1
|
Khan ZF, Rathi A, Khan A, Anjum F, Chaudhury A, Taiyab A, Shamsi A, Hassan MI. Exploring PDK3 inhibition in lung cancer through drug repurposing for potential therapeutic interventions. Sci Rep 2024; 14:29672. [PMID: 39613779 DOI: 10.1038/s41598-024-78022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024] Open
Abstract
The pyruvate dehydrogenase kinase-3 (PDK3) plays an important role in the regulation of a variety of cancers, including lung, by inhibiting the pyruvate dehydrogenase complex (PDC), shifting energy production towards glycolysis necessary for cancer metabolism. In this study, we aimed to identify potential PDK3 inhibitors using a computer-based drug design approach. Virtual screening of the FDA-approved library of 3839 compounds was carried out, from which Bagrosin and Dehydrocholic acid appeared best due to their strong binding affinity, specific interactions, and potential biological characteristics, and thus were selected for further investigations. Both compounds show strong interactions with functionally important residues of the PDK3 with a binding affinity of - 10.6 and - 10.5 kcal/mol for Bagrosin and Dehydrocholic acid, respectively. MD simulation studies for 100 ns suggest the formation of stable complexes, which is evident from RMSD, RMSF, Rg, and SASA parameters. The PCA and FEL analysis suggested admirable global energy minima for the bagrosin-PDK3 and dehydrocholic acid-PDK3 complexes. Finally, we identified FDA-approved drugs, Bagrosin and Dehydrocholic acid, that offer valuable resources and potential therapeutic molecules for targeting lung cancer. Further clinical investigations are required to validate the clinical utility of selected molecules.
Collapse
Affiliation(s)
- Zeba Firdos Khan
- Department of Biosciences, Faculty of Life Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Aanchal Rathi
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Afreen Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, 21944, Taif, Saudi Arabia
| | - Arunabh Chaudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
2
|
Ashraf A, Choudhary A, Khan MA, Noor S, Hussain A, Alajmi MF, Hassan MI. Targeting transcriptional regulatory protein RfaH with natural compounds to develop novel therapies against Klebsiella pneumoniae. J Biomol Struct Dyn 2024:1-13. [PMID: 39541179 DOI: 10.1080/07391102.2024.2427376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/03/2024] [Indexed: 11/16/2024]
Abstract
The growing threat of antibiotic-resistant K. pneumoniae infections demands novel treatment strategies. This study focuses on the transcriptional regulatory protein RfaH, a protein crucial for the bacteria's virulence by promoting gene expression for its capsule, cell wall, and pilus. As K. pneumoniae becomes resistant to existing antibiotics, targeting RfaH with specific inhibitors offers a promising alternative. The diverse benefits of natural compounds, including efficacy against microbial diseases, modulation of inflammatory processes, and potential in cancer therapy, have led to their increasing use in medicine. Through natural compound screening, we aimed to identify potential RfaH inhibitors and understand their interactions with the active site pocket of RfaH. Disrupting interactions of specific residues in RfaH by ligand binding could offer a means to interfere with its function selectively. We found that Naringenin and Quercetin have a strong binding affinity for RfaH β'CH binding pocket and form stable complexes, as evident from the MD simulation studies. The binding affinity of Naringenin and Quercetin was further validated experimentally by fluorescence measurements. This knowledge can be used to design potent and selective RfaH inhibitors for a new therapeutic approach to combat K. pneumoniae infections and address the urgent need for effective treatments.
Collapse
Affiliation(s)
- Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Arunabh Choudhary
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Ali Khan
- Department of Biochemistry, School of Chemical and Life Sciences, New Delhi, India
| | - Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
3
|
Ruisch IH, Widomska J, De Witte W, Mota NR, Fanelli G, Van Gils V, Jansen WJ, Vos SJB, Fóthi A, Barta C, Berkel S, Alam KA, Martinez A, Haavik J, O'Leary A, Slattery D, Sullivan M, Glennon J, Buitelaar JK, Bralten J, Franke B, Poelmans G. Molecular landscape of the overlap between Alzheimer's disease and somatic insulin-related diseases. Alzheimers Res Ther 2024; 16:239. [PMID: 39465382 PMCID: PMC11514822 DOI: 10.1186/s13195-024-01609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial disease with both genetic and environmental factors contributing to its etiology. Previous evidence has implicated disturbed insulin signaling as a key mechanism that plays a role in both neurodegenerative diseases such as AD and comorbid somatic diseases such as diabetes mellitus type 2 (DM2). In this study, we analysed available genome-wide association studies (GWASs) of AD and somatic insulin-related diseases and conditions (SID), i.e., DM2, metabolic syndrome and obesity, to identify genes associated with both AD and SID that could increase our insights into their molecular underpinnings. We then performed functional enrichment analyses of these genes. Subsequently, using (additional) GWAS data, we conducted shared genetic etiology analyses between AD and SID, on the one hand, and blood and cerebrospinal fluid (CSF) metabolite levels on the other hand. Further, integrating all these analysis results with elaborate literature searches, we built a molecular landscape of the overlap between AD and SID. From the landscape, multiple functional themes emerged, including insulin signaling, estrogen signaling, synaptic transmission, lipid metabolism and tau signaling. We also found shared genetic etiologies between AD/SID and the blood/CSF levels of multiple metabolites, pointing towards "energy metabolism" as a key metabolic pathway that is affected in both AD and SID. Lastly, the landscape provided leads for putative novel drug targets for AD (including MARK4, TMEM219, FKBP5, NDUFS3 and IL34) that could be further developed into new AD treatments.
Collapse
Affiliation(s)
- I Hyun Ruisch
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joanna Widomska
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ward De Witte
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nina R Mota
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Giuseppe Fanelli
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Veerle Van Gils
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Willemijn J Jansen
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Stephanie J B Vos
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Abel Fóthi
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Csaba Barta
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Simone Berkel
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Kazi A Alam
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Aet O'Leary
- Department of Psychiatry, University Hospital, Frankfurt, Germany
| | - David Slattery
- Department of Psychiatry, Psychosomatics and Psychotherapy, Goethe-Universität, Frankfurt, Germany
| | - Mairéad Sullivan
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jeffrey Glennon
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Geert Poelmans
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Ansari MM, Sahu SK, Singh TG, Singh SRJ, Kaur P. Evolving significance of kinase inhibitors in the management of Alzheimer's disease. Eur J Pharmacol 2024; 979:176816. [PMID: 39038637 DOI: 10.1016/j.ejphar.2024.176816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Alzheimer's disease is a neurodegenerative problem with progressive loss of memory and other cognitive function disorders resulting in the imbalance of neurotransmitter activity and signaling progression, which poses the need of the potential therapeutic target to improve the intracellular signaling cascade brought by kinases. Protein kinase plays a significant and multifaceted role in the treatment of Alzheimer's disease, by targeting pathological mechanisms like tau hyperphosphorylation, neuroinflammation, amyloid-beta production and synaptic dysfunction. In this review, we thoroughly explore the essential protein kinases involved in Alzheimer's disease, detailing their physiological roles, regulatory impacts, and the newest inhibitors and compounds that are progressing into clinical trials. All the findings of studies exhibited the promising role of kinase inhibitors in the management of Alzheimer's disease. However, it still poses the need of addressing current challenges and opportunities involved with this disorder for the future perspective of kinase inhibitors in the management of Alzheimer's disease. Further study includes the development of biomarkers, combination therapy, and next-generation kinase inhibitors with increased potency and selectivity for its future prospects.
Collapse
Affiliation(s)
- Md Mustafiz Ansari
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | | | - Sovia R J Singh
- University Language Centre- Chitkara Business School, Chitkara University, Punjab, India
| | - Paranjeet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
5
|
Shamsi A, Shahwan M, Furkan M, Yadav DK, Khan RH. Computational and spectroscopic insight into the binding of citral with human transferrin: Targeting neurodegenerative diseases. Heliyon 2024; 10:e32755. [PMID: 39027624 PMCID: PMC467046 DOI: 10.1016/j.heliyon.2024.e32755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
The involvement of neuroinflammation in the pathogenesis of neurodegenerative disorders (NDs) is very significant. Currently, only symptomatic treatments exist, and there are no drugs that modify the progression of Alzheimer's disease (AD) or other NDs. Consequently, there is increasing attention on addressing AD-related neuroinflammation using anti-inflammatory compounds and antioxidants. Currently, there is a growing exploration of dietary phytochemicals as potential therapeutic agents for treating inflammation. Citral, a monoterpene, is under increasing investigation due to its neuroprotective effects. The dysregulation of iron homeostasis is a crucial factor in supporting neuroinflammation, underscoring the significance of proper iron balance. Human transferrin (htf) is a major player involved in iron homeostasis. In this study, we examined binding and dynamics of htf-citral complex through diverse experimental methods. Molecular docking studies revealed that citral binds to crucial residues of htf, forming a stable complex. UV-visible spectroscopy demonstrated binding of citral with htf with good affinity, evident from binding constant of 1.48 × 105 M-1. Further, fluorescence spectroscopy entrenched a stable htf-citral complex formation; citral demonstrates an excellent binding affinity to htf with a binding constant of 106 M-1. Moreover, fluorescence binding assay at various temperatures deciphered htf-citral complex to be driven by both static and dynamic quenching. The analysis of enthalpy change (ΔH) and entropy change (ΔS) demonstrated that htf-citral complex formation was driven mainly by hydrophobic interactions.The current work gives a platform to develop innovative therapeutic strategies targeting neuroinflammation through citral, particularly iron homeostasis.
