1
|
Mepperi J, Mukherjee S, Goel K, Kotamarthi HC. The Complex Energy Landscape of miRFP709, a 4 1-Knotted Protein, Results in Its Irreversible Denaturation. J Phys Chem B 2025; 129:1176-1184. [PMID: 39818792 DOI: 10.1021/acs.jpcb.4c05439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Knotted proteins have a unique topological feature with an open knot, and the physiological significance of these knots remains elusive. In addition, these proteins challenge our understanding of the protein folding process, and whether they retain their native state during unfolding/refolding cycles like other proteins is debated. Most folding studies on knotted proteins have been performed on 31 and 52 knots, monitoring the tryptophan fluorescence. In this study, we probe the unfolding/refolding of a 41-knotted protein, miRFP709, which can be monitored through near-infrared fluorescence in addition to the intrinsic tryptophan emission. miRFP709, upon chemical unfolding and refolding, folds back to a compact, non-native, stable structure that loses its ability to bind to the biliverdin ligand and fluoresce. The refolded protein retains its secondary structure but behaves like a molten-globule state with an exposed hydrophobic surface. The complex folding landscape of these proteins results in hysteresis between the folding and refolding curves. We propose that upon refolding, either an altered knot or an unknotted structure prevents the formation of the native knotted structure.
Collapse
Affiliation(s)
- Jijith Mepperi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Soham Mukherjee
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Khushboo Goel
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | | |
Collapse
|
2
|
Garbuzynskiy SO, Marchenkov VV, Marchenko NY, Semisotnov GV, Finkelstein AV. How proteins manage to fold and how chaperones manage to assist the folding. Phys Life Rev 2024; 52:66-79. [PMID: 39709754 DOI: 10.1016/j.plrev.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024]
Abstract
This review presents the current understanding of (i) spontaneous self-organization of spatial structures of protein molecules, and (ii) possible ways of chaperones' assistance to this process. Specifically, we overview the most important features of spontaneous folding of proteins (mostly, of the single-domain water-soluble globular proteins): the choice of the unique protein structure among zillions of alternatives, the nucleation of the folding process, and phase transitions within protein molecules. We consider the main experimental facts on protein folding, both in vivo and in vitro, of both kinetic and thermodynamic nature. We discuss the famous Levinthal's paradox of protein folding and its solution, theoretical models of protein folding and unfolding, and the dependence of the rates of these processes on the protein chain length. Special attention is paid to relatively small, single-domain, and water-soluble globular proteins whose structure and folding are much better studied and understood than those of large proteins, especially membrane or fibrous proteins. Lastly, we describe the chaperone-assisted protein folding with an emphasis on the chaperones' ability to prevent proteins from their irreversible aggregation. Since the possible assistance mechanisms connected with chaperones are still debatable, experimental data useful in selecting the most likely mechanisms of chaperone-assisted protein folding are presented.
Collapse
Affiliation(s)
- Sergiy O Garbuzynskiy
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation
| | - Victor V Marchenkov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation
| | - Natalia Y Marchenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation
| | - Gennady V Semisotnov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation.
| | - Alexei V Finkelstein
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation.
| |
Collapse
|
3
|
Pan Y, Liu S, Han Z, Zeng H, Xu X, Shao JH, Xing L, Yin Y. The influence of pH-ultrasonic-induced myofibrillar protein conformation of Penaeus vannamei (Litopenaeus vannamei) on emulsification and digestion characteristics of fish oil oleogel-based emulsions. Int J Biol Macromol 2024; 283:137419. [PMID: 39542286 DOI: 10.1016/j.ijbiomac.2024.137419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
pH-induced and ultrasound treatment can both adjust spatial conformation to improve the interfacial stability, and fish oil oleogel could be used to enhance oil binding capacity. The relationship between stabilization mechanism and lipid digestion was revealed, considering the protein conformation and interfacial characteristics. The results showed that pH-ultrasonic-induced myofibrillar proteins (MPs) at pH 7.0 had higher interfacial adsorption capacity and surface hydrophobicity as well as more stable secondary structures, which lowered the particle size and enhanced the interfacial stability. In the stomach, the particle size increased along with the decrease in electrostatic repulsion, and β-sheets significantly increased, which promoted aggregation and flocculation. In the small intestine, the reduction of β-sheets favored the interfacial replacement and facilitated the lipid digestion. Therefore, pH-ultrasonic-modified method improved the structure and function of MPs, facilitated the interfacial stability and intestinal digestion.
