1
|
Ferdous F, Scott T. The Immunological Capacity of Thrombocytes. Int J Mol Sci 2023; 24:12950. [PMID: 37629130 PMCID: PMC10454457 DOI: 10.3390/ijms241612950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Thrombocytes are numerous in the blood of aves (birds) and ichthyoids (fish). The origin of this cell type is a common hematopoietic stem cell giving rise to a cell that is active in blood coagulation, inflammatory functions, and the immune response in general. It has been well documented that thrombocytes can phagocytize small particles and bacteria. While phagocytosis with an associated oxidative burst has been reported for chicken thrombocytes, some questions remain as to the degradation capacity of phagosomes in ichthyoids. As innate cells, thrombocytes can be stimulated by bacterial, viral, and fungal pathogens to express altered gene expression. Furthermore, there have been observations that led researchers to state that platelets/thrombocytes are capable of serving as "professional antigen presenting cells" expressing CD40, CD80/86, MHC I, and MHC II. This indeed may be the case or, more likely at this time, provide supporting evidence that these cells aid and assist in the role of professional antigen-presenting cells to initiate adaptive immune responses.
Collapse
Affiliation(s)
- Farzana Ferdous
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Thomas Scott
- Department of Animal & Veterinary Sciences, Clemson University, 129 Poole Agricultural Center, Clemson, SC 29634, USA;
| |
Collapse
|
2
|
Gautam I, Huss CW, Storad ZA, Krebs M, Bassiouni O, Ramesh R, Wuescher LM, Worth RG. Activated Platelets Mediate Monocyte Killing of Klebsiella pneumoniae. Infect Immun 2023; 91:e0055622. [PMID: 36853027 PMCID: PMC10016073 DOI: 10.1128/iai.00556-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/02/2023] [Indexed: 03/01/2023] Open
Abstract
Platelets are known for essential activities in hemostasis and for their important contribution to protection against infectious pathogens. Klebsiella pneumoniae is an opportunistic pathogen widely known to cause nosocomial infections. Recently, hypervirulent strains of K. pneumoniae have been emerging, which can cause severe infections in immunocompetent individuals. Combined with the increase in antibiotic resistance, it is important to understand how K. pneumoniae affects components of the immune system. We studied the interactions of human platelets with several K. pneumoniae strains (the wild type encapsulated strain, and a nonencapsulated mutant). Thrombin-stimulated whole human and mouse blood significantly inhibited bacterial growth compared to unstimulated whole blood. Furthermore, we investigated the effect of K. pneumoniae on platelet activation. Both strains induced significant increase in activation of both unstimulated and thrombin-stimulated human platelets. Additionally, only the nonencapsulated mutant increased aggregation of platelets in response to ADP. K. pneumoniae killing assays were then performed with washed platelets in the presence or absence of thrombin. Surprisingly, washed platelets failed to exhibit any effects on the growth of K. pneumoniae. We further explored the impact of platelets on monocyte-mediated killing of K. pneumoniae. Importantly, we found that activated platelets significantly enhanced monocyte-mediated killing of K. pneumoniae. This effect was likely due to the formation of platelet-monocyte aggregates in blood upon thrombin stimulation. Overall, this study highlights the role of platelets in mediating a protective response against K. pneumoniae and reinforces the importance of platelets in modulating leukocyte behavior.
Collapse
Affiliation(s)
- Iluja Gautam
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, Ohio, USA
| | - Chadwick W. Huss
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, Ohio, USA
| | - Zachary A. Storad
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, Ohio, USA
| | - Michelle Krebs
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, Ohio, USA
| | - Omar Bassiouni
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, Ohio, USA
| | - Rochan Ramesh
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, Ohio, USA
| | - Leah M. Wuescher
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, Ohio, USA
| | - Randall G. Worth
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
3
|
Dissecting Platelet's Role in Viral Infection: A Double-Edged Effector of the Immune System. Int J Mol Sci 2023; 24:ijms24032009. [PMID: 36768333 PMCID: PMC9916939 DOI: 10.3390/ijms24032009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/23/2022] [Indexed: 01/20/2023] Open
Abstract
Platelets play a major role in the processes of primary hemostasis and pathological inflammation-induced thrombosis. In the mid-2000s, several studies expanded the role of these particular cells, placing them in the "immune continuum" and thus changing the understanding of their function in both innate and adaptive immune responses. Among the many receptors they express on their surface, platelets express Toll-Like Receptors (TLRs), key receptors in the inflammatory cell-cell reaction and in the interaction between innate and adaptive immunity. In response to an infectious stimulus, platelets will become differentially activated. Platelet activation is variable depending on whether platelets are activated by a hemostatic or pathogen stimulus. This review highlights the role that platelets play in platelet modulation count and adaptative immune response during viral infection.