Collapse
Affiliation(s)
- Anas Shamsi
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates
| | - Moyad Shahwan
- College of Pharmacy and Health Sciences, Ajman University, United Arab Emirates
| | - Mohammad Furkan
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| | - Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
6
|
Anwar S, Khan S, Hussain A, Alajmi MF, Shamsi A, Hassan MI. Investigating Pyruvate Dehydrogenase Kinase 3 Inhibitory Potential of Myricetin Using Integrated Computational and Spectroscopic Approaches. ACS OMEGA 2024; 9:29633-29643. [PMID: 39005765 PMCID: PMC11238318 DOI: 10.1021/acsomega.4c03001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/13/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024]
Abstract
Protein kinases are involved in various diseases and currently represent potential targets for drug discovery. These kinases play major roles in regulating the cellular machinery and control growth, homeostasis, and cell signaling. Dysregulation of kinase expression is associated with various disorders such as cancer and neurodegeneration. Pyruvate dehydrogenase kinase 3 (PDK3) is implicated in cancer therapeutics as a potential drug target. In this current study, a molecular docking exhibited a strong binding affinity of myricetin to PDK3. Further, a 100 ns all-atom molecular dynamics (MD) simulation study provided insights into the structural dynamics and stability of the PDK3-myricetin complex, revealing the formation of a stable complex with minimal structural alterations upon ligand binding. Additionally, the actual affinity was ascertained by fluorescence binding studies, and myricetin showed appreciable binding affinity to PDK3. Further, the kinase inhibition assay suggested significant inhibition of PDK3 by myricetin, revealing an excellent inhibitory potential with an IC50 value of 3.3 μM. In conclusion, this study establishes myricetin as a potent PDK3 inhibitor that can be implicated in therapeutic targeting cancer and PDK3-associated diseases. In addition, this study underscores the efficacy of myricetin as a potential lead to drug discovery and provides valuable insights into the inhibition mechanism, enabling advancements in cancer therapeutics.
Collapse
Affiliation(s)
- Saleha Anwar
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shama Khan
- South
African Medical Research Council, Vaccines and Infectious Diseases
Analytics Research Unit, Faculty of Health Science, School of Pathology, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Afzal Hussain
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh, 4545, Saudi Arabia
| | - Mohamed F. Alajmi
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh, 4545, Saudi Arabia
| | - Anas Shamsi
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 364, United Arab
Emirates
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
7
|
Bhakta A, Mukhtar S, Anwar S, Haider S, Alahmdi MI, Parveen H, Alsharif MA, Wani MY, Chakrabarty A, Hassan MI, Ahmed N. Design, synthesis, molecular docking and anti-proliferative activity of novel phenothiazine containing imidazo[1,2- a]pyridine derivatives against MARK4 protein. RSC Med Chem 2024; 15:1942-1958. [PMID: 38911173 PMCID: PMC11187548 DOI: 10.1039/d4md00059e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/10/2024] [Indexed: 06/25/2024] Open
Abstract
A series of novel phenothiazine-containing imidazo[1,2-a]pyridine derivatives were designed and synthesized under metal-free conditions in excellent yield. These derivatives were effectively transformed further into N-alkyl, sulfoxide, and sulfone derivatives. Derivatives were deployed against human microtubule affinity regulating kinase (MARK4), some molecules play crucial roles in cell-cycle progression such as G1/S transition and regulator of microtubule dynamics. Hence, molecules have shown excellent MARK4 inhibitory potential. Molecules with excellent IC50 values were selected for further studies such as ligand interactions using fluorescence quenching experiments for the binding constant. The highest binding constant was calculated as K = 0.79 × 105 and K = 0.1 × 107 for compounds 6a and 6h, respectively. Molecular docking, cell cytotoxicity, mitochondrial reactive oxygen species measurement and oxidative DNA damage were also studied to understand the mechanism of action of the molecules on cancer cells. It was found that the designed and synthesized compounds played anti-cancer roles by binding and inhibiting MARK4 protein.
Collapse
Affiliation(s)
- Avijit Bhakta
- Department of Chemistry, Indian Institute of Technology Roorkee Roorkee-247 667 U.K. India
| | - Sayeed Mukhtar
- Department of Chemistry, Faculty of Science, University of Tabuk Tabuk 71491 Saudi Arabia
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia New Delhi India
| | - Shaista Haider
- Department of Life Sciences, Shiv Nadar University Uttar Pradesh 201314 India
| | - Mohammed Issa Alahmdi
- Department of Chemistry, Faculty of Science, University of Tabuk Tabuk 71491 Saudi Arabia
| | - Humaira Parveen
- Department of Chemistry, Faculty of Science, University of Tabuk Tabuk 71491 Saudi Arabia
| | - Meshari A Alsharif
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University Makkah Saudi
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah 21589 Jeddah Saudi Arabia
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia New Delhi India
| | - Naseem Ahmed
- Department of Chemistry, Indian Institute of Technology Roorkee Roorkee-247 667 U.K. India
| |
Collapse
|
8
|
Neha, Anwar S, Pinky, Hassan MI, Parvez S. Ropinirole reverses the effects of neuroinflammation, and cellular demise by downregulating the MARK4-NFκβ signaling system in Alzheimer's disease. Int J Biol Macromol 2024; 271:132425. [PMID: 38759860 DOI: 10.1016/j.ijbiomac.2024.132425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Ropinirole (ROP) is a dopamine agonist that can cross the blood-brain barrier (BBB), which is crucial for drugs targeting neurological conditions like Alzheimer's disease (AD). The rationale for the current research is to investigate the potential of ROP as an inhibitor of Microtubule affinity regulating kinase 4 (MARK4)-NFκβ in neurodegenerative diseases, specifically AD. The interaction between ROP and MARK4-NFκβ holds significant promise in the realm of drug discovery and therapeutic interventions for diseases like AD. Molecular docking and biophysical characterization demonstrate how ROP effectively hinders MARK4 activity, offering detailed insights into their molecular interactions. The present research also investigates the biological aspect of MARK4 shows promise in treating AD, with neuroinflammation playing a crucial role in the disease's progression. Aβ42 and ROP were co-administered directly into the cells for the establishment of the AD model. We confirmed that ROP can inhibit the path of MARK4 activity, as evidenced by biophysical characterization, and can enhance the cell viability, lowers the expression of MARK4, decrease the rate of oxidative stress, and attenuate the expression of NFκβ, leading to reduced neuronal apoptosis in an in vitro-induced Aβ model. Overall, this research provides valuable mechanistic insights into the neuroprotective potential of ROP and its ability to target the MARK4-NFκβ pathway.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Saleha Anwar
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Pinky
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
9
|
Alrouji M, Yasmin S, Alhumaydhi FA, Sharaf SE, Shahwan M, Furkan M, Khan RH, Shamsi A. Comprehensive spectroscopic and computational insight into the binding of vanillin with human transferrin: targeting neuroinflammation in Alzheimer's disease therapeutics. Front Pharmacol 2024; 15:1397332. [PMID: 38799161 PMCID: PMC11116798 DOI: 10.3389/fphar.2024.1397332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
In present times, vanillin stands out as a promising therapeutic molecule that can be implicated in the treatment of neurodegenerative disorders (NDs), notably Alzheimer's disease (AD). This can be attributed to the highly potent scavenging activity of vanillin against reactive oxygen species (ROS). Oxidative stress leads to generation of ROS that serves a critical role in AD's pathological progression. It is apparent from various studies that diets rich in polyphenols prevent oxidative stress associated with AD development, implying the crucial role of vanillin in AD therapeutics. It is crucial to maintain iron balance to manage AD associated oxidative stress, unveiling the significance of human transferrin (hTf) that maintains iron homeostasis. Here, we have performed an integrated study of spectroscopic and computational approaches to get insight into the binding mechanism of vanillin with hTf. In the preliminary study, molecular docking deciphered that vanillin primarily occupies the hTf binding pocket, forming multiple interactions with its key residues. Moreover, the binding mechanism was evaluated at an atomistic level employing comprehensive molecular dynamic (MD) simulation. MD analysis demonstrated that binding of vanillin to hTf stabilizes its structure, without inducing any significant alterations in its native conformation. The docked complex was maintained throughout the simulations without changing its original conformation. Essential dynamics analysis further confirms that hTf achieved a stable conformation with vanillin. The outcomes were further supplemented by fluorescence spectroscopy which confirms the formation of stable hTf-vanillin complex. Taken together, the current study unveils the interaction mechanism of vanillin with hTf and providing a platform to use vanillin in AD therapeutics in the context of iron homeostasis.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Sharaf E. Sharaf
- Pharmaceutical Sciences Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| | - Mohammad Furkan
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
10
|
Alotaibi BS, Hakami MA, Anwar S, Mawkili W, Albaqami A, Hassan MI. Structure-based investigation of pyruvate dehydrogenase kinase-3 inhibitory potential of thymoquinone, targeting lung cancer therapy. Int J Biol Macromol 2024; 265:131064. [PMID: 38518935 DOI: 10.1016/j.ijbiomac.2024.131064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 03/24/2024]
Abstract
Protein kinases are an attractive therapeutic target for cardiovascular, cancer and neurodegenerative diseases. Cancer cells demand energy generation through aerobic glycolysis, surpassing "oxidative phosphorylation" (OXPHOS) in mitochondria. The pyruvate dehydrogenase kinases (PDKs) have many regulatory roles in energy generation balance by controlling the pyruvate dehydrogenase complex. Overexpression of PDKs is associated with the overall survival of cancer. PDK3, an isoform of PDK is highly expressed in various cancer types, is targeted for inhibition in this study. PDK3 has been shown to binds strongly with a natural compound, thymoquinone (TQ), which is known to exhibit anti-cancer potential. Detailed interaction between the PDK3 and TQ was carried out using spectroscopic and docking methods. The overall changes in the protein's structures after TQ binding were estimated by UV-Vis spectroscopy, circular dichroism and fluorescence binding studies. The kinase activity assay was also carried out to see the kinase inhibitory potential of TQ. The enzyme inhibition assay suggested an excellent inhibitory potential of TQ towards PDK3 (IC50 = 5.49 μM). We observed that TQ forms a stable complex with PDK3 without altering its structure and can be a potent PDK3 inhibitor which may be implicated in cancer therapy after desired clinical validation.