Collapse
Affiliation(s)
- Yanmo Pan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Zongyuan Han
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China.
| | - Huilan Zeng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Xuefei Xu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Lujuan Xing
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yantao Yin
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| |
Collapse
|
4
|
Arora S, Ainavarapu SRK. Probing Aromatic Side Chains Reveals the Site-Specific Melting in the SUMO1 Molten Globule. Biochemistry 2024. [PMID: 39540835 DOI: 10.1021/acs.biochem.4c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The conventional idea that a well-defined protein structure governs its functions is being challenged by the evolving significance of conformational flexibility and disorder in influencing protein activity. Here, we focus on the Small Ubiquitin-like MOdifier 1 (SUMO1) protein, a post-translational modifier, which binds various target proteins during the process of SUMOylation. We present evidence supporting the presence of both folded and "ordered" molten globule (MG) states in SUMO1 under physiological conditions. We investigate the MG state using a combination of near-UV and far-UV circular dichroism (CD) experiments. Moreover, we dissect the information from the near-UV CD data to gain specific insights about the MG intermediate. This is achieved by mutating specific aromatic amino acids, particularly creating a single-tyrosine mutant S1Y51 (by introducing Y21F and Y91F mutations) and a tryptophan mutant S1F66W. Spectroscopic studies of the mutants as a function of temperature revealed multiple insights. The transition from the folded to the MG state involves a site-specific loss of tertiary packing near Y51 but the region surrounding F66 retained most of its tertiary contacts, suggesting an ordered MG structure. We further demonstrate the increased solvent exposure of Y51 in the MG state by using time-resolved fluorescence and steady-state quenching experiments. The observed conformational flexibility and solvent accessibility, particularly around Y51 that is known to be involved in binding the cognate ligands such as PIASX and its peptide analogues, have biological and functional implications in mediating protein-protein interactions during the SUMOylation process.
Collapse
Affiliation(s)
- Simran Arora
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Sri Rama Koti Ainavarapu
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
5
|
Qu Z, Xu L, Jiang F, Liu Y, Zhang WB. Folds from fold: Exploring topological isoforms of a single-domain protein. Proc Natl Acad Sci U S A 2024; 121:e2407355121. [PMID: 39405345 PMCID: PMC11513978 DOI: 10.1073/pnas.2407355121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/06/2024] [Indexed: 10/30/2024] Open
Abstract
Expanding the protein fold space beyond linear chains is of fundamental significance, yet remains largely unexplored. Herein, we report the creation of seven topological isoforms (i.e., linear, cyclic, knot, lasso, pseudorotaxane, and catenane) from a single protein fold precursor by rewiring the connectivity of secondary structure elements of the SpyTag-SpyCatcher complex and mutating the reactive residue on SpyTag to abolish the isopeptide bonding. These topological isoforms can be directly expressed in cells. Their topologies were confirmed by combined techniques of proteolytic digestion, fluorescence correlation spectroscopy (FCS), size-exclusion chromatography (SEC), and topological transformation. To study the effects of topology on their structures and properties, their biophysical properties were characterized by differential scanning calorimetry (DSC), heteronuclear single quantum coherence nuclear magnetic resonance spectroscopy (HSQC-NMR), and circular dichroism (CD) spectroscopy. Molecular dynamics (MD) simulations were further performed to reveal the atomic details of structural changes upon unfolding. Both experimental and simulation results suggest that they share a similar, well-folded hydrophobic core but exhibit distinct folding/unfolding dynamic behaviors. These results shed light onto the folding landscape of topological isoforms derived from the same protein fold. As a model system, this work improves our understanding of protein structure and dynamics beyond linear chains and suggests that protein folds are highly amenable to topological variation.
Collapse
Affiliation(s)
- Zhiyu Qu
- Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, People’s Republic of China
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, Peking University, Beijing100871, People’s Republic of China
| | - Lianjie Xu
- Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, People’s Republic of China
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, Peking University, Beijing100871, People’s Republic of China
| | - Fengyi Jiang
- Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, People’s Republic of China
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, Peking University, Beijing100871, People’s Republic of China
| | - Yuan Liu
- Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, People’s Republic of China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, People’s Republic of China
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, Peking University, Beijing100871, People’s Republic of China
- Artificial Intelligence for Science-Preferred Program, Shenzhen Graduate School, Peking University, Shenzhen518055, People’s Republic of China
| |
Collapse
|
6
|
Harihar B, Saravanan KM, Gromiha MM, Selvaraj S. Importance of Inter-residue Contacts for Understanding Protein Folding and Unfolding Rates, Remote Homology, and Drug Design. Mol Biotechnol 2024:10.1007/s12033-024-01119-4. [PMID: 38498284 DOI: 10.1007/s12033-024-01119-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/10/2024] [Indexed: 03/20/2024]
Abstract
Inter-residue interactions in protein structures provide valuable insights into protein folding and stability. Understanding these interactions can be helpful in many crucial applications, including rational design of therapeutic small molecules and biologics, locating functional protein sites, and predicting protein-protein and protein-ligand interactions. The process of developing machine learning models incorporating inter-residue interactions has been improved recently. This review highlights the theoretical models incorporating inter-residue interactions in predicting folding and unfolding rates of proteins. Utilizing contact maps to depict inter-residue interactions aids researchers in developing computer models for detecting remote homologs and interface residues within protein-protein complexes which, in turn, enhances our knowledge of the relationship between sequence and structure of proteins. Further, the application of contact maps derived from inter-residue interactions is highlighted in the field of drug discovery. Overall, this review presents an extensive assessment of the significant models that use inter-residue interactions to investigate folding rates, unfolding rates, remote homology, and drug development, providing potential future advancements in constructing efficient computational models in structural biology.
