberg
- Department of Biochemistry & Molecular Biology, Genetics Institute, University of Florida College of Medicine, 1200 Newell Drive, FL 32608, USA.
| |
Collapse
|
36
|
Abstract
Bacteria in nature reside in organized communities, termed biofilms, which are composed of multiple individual cells adhering to each other. Similarly, tumors are a multicellular mass with distinct cellular phenotypes. Both tumors and biofilms are considered to be an active interphase between unicellular and multicellular life states. Because both of these units depend on glutamine for growth and survival, we review here glutamine flux within them as a readout for intra- and inter-commensal metabolism. We suggest that the difference between glutamine fluxes in these cellular communities lies mainly in their global multicellular metabolic organization. Both the differences and similarities described here should be taken into account when considering glutamine-targeting therapeutic approaches.
Collapse
Affiliation(s)
- Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|