1
|
Naja K, Anwardeen N, Bashraheel SS, Elrayess MA. Pharmacometabolomics of sulfonylureas in patients with type 2 diabetes: a cross-sectional study. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13305. [PMID: 39355646 PMCID: PMC11442225 DOI: 10.3389/jpps.2024.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/10/2024] [Indexed: 10/03/2024]
Abstract
Background Sulfonylureas have been a longstanding pharmacotherapy in the management of type 2 diabetes, with potential benefits beyond glycemic control. Although sulfonylureas are effective, interindividual variability exists in drug response. Pharmacometabolomics is a potent method for elucidating variations in individual drug response. Identifying unique metabolites associated with treatment response can improve our ability to predict outcomes and optimize treatment strategies for individual patients. Our objective is to identify metabolic signatures associated with good and poor response to sulfonylureas, which could enhance our capability to anticipate treatment outcome. Methods In this cross-sectional study, clinical and metabolomics data for 137 patients with type 2 diabetes who are taking sulfonylurea as a monotherapy or a combination therapy were obtained from Qatar Biobank. Patients were empirically categorized according to their glycosylated hemoglobin levels into poor and good responders to sulfonylureas. To examine variations in metabolic signatures between the two distinct groups, we have employed orthogonal partial least squares discriminant analysis and linear models while correcting for demographic confounders and metformin usage. Results Good responders showed increased levels of acylcholines, gamma glutamyl amino acids, sphingomyelins, methionine, and a novel metabolite 6-bromotryptophan. Conversely, poor responders showed increased levels of metabolites of glucose metabolism and branched chain amino acid metabolites. Conclusion The results of this study have the potential to empower our knowledge of variability in patient response to sulfonylureas, and carry significant implications for advancing precision medicine in type 2 diabetes management.
Collapse
Affiliation(s)
- Khaled Naja
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | | | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha, Qatar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Sun T, Zhen T, Harakandi CH, Wang L, Guo H, Chen Y, Sun H. New insights into butyrylcholinesterase: Pharmaceutical applications, selective inhibitors and multitarget-directed ligands. Eur J Med Chem 2024; 275:116569. [PMID: 38852337 DOI: 10.1016/j.ejmech.2024.116569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Butyrylcholinesterase (BChE), also known as pseudocholinesterase and serum cholinesterase, is an isoenzyme of acetylcholinesterase (AChE). It mediates the degradation of acetylcholine, especially under pathological conditions. Proverbial pharmacological applications of BChE, its mutants and modulators consist of combating Alzheimer's disease (AD), influencing multiple sclerosis (MS), addressing cocaine addiction, detoxifying organophosphorus poisoning and reflecting the progression or prognosis of some diseases. Of interest, recent reports have shed light on the relationship between BChE and lipid metabolism. It has also been proved that BChE is going to increase abnormally as a compensator for AChE in the middle and late stages of AD, and BChE inhibitors can alleviate cognitive disorders and positively influence some pathological features in AD model animals, foreboding favorable prospects and potential applications. Herein, the selective BChE inhibitors and BChE-related multitarget-directed ligands published in the last three years were briefly summarized, along with the currently known pharmacological applications of BChE, aiming to grasp the latest research directions. Thereinto, some emerging strategies for designing BChE inhibitors are intriguing, and the modulators based on target combination of histone deacetylase and BChE against AD is unprecedented. Furthermore, the involvement of BChE in the hydrolysis of ghrelin, the inhibition of low-density lipoprotein (LDL) uptake, and the down-regulation of LDL receptor (LDLR) expression suggests its potential to influence lipid metabolism disorders. This compelling prospect likely stimulates further exploration in this promising research direction.
Collapse
Affiliation(s)
- Tianyu Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Tengfei Zhen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | | | - Lei Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Huanchao Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
3
|
Chen Y, Jiang B, Qu C, Jiang C, Zhang C, Wang Y, Chen F, Sun X, Su L, Luo Y. Genetically predicted metabolites mediate the causal associations between autoimmune thyroiditis and immune cells. Front Endocrinol (Lausanne) 2024; 15:1424957. [PMID: 39045270 PMCID: PMC11263034 DOI: 10.3389/fendo.2024.1424957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction We aimed to comprehensively investigate the causal relationship between 731 immune cell traits and autoimmune thyroiditis (AIT) and to identify and quantify the role of 1400 metabolic traits as potential mediators in between. Methods Using summary-level data from genome-wide association studies (GWAS) we performed a two-sample bidirectional Mendelian randomization (MR) analysis of genetically predicted AIT and 731 immune cell traits. Furthermore, we used a two-step MR analysis to quantify the proportion of the total effects (that the immune cells exerted on the risk of AIT) mediated by potential metabolites. Results We identified 24 immune cell traits (with odds ratio (OR) ranging from 1.3166 6 to 0.6323) and 10 metabolic traits (with OR ranging from 1.7954 to 0.6158) to be causally associated with AIT, respectively. Five immune cell traits (including CD38 on IgD+ CD24-, CD28 on CD28+ CD45RA+ CD8br, HLA DR+ CD4+ AC, TD CD4+ %CD4+, and CD8 on EM CD8br) were found to be associated with the risk of AIT, which were partially mediated by metabolites (including glycolithocholate sulfate, 5alpha-androstan-3alpha,17beta-diol disulfate, arachidonoylcholine, X-15486, and kynurenine). The proportion of genetically predicted AIT mediated by the identified metabolites could range from 5.58% to 17.7%. Discussion Our study identified causal associations between AIT and immune cells which were partially mediated by metabolites, thus providing guidance for future clinical and basic research.