Collapse
Affiliation(s)
- Balasubramanian Harihar
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Konda Mani Saravanan
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, 600073, India
| | - Michael M Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Samuel Selvaraj
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| |
Collapse
|
7
|
Schiavon A, Saba L, Catucci G, Petiti J, Puglisi S, Borin C, Reimondo G, Gilardi G, Giachino C, Terzolo M, Lo Iacono M. Albumin/Mitotane Interaction Affects Drug Activity in Adrenocortical Carcinoma Cells: Smoke and Mirrors on Mitotane Effect with Possible Implications for Patients' Management. Int J Mol Sci 2023; 24:16701. [PMID: 38069023 PMCID: PMC10706292 DOI: 10.3390/ijms242316701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Mitotane is the only drug approved for the treatment of adrenocortical carcinoma (ACC). Although it has been used for many years, its mechanism of action remains elusive. H295R cells are, in ACC, an essential tool to evaluate drug mechanisms, although they often lead to conflicting results. METHODS Using different in vitro biomolecular technologies and biochemical/biophysical experiments, we evaluated how the presence of "confounding factors" in culture media and patient sera could reduce the pharmacological effect of mitotane and its metabolites. RESULTS We discovered that albumin, the most abundant protein in the blood, was able to bind mitotane. This interaction altered the effect of the drug by blocking its biological activity. This blocking effect was independent of the albumin source or methodology used and altered the assessment of drug sensitivity of the cell lines. CONCLUSIONS In conclusion, we have for the first time demonstrated that albumin does not only act as an inert drug carrier when mitotane or its metabolites are present. Indeed, our experiments clearly indicated that both albumin and human serum were able to suppress the pharmacological effect of mitotane in vitro. These experiments could represent a first step towards the individualization of mitotane treatment in this rare tumor.
Collapse
Affiliation(s)
- Aurora Schiavon
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (A.S.); (L.S.); (S.P.); (C.B.); (G.R.); (C.G.); (M.T.)
| | - Laura Saba
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (A.S.); (L.S.); (S.P.); (C.B.); (G.R.); (C.G.); (M.T.)
| | - Gianluca Catucci
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (G.C.); (G.G.)
| | - Jessica Petiti
- Division of Advanced Materials Metrology and Life Sciences, Istituto Nazionale di Ricerca Metrologica (INRiM), 10135 Turin, Italy;
| | - Soraya Puglisi
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (A.S.); (L.S.); (S.P.); (C.B.); (G.R.); (C.G.); (M.T.)
| | - Chiara Borin
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (A.S.); (L.S.); (S.P.); (C.B.); (G.R.); (C.G.); (M.T.)
| | - Giuseppe Reimondo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (A.S.); (L.S.); (S.P.); (C.B.); (G.R.); (C.G.); (M.T.)
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (G.C.); (G.G.)
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (A.S.); (L.S.); (S.P.); (C.B.); (G.R.); (C.G.); (M.T.)
| | - Massimo Terzolo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (A.S.); (L.S.); (S.P.); (C.B.); (G.R.); (C.G.); (M.T.)
| | - Marco Lo Iacono
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (A.S.); (L.S.); (S.P.); (C.B.); (G.R.); (C.G.); (M.T.)