Collapse
|
4
|
Xu H, Liu L, Xie J, Wang D, Huang Z, Wang W, Zhou Z. The Screening of Fixation-Related Infection in Patients Undergoing Conversion Total Hip Arthroplasty after Failed Internal Fixation of Hip Fractures: A Single-Central Retrospective Study. Orthop Surg 2022; 14:1167-1174. [PMID: 35582895 PMCID: PMC9163979 DOI: 10.1111/os.13225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 12/09/2021] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
Objective To evaluate the diagnostic values of preoperative plasma fibrinogen and platelet count for screening fixation‐related infection (FRI) in patients undergoing conversion total hip arthroplasty (cTHA) after failed internal fixation of hip fractures. Method This was a single‐center retrospective study. Data were retrospectively analyzed for 435 patients who underwent cTHA in our hospital from January 2008 to September 2020. They were divided into infected (n = 30) and non‐infected groups (n = 405) according to the 2013 International Consensus Meeting (ICM) criteria. The diagnostic sensitivity and specificity of plasma fibrinogen and platelet count were determined using receiver operating characteristic (ROC) curves. Optimal predictive cutoffs of these two markers were determined based on the Youden index. In addition, the diagnostic value of preoperative serum C‐reactive protein (CRP) and erythrocyte sedimentation rate (ESR) for screening FRI were also evaluated based on the cutoffs recommended by the 2013 ICM Criteria. Finally, the diagnostic ability of various combinations of the plasma fibrinogen and platelet count as well as serum CRP and ESR was re‐assessed. Results The numbers of patients with and without FRI were 30 (6.9%) and 405 (93.1%), respectively. Areas under the ROC curves were 0.770 for fibrinogen, 0.606 for platelet, 0.844 for CRP and 0.749 for ESR. The optimal predictive cutoff of fibrinogen was 3.73 g/L, which gave sensitivity of 60.0% and specificity of 90.5%. The optimal predictive cutoff for platelet was 241.5 × 109/L, which gave sensitivity of 46.7% and specificity of 83.7%. The CRP gave sensitivity of 66.7% and specificity of 92.5% with the predetermined cutoff of 10 mg/L, while the ESR gave sensitivity of 67.5% and specificity of 72.4% % with the predetermined cutoff of 30 mm/h. The combination of CRP and ESR showed high specificity of 93.2% but low sensitivity of 66.7%, while the corresponding values for CRP with fibrinogen were satisfied both for sensitivity of 80.0% and specificity of 78.7%. The combination of these four biomarkers gave sensitivity of 73.3% and specificity of 85.7%. Conclusion Preoperative serum CRP, ESR, plasma fibrinogen and platelet count have low sensitivity on their own for screening FRI in patients, but the combination of CRP with fibrinogen shows promise for that.
Collapse
Affiliation(s)
- Hong Xu
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Li Liu
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University/ West China Hospital of Nursing, Sichuan University, Chengdu, China
| | - Jinwei Xie
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Duan Wang
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zeyu Huang
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqi Wang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Zongke Zhou
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Zheng L, Duan Z, Tang D, He Y, Chen X, Chen Q, Li M. GP IIb/IIIa-Mediated Platelet Activation and Its Modulation of the Immune Response of Monocytes Against Candida albicans. Front Cell Infect Microbiol 2021; 11:783085. [PMID: 34938671 PMCID: PMC8685400 DOI: 10.3389/fcimb.2021.783085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Candida albicans is the most common fungal pathogen in humans, causing invasive disease and even potentially life-threatening systemic infections when tissue homeostasis is disrupted. Previous studies have identified an essential role of platelets in infection and immunity, especially when they are activated. However, it is still unclear whether platelets can be activated by C. albicans, and even less is known about the role of platelets in C. albicans infection. Herein, we showed that C. albicans induced platelet activation in vitro. C. albicans elevated the levels of AKT Ser473 phosphorylation, and inhibition of the PI3K-AKT signaling pathway reversed C. albicans-induced platelet activation. Surprisingly, C. albicans-induced platelet activation occurred in an integrin glycoprotein (GP) IIb/IIIa-dependent manner but was independent of the pattern recognition receptors toll-like receptor (TLR) 2 and TLR4. Interestingly, platelets enhanced the phagocytosis of human monocytes challenged with C. albicans and upregulated the expression of inflammatory cytokines, which were dependent on platelet activation mediated by GP IIb/IIIa. The present work provides new insights into the role of activated platelets in the defense against C. albicans, highlighting the importance of GP IIb/IIIa in the recognition of C. albicans.