Collapse
Affiliation(s)
- Yongzhao Chen
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Jiang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Cheng Qu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chaoyu Jiang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chen Zhang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yanxue Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fei Chen
- General Surgery Center, Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xitai Sun
- Division of Pancreas and Metabolism Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Su
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuqian Luo
- Clinical Medicine Research Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
4
|
Gok M, Cicek C, Bodur E. Butyrylcholinesterase in lipid metabolism: A new outlook. J Neurochem 2024; 168:381-385. [PMID: 37129444 DOI: 10.1111/jnc.15833] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/26/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Cholinesterase enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are traditionally associated with the termination of acetylcholine mediated neural signaling. The fact that these ubiquitous enzymes are also found in tissues not involved in neurotransmission has led to search for alternative functions for these enzymes. Cholinesterases are reported to be involved in many lipid related disease states. Taking into view that lipases and cholinesterases belong to the same enzyme class and by comparing the catalytic sites, we propose a new outlook on the link between BChE and lipid metabolism. The lipogenic substrates of BChE that have recently emerged in contrast to traditional cholinesterase substrates are explained through the hydrolytic capacity of BChE for ghrelin, 4-methyumbelliferyl (4-mu) palmitate, and arachidonoylcholine and through endogenous lipid mediators such as cannabinoids like anandamide and essential fatty acids. The abundance of BChE in brain, intestine, liver, and plasma, tissues with active lipid metabolism, supports the idea that BChE may be involved in lipid hydrolysis. BChE is also regulated by various lipids such as linoleic acid, alpha-linolenic acid or dioctanoylglycerol, whereas AChE is inhibited. The finding that BChE is able to hydrolyze 4-mu palmitate at a pH where lipases are less efficient points to its role as a backup in lipolysis. In diseases such as Alzheimer, in which elevated BChE and impaired lipid levels are observed, the lipolytic activity of BChE might be involved. It is possible to suggest that fatty acids such as 4-mu palmitate, ghrelin, arachidonoylcholine, essential fatty acids, and other related lipid mediators regulate cholinesterases, which could lead to some sort of compensatory mechanism at high lipid concentrations.
Collapse
Affiliation(s)
- Muslum Gok
- Faculty of Medicine, Department of Medical Biochemistry, Mugla Sitki Kocman University, Mugla, Turkey
| | - Cigdem Cicek
- Faculty of Medicine, Department of Medical Biochemistry, Yuksek Ihtisas University, Ankara, Turkey
| | - Ebru Bodur
- Faculty of Medicine, Department of Medical Biochemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
5
|
Bele T, Turk T, Križaj I. Nicotinic acetylcholine receptors in cancer: Limitations and prospects. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166875. [PMID: 37673358 DOI: 10.1016/j.bbadis.2023.166875] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) have long been considered to solely mediate neurotransmission. However, their widespread distribution in the human body suggests a more diverse physiological role. Additionally, the expression of nAChRs is increased in certain cancers, such as lung cancer, and has been associated with cell proliferation, epithelial-to-mesenchymal cell transition, angiogenesis and apoptosis prevention. Several compounds that interact with these receptors have been identified as potential therapeutic agents. They have been tested as drugs for treating nicotine addiction, alcoholism, depression, pain and Alzheimer's disease. This review focuses on nAChR-mediated signalling in cancer, presenting opportunities for the development of innovative nAChR-based anticancer drugs. It displays the differences in expression of each nAChR subunit between normal and cancer cells for selected cancer types, highlighting their possible involvement in specific cases. Antagonists of nAChRs that could complement existing cancer therapies are summarised and critically discussed. We hope that this review will stimulate further research on the role of nAChRs in cancer potentially leading to innovative cancer therapies.
Collapse
Affiliation(s)
- T Bele
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.
| | - T Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - I Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
6
|
Simpson CE, Hemnes AR, Griffiths M, Grunig G, Wilson Tang W, Garcia JGN, Barnard J, Comhair SA, Damico RL, Mathai SC, Hassoun PM. Metabolomic Differences in Connective Tissue Disease-Associated Versus Idiopathic Pulmonary Arterial Hypertension in the PVDOMICS Cohort. Arthritis Rheumatol 2023; 75:2240-2251. [PMID: 37335853 PMCID: PMC10728345 DOI: 10.1002/art.42632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVE Patients with connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH) experience worse survival and derive less benefit from pulmonary vasodilator therapies than patients with idiopathic PAH (IPAH). We sought to identify differential metabolism in patients with CTD-PAH versus patients with IPAH that might underlie these observed clinical differences. METHODS Adult participants with CTD-PAH (n = 141) and IPAH (n = 165) from the Pulmonary Vascular Disease Phenomics (PVDOMICS) study were included. Detailed clinical phenotyping was performed at cohort enrollment, including broad-based global metabolomic profiling of plasma samples. Participants were followed prospectively for ascertainment of outcomes. Supervised and unsupervised machine learning algorithms and regression models were used to compare CTD-PAH versus IPAH metabolomic profiles and to measure metabolite-phenotype associations and interactions. Gradients across the pulmonary circulation were assessed using paired mixed venous and wedged samples in a subset of 115 participants. RESULTS Metabolomic profiles distinguished CTD-PAH from IPAH, with patients with CTD-PAH demonstrating aberrant lipid metabolism with lower circulating levels of sex steroid hormones and higher free fatty acids (FAs) and FA intermediates. Acylcholines were taken up by the right ventricular-pulmonary vascular (RV-PV) circulation, particularly in CTD-PAH, while free FAs and acylcarnitines were released. In both PAH subtypes, dysregulated lipid metabolites, among others, were associated with hemodynamic and RV measurements and with transplant-free survival. CONCLUSIONS CTD-PAH is characterized by aberrant lipid metabolism that may signal shifted metabolic substrate utilization. Abnormalities in RV-PV FA metabolism may imply a reduced capacity for mitochondrial beta oxidation within the diseased pulmonary circulation.