| |
Collapse
|
8
|
Grimm LM, Setiadi J, Tkachenko B, Schreiner PR, Gilson MK, Biedermann F. The temperature-dependence of host-guest binding thermodynamics: experimental and simulation studies. Chem Sci 2023; 14:11818-11829. [PMID: 37920355 PMCID: PMC10619620 DOI: 10.1039/d3sc01975f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/24/2023] [Indexed: 11/04/2023] Open
Abstract
The thermodynamic parameters of host-guest binding can be used to describe, understand, and predict molecular recognition events in aqueous systems. However, interpreting binding thermodynamics remains challenging, even for these relatively simple molecules, as they are determined by both direct and solvent-mediated host-guest interactions. In this contribution, we focus on the contributions of water to binding by studying binding thermodynamics, both experimentally and computationally, for a series of nearly rigid, electrically neutral host-guest systems and report the temperature-dependent thermodynamic binding contributions ΔGb(T), ΔHb(T), ΔSb(T), and ΔCp,b. Combining isothermal titration calorimetry (ITC) measurements with molecular dynamics (MD) simulations, we provide insight into the binding forces at play for the macrocyclic hosts cucurbit[n]uril (CBn, n = 7-8) and β-cyclodextrin (β-CD) with a range of guest molecules. We find consistently negative changes in heat capacity on binding (ΔCp,b) for all systems studied herein - as well as for literature host-guest systems - indicating increased enthalpic driving forces for binding at higher temperatures. We ascribe these trends to solvation effects, as the solvent properties of water deteriorate as temperature rises. Unlike the entropic and enthalpic contributions to binding, with their differing signs and magnitudes for the classical and non-classical hydrophobic effect, heat capacity changes appear to be a unifying and more general feature of host-guest complex formation in water. This work has implications for understanding protein-ligand interactions and other complex systems in aqueous environments.
Collapse
Affiliation(s)
- Laura M Grimm
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Jeffry Setiadi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego 9255 Pharmacy Lane La Jolla CA 92093 USA
| | - Boryslav Tkachenko
- Institute of Organic Chemistry, Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego 9255 Pharmacy Lane La Jolla CA 92093 USA
| | - Frank Biedermann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
9
|
Vila JA. Protein folding rate evolution upon mutations. Biophys Rev 2023; 15:661-669. [PMID: 37681091 PMCID: PMC10480377 DOI: 10.1007/s12551-023-01088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/24/2023] [Indexed: 09/09/2023] Open
Abstract
Despite the spectacular success of cutting-edge protein fold prediction methods, many critical questions remain unanswered, including why proteins can reach their native state in a biologically reasonable time. A satisfactory answer to this simple question could shed light on the slowest folding rate of proteins as well as how mutations-amino-acid substitutions and/or post-translational modifications-might affect it. Preliminary results indicate that (i) Anfinsen's dogma validity ensures that proteins reach their native state on a reasonable timescale regardless of their sequence or length, and (ii) it is feasible to determine the evolution of protein folding rates without accounting for epistasis effects or the mutational trajectories between the starting and target sequences. These results have direct implications for evolutionary biology because they lay the groundwork for a better understanding of why, and to what extent, mutations-a crucial element of evolution and a factor influencing it-affect protein evolvability. Furthermore, they may spur significant progress in our efforts to solve crucial structural biology problems, such as how a sequence encodes its folding.
Collapse
Affiliation(s)
- Jorge A. Vila
- IMASL-CONICET, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700 San Luis, Argentina
| |
Collapse
|
10
|
Structural Transitions of Alpha-Amylase Treated with Pulsed Electric Fields: Effect of Coexisting Carrageenan. Foods 2022; 11:foods11244112. [PMID: 36553854 PMCID: PMC9778200 DOI: 10.3390/foods11244112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Pulsed electric field (PEF) is an effective way to modulate the structure and activity of enzymes; however, the dynamic changes in enzyme structure during this process, especially the intermediate state, remain unclear. In this study, the molten globule (MG) state of α-amylase under PEF processing was investigated using intrinsic fluorescence, surface hydrophobicity, circular dichroism, etc. Meanwhile, the influence of coexisting carrageenan on the structural transition of α-amylase during PEF processing was evaluated. When the electric field strength was 20 kV/cm, α-amylase showed the unique characteristics of an MG state, which retained the secondary structure, changed the tertiary structure, and increased surface hydrophobicity (from 240 to 640). The addition of carrageenan effectively protected the enzyme activity of α-amylase during PEF treatment. When the mixed ratio of α-amylase to carrageenan was 10:1, they formed electrostatic complexes with a size of ~20 nm, and carrageenan inhibited the increase in surface hydrophobicity (<600) and aggregation (<40 nm) of α-amylase after five cycles of PEF treatment. This work clarifies the influence of co-existing polysaccharides on the intermediate state of proteins during PEF treatment and provides a strategy to modulate protein structure by adding polysaccharides during food processing.
Collapse
|
11
|
Acharya N, Jha SK. Dry Molten Globule-Like Intermediates in Protein Folding, Function, and Disease. J Phys Chem B 2022; 126:8614-8622. [PMID: 36286394 DOI: 10.1021/acs.jpcb.2c04991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The performance of a protein depends on its correct folding to the final functional native form. Hence, understanding the process of protein folding has remained an important field of research for the scientific community for the past five decades. Two important intermediate states, namely, wet molten globule (WMG) and dry molten globule (DMG), have emerged as critical milestones during protein folding-unfolding reactions. While much has been discussed about WMGs as a common unfolding intermediate, the evidence for DMGs has remained elusive owing to their near-native features, which makes them difficult to probe using global structural probes. This Review puts together the available literature and new evidence on DMGs to give a broader perspective on the universality of DMGs and discuss their significance in protein folding, function, and disease.