Collapse
Affiliation(s)
- Bader S Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Wedad Mawkili
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Amirah Albaqami
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif 21944, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
11
|
Bashir S, Aiman A, Shahid M, Chaudhary AA, Sami N, Basir SF, Hassan I, Islam A. Amyloid-induced neurodegeneration: A comprehensive review through aggregomics perception of proteins in health and pathology. Ageing Res Rev 2024; 96:102276. [PMID: 38499161 DOI: 10.1016/j.arr.2024.102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Amyloidosis of protein caused by fibrillation and aggregation are some of the most exciting new edges not only in protein sciences but also in molecular medicines. The present review discusses recent advancements in the field of neurodegenerative diseases and therapeutic applications with ongoing clinical trials, featuring new areas of protein misfolding resulting in aggregation. The endogenous accretion of protein fibrils having fibrillar morphology symbolizes the beginning of neuro-disorders. Prognostic amyloidosis is prominent in numerous degenerative infections such as Alzheimer's and Parkinson's disease, Amyotrophic lateral sclerosis (ALS), etc. However, the molecular basis determining the intracellular or extracellular evidence of aggregates, playing a significant role as a causative factor in neurodegeneration is still unclear. Structural conversions and protein self-assembly resulting in the formation of amyloid oligomers and fibrils are important events in the pathophysiology of the disease. This comprehensive review sheds light on the evolving landscape of potential treatment modalities, highlighting the ongoing clinical trials and the potential socio-economic impact of novel therapeutic interventions in the realm of neurodegenerative diseases. Furthermore, many drugs are undergoing different levels of clinical trials that would certainly help in treating these disorders and will surely improve the socio-impact of human life.
Collapse
Affiliation(s)
- Sania Bashir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Ayesha Aiman
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia.
| | - Neha Sami
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Seemi Farhat Basir
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
12
|
Alrouji M, Alhumaydhi FA, Venkatesan K, Sharaf SE, Shahwan M, Shamsi A. Evaluation of binding mechanism of dietary phytochemical, capsaicin, with human transferrin: targeting neurodegenerative diseases therapeutics. Front Pharmacol 2024; 15:1348128. [PMID: 38495092 PMCID: PMC10943693 DOI: 10.3389/fphar.2024.1348128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/16/2024] [Indexed: 03/19/2024] Open
Abstract
Human transferrin (htf) plays a crucial role in regulating the balance of iron within brain cells; any disruption directly contributes to the development of Neurodegenerative Diseases (NDs) and other related pathologies, especially Alzheimer's Disease (AD). In recent times, a transition towards natural compounds is evident to treat diseases and this shift is mainly attributed to their broad therapeutic potential along with minimal side effects. Capsaicin, a natural compound abundantly found in red and chili peppers, possess neuroprotective potential. The current work targets to decipher the interaction mechanism of capsaicin with htf using experimental and computational approaches. Molecular docking analysis revealed that capsaicin occupies the iron binding pocket of htf, with good binding affinity. Further, the binding mechanism was investigated atomistically using Molecular dynamic (MD) simulation approach. The results revealed no significant alterations in the structure of htf implying the stability of the complex. In silico observations were validated by fluorescence binding assay. Capsaicin binds to htf with a binding constant (K) of 3.99 × 106 M-1, implying the stability of the htf-capsaicin complex. This study lays a platform for potential applications of capsaicin in treatment of NDs in terms of iron homeostasis.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Kumar Venkatesan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Sharaf E. Sharaf
- Pharmaceutical Sciences Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Anas Shamsi
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
13
|
Hakami MA, Alotaibi BS, Alkhalil SS, Anwar S, Jairajpuri DS, Hazazi A, Alsulami MO, Jawaid T, Yadav DK, Almasoudi HH. Exploring the promising potential of noscapine for cancer and neurodegenerative disease therapy through inhibition of integrin-linked kinase-1. Int J Biol Macromol 2024; 262:130146. [PMID: 38365140 DOI: 10.1016/j.ijbiomac.2024.130146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/03/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Integrin-linked kinase (ILK), a β1-integrin cytoplasmic domain interacting protein, supports multi-protein complex formation. ILK-1 is involved in neurodegenerative diseases by promoting neuro-inflammation. On the other hand, its overexpression induces epithelial-mesenchymal transition (EMT), which is a major hallmark of cancer and activates various factors associated with a tumorigenic phenotype. Thus, ILK-1 is considered as an attractive therapeutic target. We investigated the binding affinity and ILK-1 inhibitory potential of noscapine (NP) using spectroscopic and docking approaches followed by enzyme inhibition activity. A strong binding affinity of NP was measured for the ILK-1 with estimated Ksv (M-1) values of 1.9 × 105, 3.6 × 105, and 4.0 × 105 and ∆G0 values (kcal/mol) -6.19554, -7.8557 and -8.51976 at 298 K, 303 K, and 305 K, respectively. NP binds to ILK-1 with a docking score of -6.6 kcal/mol and forms strong interactions with active-site pocket residues (Lys220, Arg323, and Asp339). The binding constant for the interaction of NP to ILK-1 was 1.04 × 105 M-1, suggesting strong affinity and excellent ILK-1 inhibitory potential (IC50 of ∼5.23μM). Conformational dynamics of ILK-1 were also studied in the presence of NP. We propose that NP presumably inhibits ILK-1-mediated phosphorylation of various downstream signalling pathways that are involved in cancer cell survival and neuroinflammation.
Collapse
Affiliation(s)
- Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| | - Bader S Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| | - Samia S Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Deeba Shamim Jairajpuri
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mishal Olayan Alsulami
- Cytogenetics and Molecular Genetics, Central Military Laboratory and Blood Bank, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, Republic of Korea.
| | - Hassan H Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia.
| |
Collapse
|
14
|
Lv X, Li W, Zhang M, Wang R, Chang J. Investigation of steric hindrance effect on the interactions between four alkaloids and HSA by isothermal titration calorimetry and molecular docking. J Mol Recognit 2024; 37:e3075. [PMID: 38191989 DOI: 10.1002/jmr.3075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/24/2023] [Accepted: 12/24/2023] [Indexed: 01/10/2024]
Abstract
The binding of four alkaloids with human serum albumin (HSA) was investigated by isothermal titration calorimetry (ITC), spectroscopy and molecular docking techniques. The findings demonstrated that theophylline or caffeine can bind to HAS, respectively. The number of binding sites and binding constants are obtained. The binding mode is a static quenching process. The effects of steric hindrance, temperature, salt concentration and buffer solution on the binding indicated that theophylline and HSA have higher binding affinity than caffeine. The fluorescence and ITC results showed that the interaction between HSA and theophylline or caffeine is an entropy-driven spontaneous exothermic process. The hydrophobic force was the primary driving factor. The experimental results were consistent with the molecular docking data. Based on the molecular structures of the four alkaloids, steric hindrance might be a major factor in the binding between HSA and these four alkaloids. This study elucidates the mechanism of interactions between four alkaloids and HSA.