Collapse
Affiliation(s)
| | - Anna R. Hemnes
- Vanderbilt University Division of Allergy, Pulmonary, and Critical Care Medicine
| | - Megan Griffiths
- University of Texas Southwestern Medical Center, Division of Pediatric Cardiology
| | - Gabriele Grunig
- Divisions of Environmental and Pulmonary Medicine, Department of Medicine, NYU Grossman School of Medicine
| | - W.H. Wilson Tang
- Cleveland Clinic Department of Cardiovascular Medicine, Section of Heart Failure and Transplant Medicine
| | - Joe G. N. Garcia
- University of Arizona College of Medicine – Tucson, Department of Medicine
| | | | | | - Rachel L. Damico
- Johns Hopkins University Division of Pulmonary and Critical Care Medicine
| | - Stephen C. Mathai
- Johns Hopkins University Division of Pulmonary and Critical Care Medicine
| | - Paul M. Hassoun
- Johns Hopkins University Division of Pulmonary and Critical Care Medicine
| | | |
Collapse
|
7
|
Moon JY, Chai JC, Yu B, Song RJ, Chen GC, Graff M, Daviglus ML, Chan Q, Thyagarajan B, Castaneda SF, Grove ML, Cai J, Xue X, Mossavar-Rahmani Y, Vasan RS, Boerwinkle E, Kaplan R, Qi Q. Metabolomic Signatures of Sedentary Behavior and Cardiometabolic Traits in US Hispanics/Latinos: Results from HCHS/SOL. Med Sci Sports Exerc 2023; 55:1781-1791. [PMID: 37170952 PMCID: PMC10523950 DOI: 10.1249/mss.0000000000003205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
PURPOSE The aim of this study was to understand the serum metabolomic signatures of moderate-to-vigorous physical activity (MVPA) and sedentary behavior, and further associate their metabolomic signatures with incident cardiometabolic diseases. METHODS This analysis included 2711 US Hispanics/Latinos from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) aged 18-74 yr (2008-2011). An untargeted, liquid chromatography-mass spectrometry was used to profile the serum metabolome. The associations of metabolites with accelerometer-measured MVPA and sedentary time were examined using survey linear regressions adjusting for covariates. The weighted correlation network analysis identified modules of correlated metabolites in relation to sedentary time, and the modules were associated with incident diabetes, dyslipidemia, and hypertension over the 6-yr follow-up. RESULTS Of 624 metabolites, 5 and 102 were associated with MVPA and sedentary behavior at false discovery rate (FDR) <0.05, respectively, after adjusting for socioeconomic and lifestyle factors. The weighted correlation network analysis identified 8 modules from 102 metabolites associated with sedentary time. Four modules (branched-chain amino acids, erythritol, polyunsaturated fatty acid, creatine) were positively, and the other four (acyl choline, plasmalogen glycerol phosphatidyl choline, plasmalogen glycerol phosphatidyl ethanolamine, urea cycle) were negatively correlated with sedentary time. Among these modules, a higher branched-chain amino acid score and a lower plasmalogen glycerol phosphatidyl choline score were associated with increased risks of diabetes and dyslipidemia. A higher erythritol score was associated with an increased risk of diabetes, and a lower acyl choline score was linked to an increased risk of hypertension. CONCLUSIONS In this study of US Hispanics/Latinos, we identified multiple serum metabolomic signatures of sedentary behavior and their associations with risk of incident diabetes, hypertension, and dyslipidemia. These findings suggest a potential role of circulating metabolites in the links between sedentary behavior and cardiometabolic diseases.
Collapse
Affiliation(s)
- Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Jin Choul Chai
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Rebecca J. Song
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Guo-chong Chen
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, CHINA
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC
| | - Martha L. Daviglus
- Institute for Minority Health Research, University of Illinois Chicago, Chicago, IL
| | - Queenie Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, IL
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | | | - Megan L. Grove
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, CHINA
| | - Jianwen Cai
- Department of Biostatistics, University of North Carolina at Chapel Hill, NC
| | - Xiaonan Xue
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Yasmin Mossavar-Rahmani
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | | | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
8
|
Li C, Bundy JD, Tian L, Zhang R, Chen J, Kelly TN, He J. Examination of Serum Metabolome Altered by Dietary Carbohydrate, Milk Protein, and Soy Protein Interventions Identified Novel Metabolites Associated with Blood Pressure: The ProBP Trial. Mol Nutr Food Res 2023; 67:e2300044. [PMID: 37650262 PMCID: PMC10592004 DOI: 10.1002/mnfr.202300044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/08/2023] [Indexed: 09/01/2023]
Abstract
SCOPE This study aims to discover metabolites of dietary carbohydrate, soy and milk protein supplements and evaluate their roles in blood pressure (BP) regulation in the protein and blood pressure (ProBP), a cross-over trial. METHODS AND RESULTS Plasma metabolites are profiled at pre-trial baseline and after 8 weeks of supplementation with carbohydrate, soy protein, and milk protein, respectively, among 80 ProBP participants. After Bonferroni correction (α = 6.49 × 10-4 ), dietary interventions significantly changed 40 metabolites. Changes of erucate (22:1n9), an omega-9 fatty acid, are positively associated with systolic BP changes (Beta = 1.90, p = 6·27 × 10-4 ). This metabolite is also associated with higher odds of hypertension among 1261 participants of an independent cohort (odds ratio per unit increase = 1.34; 95% confidence interval: 1.07-1.68). High levels of acylcholines dihomo-linolenoyl-choline (p = 4.71E-04) and oleoylcholine (p = 3.48E-04) at baseline predicted larger BP lowering effects of soy protein. Increasing cheese intake during the trial, as reflected by isobutyrylglycine and isovalerylglycine, reduces the BP lowering effect of soy protein. CONCLUSIONS The study identifies molecular signatures of dietary interventions. Erucate (22:1n9) increases systolic BP. Acylcholine enhances and cheese intake reduces the BP lowering effect of soy protein supplement.