Collapse
Affiliation(s)
- Nirbhik Acharya
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
Interdiction in the Early Folding of the p53 DNA-Binding Domain Leads to Its Amyloid-Like Misfolding. Molecules 2022; 27:molecules27154810. [PMID: 35956758 PMCID: PMC9370011 DOI: 10.3390/molecules27154810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
In this article, we investigate two issues: (a) the initial contact formation events along the folding pathway of the DNA-binding domain of the tumor suppressor protein p53 (core p53); and (b) the intermolecular events leading to its conversion into a prion-like form upon incubation with peptide P8(250-257). In the case of (a), the calculations employ the sequential collapse model (SCM) to identify the segments involved in the initial contact formation events that nucleate the folding pathway. The model predicts that there are several possible initial non-local contacts of comparative stability. The most stable of these possible initial contacts involve the protein segments 159AMAIY163 and 251ILTII255, and it is the only native-like contact. Thus, it is predicted to constitute “Nature’s shortcut” to the native structure of the core domain of p53. In the case of issue (b), these findings are then combined with experimental evidence showing that the incubation of the core domain of p53 with peptide P8(250-257), which is equivalent to the native protein segment 250PILTIITL257, leads to an amyloid conformational transition. It is explained how the SCM predicts that P8(250-257) effectively interdicts in the formation of the most stable possible initial contact and, thereby, disrupts the subsequent normal folding. Interdiction by polymeric P8(250-257) seeds is also studied. It is then hypothesized that enhanced folding through one or several of the less stable contacts could play a role in P8(250-257)-promoted core p53 amyloid misfolding. These findings are compared to previous results obtained for the prion protein. Experiments are proposed to test the hypothesis presented regarding core p53 amyloid misfolding.
Collapse
|
13
|
Charles T, Moss DL, Bhat P, Moore PW, Kummer NA, Bhattacharya A, Landry SJ, Mettu RR. CD4+ T-Cell Epitope Prediction by Combined Analysis of Antigen Conformational Flexibility and Peptide-MHCII Binding Affinity. Biochemistry 2022; 61:1585-1599. [PMID: 35834502 PMCID: PMC9352311 DOI: 10.1021/acs.biochem.2c00237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Antigen processing in the class II MHC pathway depends
on conventional
proteolytic enzymes, potentially acting on antigens in native-like
conformational states. CD4+ epitope dominance arises from a competition
among antigen folding, proteolysis, and MHCII binding. Protease-sensitive
sites, linear antibody epitopes, and CD4+ T-cell epitopes were mapped
in plague vaccine candidate F1-V to evaluate the various contributions
to CD4+ epitope dominance. Using X-ray crystal structures, antigen
processing likelihood (APL) predicts CD4+ epitopes with significant
accuracy for F1-V without considering peptide-MHCII binding affinity.
We also show that APL achieves excellent performance over two benchmark
antigen sets. The profiles of conformational flexibility derived from
the X-ray crystal structures of the F1-V proteins, Caf1 and LcrV,
were similar to the biochemical profiles of linear antibody epitope
reactivity and protease sensitivity, suggesting that the role of structure
in proteolysis was captured by the analysis of the crystal structures.
The patterns of CD4+ T-cell epitope dominance in C57BL/6, CBA, and
BALB/c mice were compared to epitope predictions based on APL, MHCII
binding, or both. For a sample of 13 diverse antigens, the accuracy
of epitope prediction by the combination of APL and I-Ab-MHCII-peptide affinity reached 36%. When MHCII allele specificity
was also diverse, such as in human immunity, prediction of dominant
epitopes by APL alone reached 42% when using a stringent scoring threshold.
Because dominant CD4+ epitopes tend to occur in conformationally stable
antigen domains, crystal structures typically are available for analysis
by APL, and thus, the requirement for a crystal structure is not a
severe limitation.