Collapse
Affiliation(s)
- Xinluan Lv
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, China
- Pingyuan Laboratory (Zhengzhou University), Zhengzho, China
| | - Wenjin Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, China
- Pingyuan Laboratory (Zhengzhou University), Zhengzho, China
| | - Miao Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, China
- Pingyuan Laboratory (Zhengzhou University), Zhengzho, China
| | - Ruiyong Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, China
- Pingyuan Laboratory (Zhengzhou University), Zhengzho, China
| | - Junbiao Chang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, China
- Pingyuan Laboratory (Zhengzhou University), Zhengzho, China
| |
Collapse
|
15
|
Jairajpuri DS, Khan S, Anwar S, Hussain A, Alajmi MF, Hassan I. Investigating the role of thymol as a promising inhibitor of pyruvate dehydrogenase kinase 3 for targeted cancer therapy. Int J Biol Macromol 2024; 259:129314. [PMID: 38211912 DOI: 10.1016/j.ijbiomac.2024.129314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/17/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Protein kinases have emerged as major contributors to various diseases. They are currently exploited as a potential target in drug discovery because they play crucial roles in cell signaling, growth, and regulation. Their dysregulation is associated with inflammatory disorders, cancer, and neurodegenerative diseases. Pyruvate dehydrogenase kinase 3 (PDK3) has become an attractive drug target in cancer therapeutics. In the present study, we investigated the effective role of thymol in PDK3 inhibition due to the high affinity predicted through molecular docking studies. Hence, to better understand this inhibition mechanism, we carried out a 100 ns molecular dynamics (MD) simulation to analyse the dynamics and stability of the PDK3-thymol complex. The PDK3-thymol complex was stable and energetically favourable, with many intramolecular hydrogen bond interactions in the PDK3-thymol complex. Enzyme inhibition assay showed significant inhibition of PDK3 by thymol, revealing potential inhibitory action of thymol towards PDK3 (IC50 = 2.66 μM). In summary, we established thymol as one of the potential inhibitors of PDK3, proposing promising therapeutic implications for severe diseases associated with PDK3 dysregulation. This study further advances our understanding of thymol's therapeutic capabilities and potential role in cancer treatment.
Collapse
Affiliation(s)
- Deeba Shamim Jairajpuri
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Shama Khan
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Science, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
16
|
Noor S, Choudhury A, Raza A, Ashraf A, Islam KU, Hussain A, Imtiyaz K, Islam A, Hassan MI. Probing Baicalin as potential inhibitor of Aurora kinase B: A step towards lung cancer therapy. Int J Biol Macromol 2024; 258:128813. [PMID: 38123032 DOI: 10.1016/j.ijbiomac.2023.128813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Cell cycle regulators play pivotal roles as their dysregulation, leads to atypical proliferation and intrinsic genomic instability in cancer cells. Abnormal expression and functioning of Aurora kinase B (AURKB) are associated with cancer pathogenesis and thus exploited as a potential therapeutic target for the development of anti-cancer therapeutics. To identify effective AURKB inhibitors, a series of polyphenols was investigated to check their potential to inhibit recombinant AURKB. Their binding affinities were experimentally validated through fluorescence binding studies. Enzyme inhibition assay revealed that Mangiferin and Baicalin significantly inhibited AURKB activity with an IC50 values of 20.0 μM and 31.1 μM, respectively. To get atomistic insights into the binding mechanism, molecular docking and MD simulations of 100 ns were performed. Both compounds formed many non-covalent interactions with the residues of the active site pocket of AURKB. In addition, minimal conformational changes in the structure and formation of stable AURKB-ligand complex were observed during MD simulation analysis. Finally, cell-based studies suggested that Baicalin exhibited in-vitro cytotoxicity and anti-proliferative effects on lung cancer cell lines. Conclusively, Baicalin may be considered a promising therapeutic molecule against AURKB, adding an additional novel lead to the anti-cancer repertoire.
Collapse
Affiliation(s)
- Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ali Raza
- Department of Medical Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Khursheed Ul Islam
- Multidisciplinary Centre for Advance Research and Studies, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khadija Imtiyaz
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
17
|
Phopin K, Ruankham W, Prachayasittikul S, Prachayasittikul V, Tantimongcolwat T. Revealing the mechanistic interactions of profenofos and captan pesticides with serum protein via biophysical and computational investigations. Sci Rep 2024; 14:1788. [PMID: 38245578 PMCID: PMC10799918 DOI: 10.1038/s41598-024-52169-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024] Open
Abstract
Profenofos (PF) and captan (CT) are among the most utilized organophosphorus insecticides and phthalimide fungicides, respectively. To elucidate the physicochemical and influential toxicokinetic factors, the mechanistic interactions of serum albumin and either PF or CT were carried out in the current study using a series of spectroscopy and computational analyses. Both PF and CT could bind to bovine serum albumin (BSA), a representative serum protein, with moderate binding constants in a range of 103-104 M-1. The bindings of PF and CT did not induce noticeable BSA's structural changes. Both pesticides bound preferentially to the site I pocket of BSA, where the hydrophobic interaction was the main binding mode of PF, and the electrostatic interaction drove the binding of CT. As a result, PF and CT may not only induce direct toxicity by themselves, but also compete with therapeutic drugs and essential substances to sit in the Sudlow site I of serum albumin, which may interfere with the pharmacokinetics and equilibrium of drugs and other substances causing consequent adverse effects.
Collapse
Affiliation(s)
- Kamonrat Phopin
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Waralee Ruankham
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Supaluk Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Tanawut Tantimongcolwat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
18
|
Alrouji M, Yasmin S, Furkan M, Alhumaydhi FA, Sharaf SE, Khan RH, Shamsi A. Unveiling the Molecular Interactions Between Human Transferrin and Limonene: Natural Compounds in Alzheimer's Disease Therapeutics. J Alzheimers Dis 2024; 99:333-343. [PMID: 38701154 DOI: 10.3233/jad-240072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Background Neurodegeneration is a term describing an irreversible process of neuronal damage. In recent decades, research efforts have been directed towards deepening our knowledge of numerous neurodegenerative disorders, with a particular focus on conditions such as Alzheimer's disease (AD). Human transferrin (htf) is a key player in maintaining iron homeostasis within brain cells. Any disturbance in this equilibrium gives rise to the emergence of neurodegenerative diseases and associated pathologies, particularly AD. Limonene, a natural compound found in citrus fruits and various plants, has shown potential neuroprotective properties. Objective In this study, our goal was to unravel the binding of limonene with htf, with the intention of comprehending the interaction mechanism of limonene with htf. Methods Binding was scrutinized using fluorescence quenching and UV-Vis spectroscopic analyses. The binding mechanism of limonene was further investigated at the atomic level through molecular docking and extensive 200 ns molecular dynamic simulation (MD) studies. Results Molecular docking uncovered that limonene interacted extensively with the deep cavity located within the htf binding pocket. MD results indicated that binding of limonene to htf did not induce substantial structural alterations, ultimately forming stable complex. The findings from fluorescence binding indicated a pronounced interaction between limonene and htf, limonene binds to htf with a binding constant (K) of 0.1×105 M-1. UV spectroscopy also advocated stable htf-limonene complex formation. Conclusions The study deciphered the binding mechanism of limonene with htf, providing a platform to use limonene in AD therapeutics in context of iron homeostasis.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Furkan
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Sharaf E Sharaf
- Pharmaceutical Sciences Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, United Arab Emirates
| |
Collapse
|
19
|
Shamsi A, Furkan M, Khan RH, Khan MS, Shahwan M, Yadav DK. Comprehensive insight into the molecular interaction of rutin with human transferrin: Implication of natural compounds in neurodegenerative diseases. Int J Biol Macromol 2023; 253:126643. [PMID: 37657585 DOI: 10.1016/j.ijbiomac.2023.126643] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Neurodegeneration, a process of irreversible neuronal damage, is characterized by a damaged neuronal structure and function. The interplay between various proteins maintains homeostasis of essential metals in the brain, shielding neurons from degeneration; human transferrin (Htf) is essential in maintaining iron homeostasis. Any disruption in iron homeostasis results in the development of neurodegenerative diseases (NDs) and their pathology, mainly Alzheimer's disease (AD). Rutin is a known compound for its neuroprotective effects. In this work, we deciphered the binding of rutin with Htf in a bid to understand the interaction mechanism. The results of fluorescence and UV-vis spectroscopy demonstrated strong interaction between rutin and Htf. The enthalpy change (∆H°) and entropy change (∆S°) analysis demonstrated hydrophobic interactions as the prevalent forces. The binding mechanism of rutin was further assessed atomistically by molecular docking and extensive 200 ns molecular dynamic simulation (MD) studies; molecular docking showed binding of rutin within Htf's binding pocket. MD results suggested that binding of rutin to Htf does not cause significant structural switching or disruption of the protein's native packing. Overall, the study deciphers the binding of rutin with hTf, delineating the binding mechanism and providing a platform to use rutin in NDs therapeutics.