Collapse
Affiliation(s)
- Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine
| | - Joshua D. Bundy
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine
| | - Ling Tian
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine
| | - Ruiyuan Zhang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine
| | - Jing Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine
- Department of Medicine, Tulane University School of Medicine
| | - Tanika N. Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine
- Department of Medicine, Tulane University School of Medicine
| |
Collapse
|
9
|
Furtado-Alle L, Tureck LV, de Oliveira CS, Hortega JVM, Souza RLR. Butyrylcholinesterase and lipid metabolism: Possible dual role in metabolic disorders. Chem Biol Interact 2023; 383:110680. [PMID: 37634560 DOI: 10.1016/j.cbi.2023.110680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Butyrylcholinesterase (BChE), an enzyme primarily found in the liver, plasma, and brain, has been recognized for its role in the hydrolysis of choline esters. Recent studies have shed light on its involvement in lipid metabolism, revealing its potential as a crucial player in maintaining lipid homeostasis. However, the interactions between external factors and BChE activity in lipid metabolic pathways remain a complex subject of study. This review summarizes the current knowledge regarding BChE activity and lipid metabolism and seeks to clarify the nature of this relationship as causal or consequential. Evidence supports the role of BChE in energy homeostasis disruption, such as obesity and related metabolic disorders, where it exhibits lipolytic activity and mediates fatty acid use and storage. The unexpected functions of BChE in lipoprotein synthesis and the impact of polymorphic variants of the BCHE gene suggest a central role in lipid metabolism; however, further investigation is needed to confirm and describe these functions, especially considering the metabolic context. Furthermore, exploring therapeutic interventions in lipid metabolism disorders contributes to elucidating their implications on BChE activity, but attention to the metabolic status and genotypes as possible factors in this interaction is needed. In summary, further research in this field holds promise for improving our understanding of the complex interplay between BChE and lipid metabolism, and its potential clinical applications. However, the available data corroborate the dual role of BChE activity, both as a critical responsive element to metabolic challenges and as a predisposition factor to metabolic diseases.
Collapse
Affiliation(s)
- Lupe Furtado-Alle
- Postgraduate Program in Genetics, Department of Genetics, Universidade Federal do Paraná UFPR, PR, Brazil
| | - Luciane V Tureck
- Postgraduate Program in Genetics, Department of Genetics, Universidade Federal do Paraná UFPR, PR, Brazil
| | - Carolina S de Oliveira
- Postgraduate Program in Genetics, Department of Genetics, Universidade Federal do Paraná UFPR, PR, Brazil
| | - João V M Hortega
- Postgraduate Program in Genetics, Department of Genetics, Universidade Federal do Paraná UFPR, PR, Brazil
| | - Ricardo L R Souza
- Postgraduate Program in Genetics, Department of Genetics, Universidade Federal do Paraná UFPR, PR, Brazil.
| |
Collapse
|
10
|
Naja K, Anwardeen N, Al-Hariri M, Al Thani AA, Elrayess MA. Pharmacometabolomic Approach to Investigate the Response to Metformin in Patients with Type 2 Diabetes: A Cross-Sectional Study. Biomedicines 2023; 11:2164. [PMID: 37626661 PMCID: PMC10452592 DOI: 10.3390/biomedicines11082164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Metformin constitutes the foundation therapy in type 2 diabetes (T2D). Despite its multiple beneficial effects and widespread use, there is considerable inter-individual variability in response to metformin. Our objective is to identify metabolic signatures associated with poor and good responses to metformin, which may improve our ability to predict outcomes for metformin treatment. In this cross-sectional study, clinical and metabolic data for 119 patients with type 2 diabetes taking metformin were collected from the Qatar Biobank. Patients were empirically dichotomized according to their HbA1C levels into good and poor responders. Differences in the level of metabolites between these two groups were compared using orthogonal partial least square discriminate analysis (OPLS-DA) and linear models. Good responders showed increased levels of sphingomyelins, acylcholines, and glutathione metabolites. On the other hand, poor responders showed increased levels of metabolites resulting from glucose metabolism and gut microbiota metabolites. The results of this study have the potential to increase our knowledge of patient response variability to metformin and carry significant implications for enabling personalized medicine.