Collapse
Affiliation(s)
- Lin Zheng
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Zhimin Duan
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | | | - Yanzhi He
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xu Chen
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.,School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qing Chen
- Jiangsu Province Blood Center, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Min Li
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Karrow NA, Shandilya UK, Pelech S, Wagter-Lesperance L, McLeod D, Bridle B, Mallard BA. Maternal COVID-19 Vaccination and Its Potential Impact on Fetal and Neonatal Development. Vaccines (Basel) 2021; 9:1351. [PMID: 34835282 PMCID: PMC8617890 DOI: 10.3390/vaccines9111351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
Vaccines have been developed at "warp speed" to combat the COVID-19 pandemic caused by the SARS-CoV-2 coronavirus. Although they are considered the best approach for preventing mortality, when assessing the safety of these vaccines, pregnant women have not been included in clinical trials. Thus, vaccine safety for this demographic, as well as for the developing fetus and neonate, remains to be determined. A global effort has been underway to encourage pregnant women to get vaccinated despite the uncertain risk posed to them and their offspring. Given this, post-hoc data collection, potentially for years, will be required to determine the outcomes of COVID-19 and vaccination on the next generation. Most COVID-19 vaccine reactions include injection site erythema, pain, swelling, fatigue, headache, fever and lymphadenopathy, which may be sufficient to affect fetal/neonatal development. In this review, we have explored components of the first-generation viral vector and mRNA COVID-19 vaccines that are believed to contribute to adverse reactions and which may negatively impact fetal and neonatal development. We have followed this with a discussion of the potential for using an ovine model to explore the long-term outcomes of COVID-19 vaccination during the prenatal and neonatal periods.
Collapse
Affiliation(s)
- Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Steven Pelech
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
| | - Lauraine Wagter-Lesperance
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.W.-L.); (B.B.); (B.A.M.)
| | - Deanna McLeod
- Kaleidoscope Strategic Inc., Toronto, ON M6R 1E7, Canada;
| | - Byram Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.W.-L.); (B.B.); (B.A.M.)
| | - Bonnie A. Mallard
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.W.-L.); (B.B.); (B.A.M.)
| |
Collapse
|
7
|
Brissot E, Troadec M, Loréal O, Brissot P. Iron and platelets: A subtle, under-recognized relationship. Am J Hematol 2021; 96:1008-1016. [PMID: 33844865 DOI: 10.1002/ajh.26189] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022]
Abstract
The role of iron in the formation and functioning of erythrocytes, and to a lesser degree of white blood cells, is well established, but the relationship between iron and platelets is less documented. Physiologically, iron plays an important role in hematopoiesis, including thrombopoiesis; iron levels direct, together with genetic factors, the lineage commitment of megakaryocytic/erythroid progenitors toward either megakaryocyte or erythroid progenitors. Megakaryocytic iron contributes to cellular machinery, especially energy production in platelet mitochondria. Thrombocytosis, possibly favoring vascular thrombosis, is a classical feature observed with abnormally low total body iron stores (mainly due to blood losses or decreased duodenal iron intake), but thrombocytopenia can also occur in severe iron deficiency anemia. Iron sequestration, as seen in inflammatory conditions, can be associated with early thrombocytopenia due to platelet consumption and followed by reactive replenishment of the platelet pool with possibility of thrombocytosis. Iron overload of genetic origin (hemochromatosis), despite expected mitochondrial damage related to ferroptosis, has not been reported to cause thrombocytopenia (except in case of high degree of hepatic fibrosis), and iron-related alteration of platelet function is still a matter of debate. In acquired iron overload (of transfusional and/or dyserythropoiesis origin), quantitative or qualitative platelet changes are difficult to attribute to iron alone due to the interference of the underlying hematological conditions; likewise, hematological improvement, including increased blood platelet counts, observed under iron oral chelation is likely to reflect mechanisms other than the sole beneficial impact of iron depletion.