Collapse
Affiliation(s)
- Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates.
| | - Mohammad Furkan
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Saudi Arabia.
| | - Moyad Shahwan
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates.
| | - Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
20
|
Ahsan R, Khan MM, Mishra A, Noor G, Ahmad U. Protein Kinases and their Inhibitors Implications in Modulating Disease Progression. Protein J 2023; 42:621-632. [PMID: 37768476 DOI: 10.1007/s10930-023-10159-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Protein phosphorylation plays an important role in cellular pathways, including cell cycle regulation, metabolism, differentiation and survival. The protein kinase superfamily network consists of 518 members involved in intrinsic or extrinsic interaction processes. Protein kinases are divided into two categories based on their ability to phosphorylate tyrosine, serine, and threonine residues. The complexity of the system implies its vulnerability. Any changes in the pathways of protein kinases may be implicated in pathological processes. Therefore, they are regarded as having an important role in human diseases and represent prospective therapeutic targets. This article provides a review of the protein kinase inhibitors approved by the FDA. Finally, we summarize the mechanism of action of protein kinases, including their role in the development and progression of protein kinase-related roles in various pathological conditions and the future therapeutic potential of protein kinase inhibitors, along with links to protein kinase databases. Further clinical studies aimed at examining the sequence of protein kinase inhibitor availability would better utilize current protein kinase inhibitors in diseases. Additionally, this review may help researchers and biochemists find new potent and selective protein kinase inhibitors and provide more indications for using existing drugs.
Collapse
Affiliation(s)
- Rabiya Ahsan
- Department of pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohd Muazzam Khan
- Department of pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India.
| | - Anuradha Mishra
- Department of pharmacology, Amity Institute of Pharmacy, Amity University, sector 125, Noida, Uttar Pradesh, 201313, India
| | - Gazala Noor
- Department of pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Usama Ahmad
- Department of pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
21
|
Khan MS, Furkan M, Shahwan M, Yadav DK, Anwar S, Khan RH, Shamsi A. Investigating molecular interactions between human transferrin and resveratrol through a unified experimental and computational approach: Role of natural compounds in Alzheimer's disease therapeutics. Amino Acids 2023; 55:1923-1935. [PMID: 37926707 DOI: 10.1007/s00726-023-03355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Disruptions to iron metabolism and iron homeostasis have emerged as significant contributors to the development and progression of Alzheimer's disease (AD). Human transferrin plays a key part in maintaining iron equilibrium throughout the body, highlighting its importance in AD. Many plant-derived compounds and dietary constituents show promise for preventing AD. Polyphenols that are abundant in fruits, vegetables, teas, coffee, and herbs possess neuroprotective attributes. Resveratrol is a natural polyphenol present in various plant sources like grapes, berries, peanuts, and red wine that has garnered research interest due to its wide range of biological activities. Notably, resveratrol exhibits neuroprotective effects that may help prevent or treat AD through multiple mechanisms. In the present study, we employed a combination of molecular docking and all-atom molecular dynamic simulations (MD) along with experimental approaches to unravel the intricate interactions between transferrin and resveratrol deciphering the binding mechanism. Through molecular docking analysis, it was determined that resveratrol occupies the iron binding pocket of transferrin. Furthermore, MD simulations provided a more profound insight into the stability and conformational dynamics of the complex suggesting that the binding of resveratrol introduced localized flexibility, while maintaining overall stability. The spectroscopic observations yielded clear evidence of substantial binding between resveratrol and transferrin, confirming the computational findings. The identified binding mechanism and conformational stability hold potential for advancing the development of innovative therapeutic approaches targeting AD through resveratrol, particularly concerning iron homeostasis. These insights serve as a platform for considering the natural compounds in the realm of AD therapeutics.
Collapse
Affiliation(s)
- Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad Furkan
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
22
|
Atiya A, Alsayari A, Bin Muhsinah A, Almaghaslah D, Bilgrami AL, Abdulmonem WA, Alorfi NM, DasGupta D, Ashraf GM, Shamsi A, Shahwan M. Role of lisinopril in the therapeutic management of cardiovascular disease by targeting microtubule affinity regulating kinase 4: molecular docking and molecular dynamics simulation approaches. J Biomol Struct Dyn 2023; 41:8824-8830. [PMID: 36376029 DOI: 10.1080/07391102.2022.2143425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
Abstract
Cardiovascular diseases (CVDs) are a major cause of premature adult death. Various factors contribute to the development of CVDs, such as atherosclerosis leading to myocardial infarction (MI), and compromised cardiac function after MI leads to chronic heart failure with systemic health complications and a high mortality rate. Microtubule detyrosination has rapidly evolved as an essential mechanism to regulate cardiomyocyte contractility. Microtubule affinity regulating kinase 4 (MARK4) regulates cardiomyocyte contractility in a way that it promotes phosphorylation of microtubule-associated protein 4, thereby facilitating the access of vasohibin 2-a tubulin carboxypeptidase-to microtubules for the detyrosination of α-tubulin. Lisinopril, a drug belonging to the class of angiotensin-converting enzyme inhibitors, is used to treat high blood pressure. This is also used to treat heart failure, which plays a vital role in improving the survival rate post-heart attack. In this study, we will evaluate the MARK4 inhibitory potential of lisinopril employing molecular docking and molecular dynamics (MD) simulation approaches. Molecular docking analysis suggested that lisinopril binds to MARK4 with a significant binding affinity forming interactions with functionally essential residues of MARK4. Additionally, MD simulation deciphered the structural dynamics and stability of the MARK4-lisinopril complex. The findings of MD studies established that minimal structural deviations are observed during simulation, affirming the stability of the MARK4-lisinopril complex. Altogether, this study demonstrates lisinopril's crucial role in the therapeutic management of CVD by targeting MARK4.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Abha, Saudi Arabia
- Complementary and Alternative Medicine Unit, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Abha, Saudi Arabia
- Complementary and Alternative Medicine Unit, King Khalid University (KKU), Abha, Saudi Arabia
| | - Dalia Almaghaslah
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University (KKU), Abha, Saudi Arabia
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Nasser M Alorfi
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Debarati DasGupta
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah, United Arab Emirates
| | - Anas Shamsi
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates
| | - Moyad Shahwan
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates
- College of Pharmacy & Health Sciences, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
23
|
Sadri A. Is Target-Based Drug Discovery Efficient? Discovery and "Off-Target" Mechanisms of All Drugs. J Med Chem 2023; 66:12651-12677. [PMID: 37672650 DOI: 10.1021/acs.jmedchem.2c01737] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Target-based drug discovery is the dominant paradigm of drug discovery; however, a comprehensive evaluation of its real-world efficiency is lacking. Here, a manual systematic review of about 32000 articles and patents dating back to 150 years ago demonstrates its apparent inefficiency. Analyzing the origins of all approved drugs reveals that, despite several decades of dominance, only 9.4% of small-molecule drugs have been discovered through "target-based" assays. Moreover, the therapeutic effects of even this minimal share cannot be solely attributed and reduced to their purported targets, as they depend on numerous off-target mechanisms unconsciously incorporated by phenotypic observations. The data suggest that reductionist target-based drug discovery may be a cause of the productivity crisis in drug discovery. An evidence-based approach to enhance efficiency seems to be prioritizing, in selecting and optimizing molecules, higher-level phenotypic observations that are closer to the sought-after therapeutic effects using tools like artificial intelligence and machine learning.