Collapse
Affiliation(s)
- Khaled Naja
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
| | - Najeha Anwardeen
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
| | | | - Asmaa A. Al Thani
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
- QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
- QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
11
|
Li SR, Moheimani H, Herzig B, Kail M, Krishnamoorthi N, Wu J, Abdelhamid S, Scioscia J, Sung E, Rosengart A, Bonaroti J, Johansson PI, Stensballe J, Neal MD, Das J, Kar U, Sperry J, Billiar TR. High-dimensional proteomics identifies organ injury patterns associated with outcomes in human trauma. J Trauma Acute Care Surg 2023; 94:803-813. [PMID: 36787435 PMCID: PMC10205666 DOI: 10.1097/ta.0000000000003880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
INTRODUCTION Severe traumatic injury with shock can lead to direct and indirect organ injury; however, tissue-specific biomarkers are limited in clinical panels. We used proteomic and metabolomic databases to identify organ injury patterns after severe injury in humans. METHODS Plasma samples (times 0, 24, and 72 hours after arrival to trauma center) from injured patients enrolled in two randomized prehospital trials were subjected to multiplexed proteomics (SomaLogic Inc., Boulder, CO). Patients were categorized by outcome: nonresolvers (died >72 hours or required ≥7 days of critical care), resolvers (survived to 30 days and required <7 days of critical care), and low Injury Severity Score (ISS) controls. Established tissue-specific biomarkers were identified through a literature review and cross-referenced with tissue specificity from the Human Protein Atlas. Untargeted plasma metabolomics (Metabolon Inc., Durham, NC), inflammatory mediators, and endothelial damage markers were correlated with injury biomarkers. Kruskal-Wallis/Mann-Whitney U tests with false discovery rate correction assessed differences in biomarker expression across outcome groups (significance; p < 0.1). RESULTS Of 142 patients, 78 were nonresolvers (median ISS, 30), 34 were resolvers (median ISS, 22), and 30 were low ISS controls (median ISS, 1). A broad release of tissue-specific damage markers was observed at admission; this was greater in nonresolvers. By 72 hours, nine cardiac, three liver, eight neurologic, and three pulmonary proteins remained significantly elevated in nonresolvers compared with resolvers. Cardiac damage biomarkers showed the greatest elevations at 72 hours in nonresolvers and had significant positive correlations with proinflammatory mediators and endothelial damage markers. Nonresolvers had lower concentrations of fatty acid metabolites compared with resolvers, particularly acyl carnitines and cholines. CONCLUSION We identified an immediate release of tissue-specific biomarkers with sustained elevation in the liver, pulmonary, neurologic, and especially cardiac injury biomarkers in patients with complex clinical courses after severe injury. The persistent myocardial injury in nonresolvers may be due to a combination of factors including metabolic stress, inflammation, and endotheliopathy.
Collapse
Affiliation(s)
- Shimena R Li
- From the Department of Surgery (S.L., H.M., B.H., M.K., N.K., J.W., S.A., J. Scioscia, E.S., A.R., J.B., M.N., U.K., J. Sperry, T.R.B.) and Pittsburgh Transfusion and Trauma Research Center (S.L., H.M., B.H., M.K., N.K., J.W., S.A., J. Scioscia, E.S., A.R., J.B., M.N., U.K., J. Sperry, T.R.B.), University of Pittsburgh, Pittsburgh; Lake Erie College of Osteopathic Medicine (B.H.), Erie, Pennsylvania; Department of Cardiology (J.W.), The Third Xiangya Hospital, Central South University, Changsha, China; Section for Transfusion Medicine (P.I.J., J. Stensballe), Capital Region Blood Bank, Rigshospitalet and Department of Anesthesia and Trauma Center (J. Stensballe), Centre of Head and Orthopaedics, Rigshospitalet, Copenhagen University Hospital, Copenhagen; Emergency Medical Services (J. Stensballe), The Capital Region of Denmark, Hillerød, Denmark; and Center for Systems Immunology, Departments of Immunology (J.D.) and Computational and Systems Biology (J.D.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gretskaya N, Akimov M, Andreev D, Zalygin A, Belitskaya E, Zinchenko G, Fomina-Ageeva E, Mikhalyov I, Vodovozova E, Bezuglov V. Multicomponent Lipid Nanoparticles for RNA Transfection. Pharmaceutics 2023; 15:pharmaceutics15041289. [PMID: 37111773 PMCID: PMC10141487 DOI: 10.3390/pharmaceutics15041289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Despite the wide variety of available cationic lipid platforms for the delivery of nucleic acids into cells, the optimization of their composition has not lost its relevance. The purpose of this work was to develop multi-component cationic lipid nanoparticles (LNPs) with or without a hydrophobic core from natural lipids in order to evaluate the efficiency of LNPs with the widely used cationic lipoid DOTAP (1,2-dioleoyloxy-3-[trimethylammonium]-propane) and the previously unstudied oleoylcholine (Ol-Ch), as well as the ability of LNPs containing GM3 gangliosides to transfect cells with mRNA and siRNA. LNPs containing cationic lipids, phospholipids and cholesterol, and surfactants were prepared according to a three-stage procedure. The average size of the resulting LNPs was 176 nm (PDI 0.18). LNPs with DOTAP mesylate were more effective than those with Ol-Ch. Core LNPs demonstrated low transfection activity compared with bilayer LNPs. The type of phospholipid in LNPs was significant for the transfection of MDA-MB-231 and SW 620 cancer cells but not HEK 293T cells. LNPs with GM3 gangliosides were the most efficient for the delivery of mRNA to MDA-MB-231 cells and siRNA to SW620 cells. Thus, we developed a new lipid platform for the efficient delivery of RNA of various sizes to mammalian cells.