Collapse
Affiliation(s)
- Tysheena Charles
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Daniel L Moss
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Pawan Bhat
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Peyton W Moore
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Nicholas A Kummer
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Avik Bhattacharya
- Department of Computer Science, Tulane University, New Orleans, Louisiana 70118, United States
| | - Samuel J Landry
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Ramgopal R Mettu
- Department of Computer Science, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
14
|
Kuwajima K, Yagi-Utsumi M, Yanaka S, Kato K. DMSO-Quenched H/D-Exchange 2D NMR Spectroscopy and Its Applications in Protein Science. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123748. [PMID: 35744871 PMCID: PMC9230524 DOI: 10.3390/molecules27123748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
Hydrogen/deuterium (H/D) exchange combined with two-dimensional (2D) NMR spectroscopy has been widely used for studying the structure, stability, and dynamics of proteins. When we apply the H/D-exchange method to investigate non-native states of proteins such as equilibrium and kinetic folding intermediates, H/D-exchange quenching techniques are indispensable, because the exchange reaction is usually too fast to follow by 2D NMR. In this article, we will describe the dimethylsulfoxide (DMSO)-quenched H/D-exchange method and its applications in protein science. In this method, the H/D-exchange buffer is replaced by an aprotic DMSO solution, which quenches the exchange reaction. We have improved the DMSO-quenched method by using spin desalting columns, which are used for medium exchange from the H/D-exchange buffer to the DMSO solution. This improvement has allowed us to monitor the H/D exchange of proteins at a high concentration of salts or denaturants. We describe methodological details of the improved DMSO-quenched method and present a case study using the improved method on the H/D-exchange behavior of unfolded human ubiquitin in 6 M guanidinium chloride.
Collapse
Affiliation(s)
- Kunihiro Kuwajima
- Department of Physics, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Correspondence: (K.K.); (K.K.)
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan; (M.Y.-U.); (S.Y.)
- Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (the Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Aichi, Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan; (M.Y.-U.); (S.Y.)
- Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (the Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan; (M.Y.-U.); (S.Y.)
- Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (the Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Aichi, Japan
- Correspondence: (K.K.); (K.K.)
| |
Collapse
|
15
|
Tomar DS, Licari G, Bauer J, Singh SK, Li L, Kumar S. Stress-dependent flexibility of a full-length human monoclonal antibody: Insights from molecular dynamics to support biopharmaceutical development. J Pharm Sci 2021; 111:628-637. [PMID: 34742728 DOI: 10.1016/j.xphs.2021.10.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/30/2021] [Accepted: 10/30/2021] [Indexed: 01/15/2023]
Abstract
After several decades of advancements in drug discovery, product development of biopharmaceuticals remains a time- and resource-consuming endeavor. One of the main reasons is associated to the lack of fundamental understanding of conformational dynamics of such biologic entities, and how they respond to various stresses encountered during manufacturing. In this work, we have studied the conformational dynamics of human IgG1κ b12 monoclonal antibody (mAb) using molecular dynamics simulations. The hundreds of nanoseconds long trajectories reveal that b12 mAb is highly flexible. Its variable domains show greater conformational fluctuations than the constant domains. Additionally, it collapses towards a more globular shape in response to thermal stress, leading to decrease in the total solvent exposed surface area and radius of gyration. This behavior is more pronounced for the deglycosylated b12 mAb, and it appears to correlate with increase in inter-domain contacts between specific regions of the antibody. Conformational fluctuations also cause temporary formation and disruption of hydrophobic and charged patches on the antibody surface, which is particularly important for the prediction of CMC properties during development phases of antibody-based biotherapeutics. The insights gained through these simulations may help the development of biologic drugs, especially with regards to manufacturing processes where antibodies may undergo significant thermal stress.
Collapse
Affiliation(s)
- Dheeraj S Tomar
- Biotherapeutics Pharmaceutical Sciences Research and Development, Pfizer Inc., 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Giuseppe Licari
- Pharmaceuticals Development Biologicals, Boehringer Ingelheim Pharmaceuticals, Inc., D-88397 Biberach an der Riss, Germany
| | - Joschka Bauer
- Pharmaceuticals Development Biologicals, Boehringer Ingelheim Pharmaceuticals, Inc., D-88397 Biberach an der Riss, Germany
| | - Satish K Singh
- Biotherapeutics Pharmaceutical Sciences Research and Development, Pfizer Inc., 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Li Li
- Biotherapeutics Pharmaceutical Sciences Research and Development, Pfizer Inc., 1 Burtt Road, Andover, Massachusetts, 01810, USA
| | - Sandeep Kumar
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877.