Collapse
Affiliation(s)
- Arash Sadri
- Lyceum Scientific Charity, Tehran, Iran, 1415893697
- Interdisciplinary Neuroscience Research Program (INRP), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran, 1417755331
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran, 1417614411
| |
Collapse
|
24
|
Adnan M, DasGupta D, Anwar S, Shamsi A, Siddiqui AJ, Snoussi M, Bardakci F, Patel M, Hassan MI. Mechanistic insights into MARK4 inhibition by galantamine toward therapeutic targeting of Alzheimer's disease. Front Pharmacol 2023; 14:1276179. [PMID: 37795023 PMCID: PMC10546050 DOI: 10.3389/fphar.2023.1276179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction: Hyperphosphorylation of tau is an important event in Alzheimer's disease (AD) pathogenesis, leading to the generation of "neurofibrillary tangles," a histopathological hallmark associated with the onset of AD and related tauopathies. Microtubule-affinity regulating kinase 4 (MARK4) is an evolutionarily conserved Ser-Thr (S/T) kinase that phosphorylates tau and microtubule-associated proteins, thus playing a critical role in AD pathology. The uncontrolled neuronal migration is attributed to overexpressed MARK4, leading to disruption in microtubule dynamics. Inhibiting MARK4 is an attractive strategy in AD therapeutics. Methods: Molecular docking was performed to see the interactions between MARK4 and galantamine (GLT). Furthermore, 250 ns molecular dynamic studies were performed to investigate the stability and conformational dynamics of the MARK4-GLT complex. We performed fluorescence binding and isothermal titration calorimetry studies to measure the binding affinity between GLT and MARK4. Finally, an enzyme inhibition assay was performed to measure the MARK4 activity in the presence and absence of GLT. Results: We showed that GLT, an acetylcholinesterase inhibitor, binds to the active site cavity of MARK4 with an appreciable binding affinity. Molecular dynamic simulation for 250 ns demonstrated the stability and conformational dynamics of the MARK4-GLT complex. Fluorescence binding and isothermal titration calorimetry studies suggested a strong binding affinity. We further show that GLT inhibits the kinase activity of MARK4 significantly (IC50 = 5.87 µM). Conclusion: These results suggest that GLT is a potential inhibitor of MARK4 and could be a promising therapeutic target for AD. GLT's inhibition of MARK4 provides newer insights into the mechanism of GLT's action, which is already used to improve cognition in AD patients.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Debarati DasGupta
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, New Delhi, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, New Delhi, India
| |
Collapse
|
25
|
Alam M, Ahmed S, Abid M, Hasan GM, Islam A, Hassan MI. Therapeutic targeting of microtubule affinity-regulating kinase 4 in cancer and neurodegenerative diseases. J Cell Biochem 2023; 124:1223-1240. [PMID: 37661636 DOI: 10.1002/jcb.30468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
Microtubule affinity-regulating kinase 4 (MARK4) is a member of the Ser/Thr protein kinase family, phosphorylates the microtubule-connected proteins and plays a vital role in causing cancers and neurodegenerative diseases. This kinase modulates multiple signaling pathways, including mammalian target of rapamycin, nuclear factor-κB, and Hippo-signaling, presumably responsible for cancer and Alzheimer's. MARK4 acts as a negative controller of the Hippo-kinase cassette for promoting YAP/TAZ action, and the loss of MARK4 detains the tumorigenic properties of cancer cells. MARK4 is involved in tau hyperphosphorylation that consequently affects neurodegeneration. MARK4 is a promising drug target for cancer, diabetes, and Alzheimer's. Developing the potent and selective inhibitors of MAKR4 are promising in the therapeutic management of associated diseases. Despite its great significance, a few reviews are available to discuss its structure, function and clinical significance. In the current review, we aimed to provide detailed information on the structural features of MARK4 targeted in drug development and its role in various signaling pathways related to cancer and neurodegenerative diseases. We further described the therapeutic potential of MARK4 inhibitors in preventing numerous diseases. Finally, the updated information on MARK4 will be helpful in the further development of effective therapeutic molecules.
Collapse
Affiliation(s)
- Manzar Alam
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sarfraz Ahmed
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Abid
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Asimul Islam
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
26
|
Waseem R, Khan T, Shamsi A, Shahid M, Kazim SN, Hassan MI, Islam A. Inhibitory potential of N-acetylaspartate against protein glycation, AGEs formation and aggregation: Implication of brain osmolyte in glycation-related complications. Int J Biol Macromol 2023:125405. [PMID: 37336383 DOI: 10.1016/j.ijbiomac.2023.125405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Protein glycation and aggregation have a pivotal role in many diseases including diabetes and neurodegenerative disorders. N-acetyl aspartate (NAA), an osmolyte derived from L-aspartic acid, is one of the most abundant metabolites in the mammalian brain. Although NAA is supposed to be a substitute for a neuronal marker, its function is not fully elucidated. Herein, we have investigated the effect of NAA on glycation, AGEs formation and aggregation of irisin. AGE-specific fluorescence showed the strong inhibition of AGEs formation in the presence of NAA, demonstrating its anti-glycating property. The aggregates present in MG-modified irisin were also reduced by NAA, which was confirmed by Thioflavin T fluorescence and fluorescence microscopy. Further, for the explanation of the strong anti-glycating potential of NAA, the interaction between irisin and NAA was also examined. Interaction studies involving steady-state fluorescence and molecular docking demonstrated that hydrogen bonding and salt bridges by NAA stabilize the irisin. It was found that glycation-prone residues i.e., lysine and arginine are specifically involved in the interaction which might prevent them from getting modified during the process of glycation. This study for the first time reported the antiglycating potential of NAA which can be implicated in the therapeutic management of various glycation-related complications.
Collapse
Affiliation(s)
- Rashid Waseem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Tanzeel Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anas Shamsi
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
27
|
Anwar S, Mohammad T, Azhar MK, Fatima H, Alam A, Hasan GM, Islam A, Kaur P, Hassan MI. Investigating MARK4 inhibitory potential of Bacopaside II: Targeting Alzheimer's disease. Int J Biol Macromol 2023:125364. [PMID: 37315665 DOI: 10.1016/j.ijbiomac.2023.125364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/19/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Microtubule affinity regulating kinase (MARK4) is known to hyperphosphorylate tau protein, which subsequently causes Alzheimer's disease (AD). MARK4 is a well-validated drug target for AD; thus, we employed its structural features to discover potential inhibitors. On the other hand, complementary and alternative medicines (CAMs) have been used for the treatment of numerous diseases with little side effects. In this regard, Bacopa monnieri extracts have been extensively used to treat neurological disorders because of their neuroprotective roles. The plant extract is used as a memory enhancer and a brain tonic. Bacopaside II is a major component of Bacopa monnieri; thus, we studied its inhibitory effects and binding affinity towards the MARK4. Bacopaside II show a considerable binding affinity for MARK4 (K = 107 M-1) and inhibited kinase activity with an IC50 value of 5.4 μM. To get atomistic insights into the binding mechanism, we performed Molecular dynamics (MD) simulation studies for 100 ns. Bacopaside II binds strongly to the active site pocket residues of MARK4 and a number of hydrogen bonds remain stable throughout the MD trajectory. Our findings provide the basis for the therapeutic implication of Bacopaside and its derivatives in MARK4-related neurodegenerative diseases, especially AD and neuroinflammation.
Collapse
Affiliation(s)
- Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Taj Mohammad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110026, India
| | - Md Khabeer Azhar
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Hera Fatima
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Afsar Alam
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110026, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
28
|
Ahmed Atto Al-Shuaeeb R, Abd El-Mageed HR, Ahmed S, Mohamed HS, Hamza ZS, Rafi MO, Ahmad I, Patel H. In silico investigation and potential therapeutic approaches of isoquinoline alkaloids for neurodegenerative diseases: computer-aided drug design perspective. J Biomol Struct Dyn 2023; 41:14484-14496. [PMID: 37184133 DOI: 10.1080/07391102.2023.2212778] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/13/2023] [Indexed: 05/16/2023]
Abstract
Microtubule affinity regulating kinase (MARK4) has been proposed as a potential therapeutic target for diabetes, cancer, and neurological diseases. We used a variety of computational studies techniques to examine the binding affinity and MARK4 inhibitory potential of several isoquinoline alkaloids. MARK4 has been associated with tau protein phosphorylation and, consequently, Alzheimer's disease. The three molecules with the highest binding affinities inside the 5ES1 receptor, according to molecular docking experiments, are isoliensinine, liensinine, and methylcorypalline. Isoliensinine had the highest drug score and drug likeness, coming in at 1.17, while Liensinine and Methylcorypalline came in at 1.15 and 1.07, respectively. The thesis claims that three compounds have a better chance than the others of being identified as therapeutic leads. The bulk of the compounds under investigation didn't break any of Lipinski's five rules, especially methylcorypalline, which did and is probably orally active. The majority of the compounds under investigation, particularly Isoliensinine, Liensinine, and Methylcorypalline, show the potential to exhibit drug-like behaviour, which is strongly confirmed by ADMET characteristics estimates. The chemicals Isoliensinine, Liensinine, and Methylcorypalline, especially Methylcorypalline, form the most stable combination with the 5ES1, according to a 100 ns molecular dynamics simulation of these compounds docked inside 5ES1 complexes. Methylcorypalline has a higher binding affinity inside 5ES1, according to additional MM/GBSA experiments using MD trajectories. Overall, research supports the use of the drug development tool methylcolipalin for its ability to inhibit MARK4, which may have implications for the treatment of neurodegenerative diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - H R Abd El-Mageed
- Micro-analysis and Environmental Research and Community Services Center, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Shimaa Ahmed
- Department of chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hussein S Mohamed
- Chemistry of Medicinal and Aromatic Plants Department, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef, Egypt
| | - Zeinab S Hamza
- Chemistry of Medicinal and Aromatic Plants Department, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef, Egypt
| | - Md Oliullah Rafi
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
29
|
Alrouji M, DasGupta D, Ashraf GM, Bilgrami AL, Alhumaydhi FA, Al Abdulmonem W, Shahwan M, Alsayari A, Atiya A, Shamsi A. Inhibition of microtubule affinity regulating kinase 4 by an acetylcholinesterase inhibitor, Huperzine A: Computational and experimental approaches. Int J Biol Macromol 2023; 235:123831. [PMID: 36870649 DOI: 10.1016/j.ijbiomac.2023.123831] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Microtubule affinity regulating kinase 4 (MARK4), 752 amino acids long, belonging to the AMPK superfamily, plays a vital role in regulating microtubules due to its potential to phosphorylate microtubule-associated proteins (MAP's) and thus, MARK4 plays a key role in Alzheimer's disease (AD) pathology. MARK4 is a druggable target for cancer, neurodegenerative diseases, and metabolic disorders. In this study, we have evaluated the MARK4 inhibitory potential of Huperzine A (HpA), an acetylcholinesterase inhibitor (AChEI), a potential AD drug. Molecular docking revealed the key residues governing the MARK4-HpA complex formation. The structural stability and conformational dynamics of the MARK4-HpA complex was assessed by employing Molecular dynamics (MD) simulation. The results suggested that the binding of HpA with MARK4 leads to minimal structural alterations in the native conformation of MARK4, implying the stability of the MARK4-HpA complex. Isothermal titration calorimetry (ITC) studies deciphered that HpA binds to MARK4 spontaneously. Moreover, the kinase assay depicted significant inhibition of MARK by HpA (IC50 = 4.91 μM), implying it to be a potent MARK4 inhibitor that can be implicated in the treatment of MARK4-directed diseases.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Debarati DasGupta
- 428 Church Street, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah 51452, Saudi Arabia
| | - Moyad Shahwan
- College of Pharmacy and Health Sciences, Ajman University, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia; Complementary and Alternative Medicine Unit, King Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia
| | - Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia.