Collapse
Affiliation(s)
- Nataliya Gretskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Mikhail Akimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitry Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Anton Zalygin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Department of Translational Medicine, National Research Nuclear University, Moscow Engineering Physics Institute, Moscow 115409, Russia
| | - Ekaterina Belitskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Department of Translational Medicine, National Research Nuclear University, Moscow Engineering Physics Institute, Moscow 115409, Russia
| | - Galina Zinchenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Elena Fomina-Ageeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Ilya Mikhalyov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Elena Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Vladimir Bezuglov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
13
|
Gok M, Cicek C, Sari S, Bodur E. Novel activity of human BChE: Lipid hydrolysis. Biochimie 2023; 204:127-135. [PMID: 36126749 DOI: 10.1016/j.biochi.2022.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/01/2022] [Accepted: 09/10/2022] [Indexed: 01/12/2023]
Abstract
Acetylcholinesterase and butyrylcholinesterase (BChE) typically hydrolyze the neurotransmitter acetylcholine. The multifunctional enzyme BChE is associated with lipid metabolism through an undefined mechanism. Based on lipid-related studies and by comparing the structural similarities between lipases and BChE we postulated that the association of BChE with lipid metabolism could occur through hydrolytic activity. Utilizing purified BChE enzymes from different sources and several lipases as controls, the ability of BChE to hydrolyze 4-methylumbelliferyl (4-mu) palmitate is investigated. Using lectin affinity, inhibition kinetics, and molecular modeling, we demonstrated that purified BChE hydrolyzed 4-mu palmitate at pH 8 as effectively as wheat germ lipase. The affinity Km value of the enzymes for 4-mu palmitate as substrate is found as 10.4 μM, 34.2 μM, 129.8 μM, and 186 μM for wheat germ lipase, purified BChE, pancreatic lipase, and commercial BChE, respectively. Analysis of the inhibitory effect of 4-mu palmitate on BChE using butyrylthiocholine as substrate revealed competitive inhibition with Ki and IC50 values of 448 μM and 987.2 μM, respectively. The binding affinity and interactions of 4-mu palmitate with BChE and pancreatic lipase were predicted by molecular docking. These results suggest that BChE possesses lipolytic activity. The possibility that BChE hydrolyzes not only 4-mu palmitate but also other types of lipids will lead to a new approach to those disease states associated with increased BChE activity/expression.
Collapse
Affiliation(s)
- Muslum Gok
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey; Department of Medical Biochemistry, Faculty of Medicine, Mugla Sitki Kocman University, 48000, Mugla, Turkey.
| | - Cigdem Cicek
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey; Department of Medical Biochemistry, Faculty of Medicine, Yuksek Ihtisas University, 06520, Ankara, Turkey.
| | - Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey.
| | - Ebru Bodur
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey.
| |
Collapse
|
14
|
Inhibitory Action of Omega-3 and Omega-6 Fatty Acids Alpha-Linolenic, Arachidonic and Linoleic acid on Human Erythrocyte Acetylcholinesterase. Protein J 2022; 42:96-103. [PMID: 36538202 DOI: 10.1007/s10930-022-10088-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Acetylcholinesterase (AChE, E.C. 3.1.1.7) termed as the true cholinesterase functions to end cholinergic transmission at synapses. Due to its diverse expression in non-neural tissues such as erythrocytes and bones along with its various molecular forms, researchers seek a non-classical role for this protein. Here, the inhibitory action of unsaturated 18 carbon fatty acids linoleic acid and alpha-linolenic acid and 20 carbon fatty acid arachidonic acid on AChE were investigated. Enzyme activity was measured in kinetic assay method according to Ellman assay utilizing acetylthiocholine. Analysis of the activity data revealed that among the fatty acids examined the IC50 values differed according to the length of the fatty acid and the number of the double bonds. Arachidonic acid, a 20-carbon fatty acid with 4 unsaturated bonds (20:4 n-6, cis 5,8,11,14) displayed an IC50 value of 2.78 µM and Ki value of 396.35 µM. Linoleic acid, an essential 18-carbon fatty acid (18:2 n-6, cis 9,12) had an IC50 value of 7.95 µM and Ki value of 8027.55 µM. The IC50 value of alpha-linolenic acid, 18-carbon fatty acid (18:3 n-3, cis-9,12,15) was found as 179.11 µM. Analysis of the data fit the inhibition mechanism for linoleic, alpha-linolenic and arachidonic acid as mixed-type; non-competitive. Molecular docking complied with these results yielding the best score for arachidonic acid. The alkenyl chain of the fatty acids predictably reached to the catalytic site while the carboxylate strongly interacted with the peripheric anionic site.