| |
Collapse
|
16
|
A conserved folding nucleus sculpts the free energy landscape of bacterial and archaeal orthologs from a divergent TIM barrel family. Proc Natl Acad Sci U S A 2021; 118:2019571118. [PMID: 33875592 PMCID: PMC8092565 DOI: 10.1073/pnas.2019571118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Orthologous proteins from the three superkingdoms have conserved their structures and functions over evolutionary time. We ask whether their folding mechanisms and the structures of their partially folded states are similarly conserved, using bacterial and archaeal representatives of the IGPS TIM barrel enzyme. Comparison of circular dichroism and fluorescence spectroscopic studies reveal a highly conserved mechanism, and hydrogen–deuterium exchange mass spectrometry analyses highlight similar cores of stability in regions dominated by clusters of branched aliphatic side chains. A bioinformatics analysis of hundreds of IGPS sequences from each superkingdom shows a very highly conserved sequence, V/ILLI, that nucleates the formation of a misfolded, microsecond intermediate and has existed since the last universal common ancestor of the IGPS family of proteins. The amino acid sequences of proteins have evolved over billions of years, preserving their structures and functions while responding to evolutionary forces. Are there conserved sequence and structural elements that preserve the protein folding mechanisms? The functionally diverse and ancient (βα)1–8 TIM barrel motif may answer this question. We mapped the complex six-state folding free energy surface of a ∼3.6 billion y old, bacterial indole-3-glycerol phosphate synthase (IGPS) TIM barrel enzyme by equilibrium and kinetic hydrogen–deuterium exchange mass spectrometry (HDX-MS). HDX-MS on the intact protein reported exchange in the native basin and the presence of two thermodynamically distinct on- and off-pathway intermediates in slow but dynamic equilibrium with each other. Proteolysis revealed protection in a small (α1β2) and a large cluster (β5α5β6α6β7) and that these clusters form cores of stability in Ia and Ibp. The strongest protection in both states resides in β4α4 with the highest density of branched aliphatic side chain contacts in the folded structure. Similar correlations were observed previously for an evolutionarily distinct archaeal IGPS, emphasizing a key role for hydrophobicity in stabilizing common high-energy folding intermediates. A bioinformatics analysis of IGPS sequences from the three superkingdoms revealed an exceedingly high hydrophobicity and surprising α-helix propensity for β4, preceded by a highly conserved βα-hairpin clamp that links β3 and β4. The conservation of the folding mechanisms for archaeal and bacterial IGPS proteins reflects the conservation of key elements of sequence and structure that first appeared in the last universal common ancestor of these ancient proteins.
Collapse
|
17
|
Rhys GG, Dawson WM, Beesley JL, Martin FJO, Brady RL, Thomson AR, Woolfson DN. How Coiled-Coil Assemblies Accommodate Multiple Aromatic Residues. Biomacromolecules 2021; 22:2010-2019. [PMID: 33881308 DOI: 10.1021/acs.biomac.1c00131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rational protein design requires understanding the contribution of each amino acid to a targeted protein fold. For a subset of protein structures, namely, α-helical coiled coils (CCs), knowledge is sufficiently advanced to allow the rational de novo design of many structures, including entirely new protein folds. Current CC design rules center on using aliphatic hydrophobic residues predominantly to drive the folding and assembly of amphipathic α helices. The consequences of using aromatic residues-which would be useful for introducing structural probes, and binding and catalytic functionalities-into these interfaces are not understood. There are specific examples of designed CCs containing such aromatic residues, e.g., phenylalanine-rich sequences, and the use of polar aromatic residues to make buried hydrogen-bond networks. However, it is not known generally if sequences rich in tyrosine can form CCs, or what CC assemblies these would lead to. Here, we explore tyrosine-rich sequences in a general CC-forming background and resolve new CC structures. In one of these, an antiparallel tetramer, the tyrosine residues are solvent accessible and pack at the interface between the core and the surface. In another more complex structure, the residues are buried and form an extended hydrogen-bond network.
Collapse
Affiliation(s)
- Guto G Rhys
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom.,Department of Biochemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - William M Dawson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Joseph L Beesley
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Freddie J O Martin
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - R Leo Brady
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Andrew R Thomson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom.,School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom.,School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom.,Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| |
Collapse
|
18
|
Kefala A, Amprazi M, Mylonas E, Kotsifaki D, Providaki M, Pozidis C, Fotiadou M, Kokkinidis M. Probing Protein Folding with Sequence-Reversed α-Helical Bundles. Int J Mol Sci 2021; 22:ijms22041955. [PMID: 33669383 PMCID: PMC7920257 DOI: 10.3390/ijms22041955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 12/22/2022] Open
Abstract
Recurrent protein folding motifs include various types of helical bundles formed by α-helices that supercoil around each other. While specific patterns of amino acid residues (heptad repeats) characterize the highly versatile folding motif of four-α-helical bundles, the significance of the polypeptide chain directionality is not sufficiently understood, although it determines sequence patterns, helical dipoles, and other parameters for the folding and oligomerization processes of bundles. To investigate directionality aspects in sequence-structure relationships, we reversed the amino acid sequences of two well-characterized, highly regular four-α-helical bundle proteins and studied the folding, oligomerization, and structural properties of the retro-proteins, using Circular Dichroism Spectroscopy (CD), Size Exclusion Chromatography combined with Multi-Angle Laser Light Scattering (SEC-MALS), and Small Angle X-ray Scattering (SAXS). The comparison of the parent proteins with their retro-counterparts reveals that while the α-helical character of the parents is affected to varying degrees by sequence reversal, the folding states, oligomerization propensities, structural stabilities, and shapes of the new molecules strongly depend on the characteristics of the heptad repeat patterns. The highest similarities between parent and retro-proteins are associated with the presence of uninterrupted heptad patterns in helical bundles sequences.