| | - Anas Shamsi
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates.
| |
Collapse
|
30
|
Atiya A, Das Gupta D, Alsayari A, Alrouji M, Alotaibi A, Sharaf SE, Abdulmonem WA, Alorfi NM, Abdullah KM, Shamsi A. Linagliptin and Empagliflozin Inhibit Microtubule Affinity Regulatory Kinase 4: Repurposing Anti-Diabetic Drugs in Neurodegenerative Disorders Using In Silico and In Vitro Approaches. ACS OMEGA 2023; 8:6423-6430. [PMID: 36844587 PMCID: PMC9948186 DOI: 10.1021/acsomega.2c06634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) are significant public health burdens. Many studies have revealed the possibility of common pathophysiology between T2DM and AD. Thus, in recent years, studies deciphering the action mechanism of anti-diabetic drugs with their future use in AD and related pathologies are on high demand. Drug repurposing is a safe and effective approach owing to its low cost and time-saving attributes. Microtubule affinity regulating kinase 4 (MARK4) is a druggable target for various diseases and is found to be linked with AD and diabetes mellitus. MARK4 plays a vital role in energy metabolism and regulation and thus serves as an irrefutable target to treat T2DM. The present study was intended to identify the potent MARK4 inhibitors among FDA-approved anti-diabetic drugs. We performed structure-based virtual screening of FDA-approved drugs to identify the top hits against MARK4. We identified five FDA-approved drugs having an appreciable affinity and specificity toward the binding pocket of MARK4. Among these identified hits, two drugs, linagliptin, and empagliflozin, favorably bind to the MARK4 binding pocket, interacting with its critical residues and thus subjected to detailed analysis. All-atom detailed molecular dynamics (MD) simulations revealed the dynamics of binding of linagliptin and empagliflozin with MARK4. Kinase assay showed significant inhibition of MARK4 kinase activity in the presence of these drugs, implying them as potent MARK4 inhibitors. In conclusion, linagliptin and empagliflozin may be promising MARK4 inhibitors, which can further be exploited as potential lead molecules against MARK4-directed neurodegenerative diseases.
Collapse
Affiliation(s)
- Akhtar Atiya
- Department
of Pharmacognosy, College of Pharmacy, King
Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia
| | - Debarati Das Gupta
- College
of Pharmacy, University of Michigan, 2428 Church Street, Ann Arbor, Michigan 48109, United States
| | - Abdulrhman Alsayari
- Department
of Pharmacognosy, College of Pharmacy, King
Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia
- Complementary
and Alternative Medicine Unit, King Khalid
University (KKU), Guraiger St., Abha 62529, Saudi Arabia
| | - Mohammed Alrouji
- Department
of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Abdulmajeed Alotaibi
- College
of Applied Medical Sciences, King Saud bin
Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
| | - Sharaf E. Sharaf
- Pharmaceutical
Chemistry Department, College of Pharmacy, Umm Al-Qura University, Makkah 21421, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department
of Pathology, College of Medicine, Qassim
University, Buraydah 52571, Saudi Arabia
| | - Nasser M. Alorfi
- Department
of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21421, Saudi Arabia
| | - K. M. Abdullah
- Department
of Biochemistry, Jain University, Bengaluru 560069, India
| | - Anas Shamsi
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| |
Collapse
|
31
|
Spectroscopic investigations on fungal aspartic protease as target of gallic acid. Int J Biol Macromol 2023; 228:333-345. [PMID: 36565834 DOI: 10.1016/j.ijbiomac.2022.12.218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Proteases are a major virulence factor in pathogenic fungi and can serve as a potential therapeutic target. The interaction of gallic acid (GA) with Aspartic fungal protease (PepA) was investigated using biophysical and in silico approaches. UV-Vis and fluorescence spectroscopy showed complex formation and static quenching of PepA by GA with Ka of 7.4 × 105 M-1 and stoichiometric binding site (n) of 1.67. CD-spectroscopy showed marked changes in helical content and synchronous fluorescence spectra measurements indicated significant changes in the microenvironment around tryptophan residues in the GA-PepA complex. Outcomes of Isothermal Titration Calorimetry (ITC) measurement and molecular modelling studies validated the spectroscopic results. The binding of GA to Human Serum albumin (HSA) was moderate (Ka = 1.9 × 103 M-1) and did not cause structural disruption of HSA. To conclude, gallic acid is strongly bound to fungal protease leading to structural disruption and inhibition whereas HSA structure was largely conserved. Gallic acid thus appears to be a potential therapeutic agent against fungal proteases.
Collapse
|
32
|
Ali N, Aiman A, Shamsi A, Hassan I, Shahid M, Gaur NA, Islam A. Identification of Thermostable Xylose Reductase from Thermothelomyces thermophilus: A Biochemical Characterization Approach to Meet Biofuel Challenges. ACS OMEGA 2022; 7:44241-44250. [PMID: 36506193 PMCID: PMC9730754 DOI: 10.1021/acsomega.2c05690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
The constant rise in energy demands, costs, and concerns about global warming has created a demand for new renewable alternative fuels that can be produced sustainably. Lignocellulose biomass can act as an excellent energy source and various value-added compounds like xylitol. In this research study, we have explored the xylose reductase that was obtained from the genome of a thermophilic fungus Thermothelomyces thermophilus while searching for an enzyme to convert xylose to xylitol at higher temperatures. The recombinant thermostable TtXR histidine-tagged fusion protein was expressed in Escherichia coli and successfully purified for the first time. Further, it was characterized for its function and novel structure at varying temperatures and pH. The enzyme showed maximal activity at 7.0 pH and favored d-xylose over other pentoses and hexoses. Biophysical approaches such as ultraviolet-visible (UV-visible), fluorescence spectrometry, and far-UV circular dichroism (CD) spectroscopy were used to investigate the structural integrity of pure TtXR. This research highlights the potential application of uncharacterized xylose reductase as an alternate source for the effective utilization of lignocellulose in fermentation industries at elevated temperatures. Moreover, this research would give environment-friendly and long-term value-added products, like xylitol, from lignocellulosic feedstock for both scientific and commercial purposes.
Collapse
Affiliation(s)
- Nabeel Ali
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi110025, India
| | - Ayesha Aiman
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi110025, India
| | - Anas Shamsi
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi110025, India
| | - Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi110025, India
| | - Mohammad Shahid
- Department
of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box: 173, Al Kharj11942, Kingdom of Saudi Arabia
| | - Naseem A. Gaur
- International
Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi110067, India
| | - Asimul Islam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi110025, India
| |
Collapse
|
33
|
Xu J, Mao C, Hou Y, Luo Y, Binder JL, Zhou Y, Bekris LM, Shin J, Hu M, Wang F, Eng C, Oprea TI, Flanagan ME, Pieper AA, Cummings J, Leverenz JB, Cheng F. Interpretable deep learning translation of GWAS and multi-omics findings to identify pathobiology and drug repurposing in Alzheimer's disease. Cell Rep 2022; 41:111717. [PMID: 36450252 PMCID: PMC9837836 DOI: 10.1016/j.celrep.2022.111717] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/01/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
Translating human genetic findings (genome-wide association studies [GWAS]) to pathobiology and therapeutic discovery remains a major challenge for Alzheimer's disease (AD). We present a network topology-based deep learning framework to identify disease-associated genes (NETTAG). We leverage non-coding GWAS loci effects on quantitative trait loci, enhancers and CpG islands, promoter regions, open chromatin, and promoter flanking regions under the protein-protein interactome. Via NETTAG, we identified 156 AD-risk genes enriched in druggable targets. Combining network-based prediction and retrospective case-control observations with 10 million individuals, we identified that usage of four drugs (ibuprofen, gemfibrozil, cholecalciferol, and ceftriaxone) is associated with reduced likelihood of AD incidence. Gemfibrozil (an approved lipid regulator) is significantly associated with 43% reduced risk of AD compared with simvastatin using an active-comparator design (95% confidence interval 0.51-0.63, p < 0.0001). In summary, NETTAG offers a deep learning methodology that utilizes GWAS and multi-genomic findings to identify pathobiology and drug repurposing in AD.