Collapse
|
15
|
Kang JW, Tang X, Walton CJ, Brown MJ, Brewer RA, Maddela RL, Zheng JJ, Agus JK, Zivkovic AM. Multi-Omic Analyses Reveal Bifidogenic Effect and Metabolomic Shifts in Healthy Human Cohort Supplemented With a Prebiotic Dietary Fiber Blend. Front Nutr 2022; 9:908534. [PMID: 35782954 PMCID: PMC9248813 DOI: 10.3389/fnut.2022.908534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
Dietary fiber, a nutrient derived mainly from whole grains, vegetables, fruits, and legumes, is known to confer a number of health benefits, yet most Americans consume less than half of the daily recommended amount. Convenience and affordability are key factors determining the ability of individuals to incorporate fiber-rich foods into their diet, and many Americans struggle to access, afford, and prepare foods rich in fiber. The objective of this clinical study was to test the changes in microbial community composition, human metabolomics, and general health markers of a convenient, easy to use prebiotic supplement in generally healthy young participants consuming a diet low in fiber. Twenty healthy adults participated in this randomized, placebo-controlled, double-blind, crossover study which was registered at clinicaltrials.gov as NCT03785860. During the study participants consumed 12 g of a prebiotic fiber supplement and 12 g of placebo daily as a powder mixed with water as part of their habitual diet in randomized order for 4 weeks, with a 4-week washout between treatment arms. Fecal microbial DNA was extracted and sequenced by shallow shotgun sequencing on an Illumina NovaSeq. Plasma metabolites were detected using liquid chromatography–mass spectrometry with untargeted analysis. The phylum Actinobacteria, genus Bifidobacterium, and several Bifidobacterium species (B. bifidum, B. adolescentis, B. breve, B. catenulatum, and B. longum) significantly increased after prebiotic supplementation when compared to the placebo. The abundance of genes associated with the utilization of the prebiotic fiber ingredients (sacA, xfp, xpk) and the production of acetate (poxB, ackA) significantly changed with prebiotic supplementation. Additionally, the abundance of genes associated with the prebiotic utilization (xfp, xpk), acetate production (ackA), and choline to betaine oxidation (gbsB) were significantly correlated with changes in the abundance of the genus Bifidobacterium in the prebiotic group. Plasma concentrations of the bacterially produced metabolite indolepropionate significantly increased. The results of this study demonstrate that an easy to consume, low dose (12 g) of a prebiotic powder taken daily increases the abundance of beneficial bifidobacteria and the production of health-promoting bacteria-derived metabolites in healthy individuals with a habitual low-fiber diet.
Collapse
Affiliation(s)
- Jea Woo Kang
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Xinyu Tang
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | | | - Mark J. Brown
- USANA Health Sciences, Inc., Salt Lake City, UT, United States
| | | | | | - Jack Jingyuan Zheng
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Joanne K. Agus
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Angela M. Zivkovic
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- *Correspondence: Angela M. Zivkovic
| |
Collapse
|
16
|
Vike NL, Bari S, Stetsiv K, Talavage TM, Nauman EA, Papa L, Slobounov S, Breiter HC, Cornelis MC. Metabolomic response to collegiate football participation: Pre- and Post-season analysis. Sci Rep 2022; 12:3091. [PMID: 35197541 PMCID: PMC8866500 DOI: 10.1038/s41598-022-07079-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/03/2022] [Indexed: 11/09/2022] Open
Abstract
Contact sports participation has been shown to have both beneficial and detrimental effects on health, however little is known about the metabolic sequelae of these effects. We aimed to identify metabolite alterations across a collegiate American football season. Serum was collected from 23 male collegiate football athletes before the athletic season (Pre) and after the last game (Post). Samples underwent nontargeted metabolomic profiling and 1131 metabolites were included for univariate, pathway enrichment, and multivariate analyses. Significant metabolites were assessed against head acceleration events (HAEs). 200 metabolites changed from Pre to Post (P < 0.05 and Q < 0.05); 160 had known identity and mapped to one of 57 pre-defined biological pathways. There was significant enrichment of metabolites belonging to five pathways (P < 0.05): xanthine, fatty acid (acyl choline), medium chain fatty acid, primary bile acid, and glycolysis, gluconeogenesis, and pyruvate metabolism. A set of 12 metabolites was sufficient to discriminate Pre from Post status, and changes in 64 of the 200 metabolites were also associated with HAEs (P < 0.05). In summary, the identified metabolites, and candidate pathways, argue there are metabolic consequences of both physical training and head impacts with football participation. These findings additionally identify a potential set of objective biomarkers of repetitive head injury.
Collapse
Affiliation(s)
- Nicole L Vike
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sumra Bari
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Khrystyna Stetsiv
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Thomas M Talavage
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Eric A Nauman
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA
| | - Linda Papa
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, FL, USA
| | - Semyon Slobounov
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA.
| | - Hans C Breiter
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard School of Medicine, Boston, MA, USA
| | - Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
17
|
Kinchen JM, Mohney RP, Pappan KL. Long-Chain Acylcholines Link Butyrylcholinesterase to Regulation of Non-neuronal Cholinergic Signaling. J Proteome Res 2021; 21:599-611. [PMID: 34758617 DOI: 10.1021/acs.jproteome.1c00538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acylcholines are comprised of an acyl chain esterified to a choline moiety; acetylcholine is the best-characterized member of this class, functioning as a neurotransmitter in the central and peripheral nervous systems as well as an inhibitor of cytokine production by macrophages and other innate immune cells. Acylcholines are metabolized by a class of cholinesterases, including acetylcholinesterase (a specific regulator of acetylcholine levels) and butyrylcholinesterase (BChE, an enigmatic enzyme whose function has not been resolved by genetic knockout models). BChE provides reserve capacity to hydrolyze acetylcholine, but its importance is arguable given acetylcholinesterase is the most catalytically efficient enzyme characterized to date. While known to be substrates of BChE in vitro, endogenous production of long-chain acylcholines is a recent discovery enabled by untargeted metabolomics. Compared to acetylcholine, long-chain acylcholines show greater stability in circulation with homeostatic levels-dictated by synthesis and clearance-suggested to impact cholinergic receptor sensitivity of acetylcholine with varying levels of antagonism. Acylcholines then provide a link between BChE and non-neuronal acetylcholine signaling, filling a gap in understanding around how imbalances between acylcholines and BChE could modulate inflammatory disease, such as the "cytokine storm" identified in severe COVID-19. Areas for further research, development, and clinical testing are outlined.