Collapse
Affiliation(s)
- Aikaterini Kefala
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas (IMBB-FORTH), 70013 Heraklion, Greece; (A.K.); (M.A.); (E.M.); (D.K.); (M.P.); (C.P.)
- Department of Biology, University of Crete, 70013 Heraklion, Greece;
| | - Maria Amprazi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas (IMBB-FORTH), 70013 Heraklion, Greece; (A.K.); (M.A.); (E.M.); (D.K.); (M.P.); (C.P.)
- Department of Biology, University of Crete, 70013 Heraklion, Greece;
| | - Efstratios Mylonas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas (IMBB-FORTH), 70013 Heraklion, Greece; (A.K.); (M.A.); (E.M.); (D.K.); (M.P.); (C.P.)
| | - Dina Kotsifaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas (IMBB-FORTH), 70013 Heraklion, Greece; (A.K.); (M.A.); (E.M.); (D.K.); (M.P.); (C.P.)
| | - Mary Providaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas (IMBB-FORTH), 70013 Heraklion, Greece; (A.K.); (M.A.); (E.M.); (D.K.); (M.P.); (C.P.)
| | - Charalambos Pozidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas (IMBB-FORTH), 70013 Heraklion, Greece; (A.K.); (M.A.); (E.M.); (D.K.); (M.P.); (C.P.)
| | - Melina Fotiadou
- Department of Biology, University of Crete, 70013 Heraklion, Greece;
| | - Michael Kokkinidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas (IMBB-FORTH), 70013 Heraklion, Greece; (A.K.); (M.A.); (E.M.); (D.K.); (M.P.); (C.P.)
- Department of Biology, University of Crete, 70013 Heraklion, Greece;
- Correspondence: ; Tel.: +30-2810-394350
| |
Collapse
|
19
|
Novel insights in linking solvent relaxation dynamics and protein conformations utilizing red edge excitation shift approach. Emerg Top Life Sci 2021; 5:89-101. [PMID: 33416893 DOI: 10.1042/etls20200256] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/01/2023]
Abstract
Protein hydration dynamics plays an important role in many physiological processes since protein fluctuations, slow solvation, and the dynamics of hydrating water are all intrinsically related. Red edge excitation shift (REES) is a unique and powerful wavelength-selective (i.e. excitation-energy dependent) fluorescence approach that can be used to directly monitor the environment-induced restriction and dynamics around a polar fluorophore in a complex biological system. This review is mainly focused on recent applications of REES and a novel analysis of REES data to monitor the structural dynamics, functionally relevant conformational transitions and to unmask the structural ensembles in proteins. In addition, the novel utility of REES in imaging protein aggregates in a cellular context is discussed. We believe that the enormous potential of REES approach showcased in this review will engage more researchers, particularly from life sciences.
Collapse
|
20
|
Downhill, Ultrafast and Fast Folding Proteins Revised. Int J Mol Sci 2020; 21:ijms21207632. [PMID: 33076540 PMCID: PMC7589632 DOI: 10.3390/ijms21207632] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
Research on the protein folding problem differentiates the protein folding process with respect to the duration of this process. The current structure encoded in sequence dogma seems to be clearly justified, especially in the case of proteins referred to as fast-folding, ultra-fast-folding or downhill. In the present work, an attempt to determine the characteristics of this group of proteins using fuzzy oil drop model is undertaken. According to the fuzzy oil drop model, a protein is a specific micelle composed of bi-polar molecules such as amino acids. Protein folding is regarded as a spherical micelle formation process. The presence of covalent peptide bonds between amino acids eliminates the possibility of free mutual arrangement of neighbors. An example would be the construction of co-micelles composed of more than one type of bipolar molecules. In the case of fast folding proteins, the amino acid sequence represents the optimal bipolarity system to generate a spherical micelle. In order to achieve the native form, it is enough to have an external force field provided by the water environment which directs the folding process towards the generation of a centric hydrophobic core. The influence of the external field can be expressed using the 3D Gaussian function which is a mathematical model of the folding process orientation towards the concentration of hydrophobic residues in the center with polar residues exposed on the surface. The set of proteins under study reveals a hydrophobicity distribution compatible with a 3D Gaussian distribution, taken as representing an idealized micelle-like distribution. The structure of the present hydrophobic core is also discussed in relation to the distribution of hydrophobic residues in a partially unfolded form.
Collapse
|