Collapse
Affiliation(s)
- Eolia Brissot
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine APHP Paris France
- Sorbonne Universités, UPMC Univ. Paris 06, Centre de recherche Saint‐Antoine, UMR‐S938 Paris France
| | - Marie‐Bérengère Troadec
- Univ Brest, Inserm, EFS, UMR 1078, GGB Brest France
- Service de génétique, laboratoire de génétique chromosomique CHRU Brest Brest France
| | - Olivier Loréal
- Inserm, University of Rennes1, UMR 1241, Inrae, NuMeCan Institute Rennes France
| | - Pierre Brissot
- Inserm, University of Rennes1, UMR 1241, Inrae, NuMeCan Institute Rennes France
| |
Collapse
|
8
|
Đukanović N, Obradović S, Zdravković M, Đurašević S, Stojković M, Tosti T, Jasnić N, Đorđević J, Todorović Z. Lipids and Antiplatelet Therapy: Important Considerations and Future Perspectives. Int J Mol Sci 2021; 22:3180. [PMID: 33804754 PMCID: PMC8003871 DOI: 10.3390/ijms22063180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/15/2023] Open
Abstract
Lipids play an essential role in platelet functions. It is known that polyunsaturated fatty acids play a role in increasing platelet reactivity and that the prothrombotic phenotype plays a crucial role in the occurrence of major adverse cardiovascular events. The ongoing increase in cardiovascular diseases' incidence emphasizes the importance of research linking lipids and platelet function. In particular, the rebound phenomenon that accompanies discontinuation of clopidogrel in patients receiving dual antiplatelet therapy has been associated with changes in the lipid profile. Our many years of research underline the importance of reduced HDL values for the risk of such a rebound effect and the occurrence of thromboembolic events. Lipids are otherwise a heterogeneous group of molecules, and their signaling molecules are not deposited but formed "on-demand" in the cell. On the other hand, exosomes transmit lipid signals between cells, and the profile of such changes can be monitored by lipidomics. Changes in the lipid profile are organ-specific and may indicate new drug action targets.
Collapse
Affiliation(s)
- Nina Đukanović
- High Medical School Milutin Milanković, Crnotravska 27, 11000 Belgrade, Serbia;
| | - Slobodan Obradović
- Clinic of Emergency Medicine, Military Medical Academy, University of Defence, Crnotravska 27, 11000 Belgrade, Serbia;
- Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 27, 11000 Belgrade, Serbia
| | - Marija Zdravković
- Dr Subotića 8, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.Z.); (M.S.)
- Dr Žorža Matea bb, University Medical Centre “Bežanijska kosa”, 11070 Belgrade, Serbia
| | - Siniša Đurašević
- Faculty of Biology, University of Belgrade, Studentski trg 3, 11000 Belgrade, Serbia; (S.Ð.); (N.J.); (J.Ð.)
| | - Maja Stojković
- Dr Subotića 8, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.Z.); (M.S.)
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia;
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, Studentski trg 3, 11000 Belgrade, Serbia; (S.Ð.); (N.J.); (J.Ð.)
| | - Jelena Đorđević
- Faculty of Biology, University of Belgrade, Studentski trg 3, 11000 Belgrade, Serbia; (S.Ð.); (N.J.); (J.Ð.)
| | - Zoran Todorović
- Dr Subotića 8, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.Z.); (M.S.)
| |
Collapse
|
9
|
Platelet Lysate Nebulization Protocol for the Treatment of COVID-19 and Its Sequels: Proof of Concept and Scientific Rationale. Int J Mol Sci 2021; 22:ijms22041856. [PMID: 33673372 PMCID: PMC7918610 DOI: 10.3390/ijms22041856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 01/08/2023] Open
Abstract
One of the most severe effects of coronavirus disease 2019 (COVID-19) is lung disorders such as acute respiratory distress syndrome. In the absence of effective treatments, it is necessary to search for new therapies and therapeutic targets. Platelets play a fundamental role in respiratory disorders resulting from viral infections, being the first line of defense against viruses and essential in maintaining lung function. The direct application of platelet lysate (PL) obtained from the platelet-rich plasma of healthy donors could help in the improvement of the patient due its anti-inflammatory, immunomodulatory, antifibrotic, and repairing effects. This work evaluates PL nebulization by analyzing its levels of growth factors and its biological activity on lung fibroblast cell cultures, besides describing a scientific basis for its use in this kind of pathology. The data of the work suggest that the molecular levels and biological activity of the PL are maintained after nebulization. Airway administration would allow acting directly on the lung tissue modulating inflammation and stimulating reparative processes on key structures such as the alveolocapillary barrier, improving the disease and sequels. The protocol developed in this work is a first step for the study of nebulized PL both in animal experimentation and in clinical trials.
Collapse
|