Collapse
Affiliation(s)
- Jason M Kinchen
- Owlstone Medical Inc., 600 Park Office Drive, Suite 140, Research Triangle Park, North Carolina 27709, United States
| | - Robert P Mohney
- Owlstone Medical Inc., 600 Park Office Drive, Suite 140, Research Triangle Park, North Carolina 27709, United States
| | - Kirk L Pappan
- Owlstone Medical Inc., 600 Park Office Drive, Suite 140, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
18
|
Development of Chrysin Loaded Oil-in-Water Nanoemulsion for Improving Bioaccessibility. Foods 2021; 10:foods10081912. [PMID: 34441689 PMCID: PMC8392734 DOI: 10.3390/foods10081912] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 01/01/2023] Open
Abstract
Chrysin (5,7-dihydroxyflavone) is a remarkable flavonoid exhibiting many health-promoting activities, such as antioxidant, anti-inflammatory, and anti-Alzheimer's disease (AD). Nevertheless, chrysin has been addressed regarding its limited applications, due to low bioaccessibility. Therefore, to improve chrysin bioaccessibility, a colloidal delivery system involving nanoemulsion was developed as chrysin nanoemulsion (chrysin-NE) using an oil-in-water system. Our results show that chrysin can be loaded by approximately 174.21 µg/g nanoemulsion (100.29 ± 0.53% w/w) when medium chain triglyceride (MCT) oil was used as an oil phase. The nanocolloidal size, polydispersity index, and surface charge of chrysin-NE were approximately 161 nm, 0.21, and -32 mV, respectively. These properties were stable for at least five weeks at room temperature. Furthermore, in vitro chrysin bioactivities regarding antioxidant and anti-AD were maintained as pure chrysin, suggesting that multistep formulation could not affect chrysin properties. Interestingly, the developed chrysin-NE was more tolerant of gastrointestinal digestion and significantly absorbed by the human intestinal cells (Caco-2) than pure chrysin. These findings demonstrate that the encapsulation of chrysin using oil-in-water nanoemulsion could enhance the bioaccessibility of chrysin, which might be subsequently applied to food and nutraceutical industries.
Collapse
|
19
|
Trikash I, Kasatkina L, Lykhmus O, Skok M. Nicotinic acetylcholine receptors regulate clustering, fusion and acidification of the rat brain synaptic vesicles. Neurochem Int 2020; 138:104779. [PMID: 32474177 PMCID: PMC7256623 DOI: 10.1016/j.neuint.2020.104779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 11/15/2022]
Abstract
The brain nicotinic acetylcholine receptors (nAChRs) expressed in pre-synaptic nerve terminals regulate neurotransmitter release. However, there is no evidence for the expression of nAChRs in synaptic vesicles, which deliver neurotransmitter to synaptic cleft. The aim of this paper was to investigate the presence of nAChRs in synaptic vesicles purified from the rat brain and to study their possible involvement in vesicles life cycle. According to dynamic light scattering analysis, the antibody against extracellular domain (1-208) of α7 nAChR subunit inhibited synaptic vesicles clustering. Sandwich ELISA with nAChR subunit-specific antibodies demonstrated the presence of α4β2, α7 and α7β2nAChR subtypes in synaptic vesicles and showed that α7 and β2 nAChR subunits are co-localized with synaptic vesicle glycoprotein 2A (SV2A). Pre-incubation with either α7-selective agonist PNU282987 or nicotine did not affect synaptic vesicles clustering but delayed their Ca2+-dependent fusion with the plasma membranes. In contrast, nicotine but not PNU282987 stimulated acidification of isolated synaptic vesicles, indicating that α4β2 but not α7-containing nAChRs are involved in regulation of proton influx and neurotransmitter refilling. Treatment of rats with levetiracetam, a specific modulator of SV2A, increased the content of α7 nAChRs in synaptic vesicles accompanied by increased clustering but decreased Ca2+-dependent fusion. These data for the first time demonstrate the presence of nAChRs in synaptic vesicles and suggest an active involvement of cholinergic regulation in neurotransmitter release. Synaptic vesicles may be an additional target of nicotine inhaled upon smoking and of α7-specific drugs widely discussed as anti-inflammatory and pro-cognitive tools.
Collapse
Affiliation(s)
- Irene Trikash
- Palladin Institute of Biochemistry, NAS of Ukraine, Kyiv, Ukraine
| | | | - Olena Lykhmus
- Palladin Institute of Biochemistry, NAS of Ukraine, Kyiv, Ukraine
| | - Maryna Skok
- Palladin Institute of Biochemistry, NAS of Ukraine, Kyiv, Ukraine.
| |
Collapse
|
20
|
Tsetlin VI. Acetylcholine and Acetylcholine Receptors: Textbook Knowledge and New Data. Biomolecules 2020; 10:biom10060852. [PMID: 32503306 PMCID: PMC7355751 DOI: 10.3390/biom10060852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|