Collapse
Affiliation(s)
- Jielin Xu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Chengsheng Mao
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yuan Hou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yuan Luo
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jessica L Binder
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lynn M Bekris
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Jiyoung Shin
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Tudor I Oprea
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Margaret E Flanagan
- Department of Pathology and Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland 44106, OH, USA; Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - James B Leverenz
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA; Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
34
|
Atiya A, Alhumaydhi FA, Shamsi A, Olatunde A, Alsagaby SA, Al Abdulmonem W, Sharaf SE, Shahwan M. Mechanistic Insight into the Binding of Huperzine a with Human Transferrin: Computational, Spectroscopic and Calorimetric Approaches. ACS OMEGA 2022; 7:38361-38370. [PMID: 36340147 PMCID: PMC9631745 DOI: 10.1021/acsomega.2c03185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Huperzine A (HupA), an alkaloid found in the club moss Huperzia Serrata, has been in use for centuries in Chinese traditional medicine to treat dementia owing to its ability to inhibit the cholinergic enzyme acetylcholinesterase (AChE), thus acting as an acetylcholinesterase inhibitor (AChEI). An imbalance of metal ions in the brain is linked to Alzheimer's disease (AD) pathology. Transferrin (Tf) is a crucial player in iron homeostasis, thus highlighting its significance in AD. This study explores the plausible binding of HupA with Tf using molecular docking, molecular dynamics (MD) simulation, and free energy landscape (FEL) analyses. The docking results show that HupA binds to the functionally active region of Tf by forming three hydrogen bonds with Thr392, Glu394, and Ser688 and several hydrophobic interactions. The MD simulation analyses show that HupA binding is stable with Tf, causing minimal changes to the protein conformation. Moreover, principal component analysis (PCA) and FEL also depict the stable binding of HupA with Tf without any significant fluctuations. Further, fluorescence-based binding suggested excellent binding affinity of HupA with Tf affirming in silico observations. Isothermal titration calorimetry (ITC) advocated the spontaneous binding of HupA with Tf. This study provides an insight into the binding mechanism of HupA with Tf, and overall, the results show that HupA, after required experimentations, can be a better therapeutic agent for treating AD while targeting Tf.
Collapse
Affiliation(s)
- Akhtar Atiya
- Department
of Pharmacognosy, College of Pharmacy, King
Khalid University (KKU), Guraiger St., Abha62529, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department
of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah51452, Saudi Arabia
| | - Anas Shamsi
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi110025, India
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman346, United Arab Emirates
| | - Ahmed Olatunde
- Department
of Medical Biochemistry, Abubakar Tafawa
Balewa University, Bauchi740272, Nigeria
| | - Suliman A. Alsagaby
- Department
of Medical Laboratories Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah11952, Saudi
Arabia
| | - Waleed Al Abdulmonem
- Department
of Pathology, College of Medicine, Qassim
University, Buraydah52571, Saudi Arabia
| | - Sharaf E. Sharaf
- Pharmaceutical
Chemistry Department, College of Pharmacy, Umm Al-Qura University, Makkah21421, Saudi Arabia
- Clinical
Research Adminstration, Executive Adminstration of Research and Innovation, King Abdullah Medical City in the Holy Capital, Makkah21955, Saudi Arabia
| | - Moyad Shahwan
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman346, United Arab Emirates
- College
of Pharmacy and Health Sciences, Ajman University, Ajman346, United Arab Emirates
| |
Collapse
|
35
|
Targeting inhibition of microtubule affinity regulating kinase 4 by Harmaline: Strategy to combat Alzheimer's disease. Int J Biol Macromol 2022; 224:188-195. [DOI: 10.1016/j.ijbiomac.2022.10.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
36
|
Ashraf GM, Gupta DD, Alam MZ, Baeesa SS, Alghamdi BS, Anwar F, Alqurashi TMA, Al Abdulmonem W, Alyousef MA, Alhumaydhi FA, Shamsi A. Unravelling Binding of Human Serum Albumin with Galantamine: Spectroscopic, Calorimetric, and Computational Approaches. ACS OMEGA 2022; 7:34370-34377. [PMID: 36188253 PMCID: PMC9521020 DOI: 10.1021/acsomega.2c04004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
Human serum albumin (HSA), an abundant plasma protein, binds to various ligands, acting as a transporter for numerous endogenous and exogenous substances. Galantamine (GAL), an alkaloid, treats cognitive decline in mild to moderate Alzheimer's disease and other memory impairments. A vital step in pharmacological profiling involves the interaction of plasma protein with the drugs, and this serves as an essential platform for pharmaceutical industry advancements. This study is carried out to understand the binding mechanism of GAL with HSA using computational and experimental approaches. Molecular docking revealed that GAL preferentially occupies Sudlow's site I, i.e., binds to subdomain IIIA. The results unveiled that GAL binding does not induce any conformational change in HSA and hence does not compromise the functionality of HSA. Molecular dynamics simulation (250 ns) deciphered the stability of the HSA-GAL complex. We performed the fluorescence binding and isothermal titration calorimetry (ITC) to analyze the actual binding of GAL with HSA. The results suggested that GAL binds to HSA with a significant binding affinity. ITC measurements also delineated thermodynamic parameters associated with the binding of GAL to HSA. Altogether, the present study deciphers the binding mechanism of GAL with HSA.
Collapse
Affiliation(s)
- Ghulam Md Ashraf
- Pre-Clinical
Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department
of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Debarati Das Gupta
- College
of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, United States
| | - Mohammad Zubair Alam
- Pre-Clinical
Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department
of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Saleh Salem Baeesa
- Division
of Neurosurgery, College of Medicine, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Badrah S. Alghamdi
- Pre-Clinical
Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department
of Physiology, Faculty of Medicine, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
- The
Neuroscience
Research Unit, Faculty of Medicine, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Firoz Anwar
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Thamer M. A. Alqurashi
- Department
of Pharmacology, Faculty of Medicine, King
Abdul-Aziz University, Rabigh 25724, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department
of Pathology, College of Medicine, Qassim
University, Buraydah 52571, Saudi Arabia
| | - Mohammed A. Alyousef
- Division of Neurosurgery, King
Abdulaziz
University Hospital, Jeddah 21589, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied
Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Anas Shamsi
- Centre for Interdisciplinary Research in
Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, P.O.
Box Number 346, Ajman, United Arab Emirates
| |
Collapse
|
37
|
Microtubule-affinity regulating kinase 4: A potential drug target for cancer therapy. Cell Signal 2022; 99:110434. [PMID: 35961526 DOI: 10.1016/j.cellsig.2022.110434] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 12/29/2022]
Abstract
The human genome encodes more than 500 protein kinases that work by transferring the γ-phosphate group from ATP to serine, threonine, or tyrosine (Ser/Thr/Tyr) residues. Various kinases are associated with the onset of cancer and its further progression. The recent advancements in developing small-molecule kinase inhibitors to treat different cancer types have shown noticeable results in clinical therapies. Microtubule-affinity regulating kinase 4 (MARK-4) is a Ser/Thr protein kinase that relates structurally to AMPK/Snf1 subfamily of the CaMK kinases. The protein kinase modulates major signalling pathways such as NF-κB, mTOR and the Hippo-signalling pathway. MARK4 is associated with various cancer types due to its important role in regulating microtubule dynamics and subsequent cell division. Aberrant expression of MARK4 is linked with several pathologies such as cancer, Alzheimer's disease, obesity, etc. This review provides detailed information on structural aspects of MARK4 and its role in various signalling pathways related to cancer. Several therapeutic molecules were designed to inhibit the MARK4 activity from controlling associated diseases. The review further highlights kinase-targeted drug discovery and development in oncology and cancer therapies. Finally, we summarize the latest findings regarding the role of MARK4 in cancer, diabetes, and neurodegenerative disease path to provide a solid rationale for future investigation and therapeutic intervention.
Collapse
|
38
|
Multitargeting the Action of 5-HT 6 Serotonin Receptor Ligands by Additional Modulation of Kinases in the Search for a New Therapy for Alzheimer's Disease: Can It Work from a Molecular Point of View? Int J Mol Sci 2022; 23:ijms23158768. [PMID: 35955902 PMCID: PMC9368844 DOI: 10.3390/ijms23158768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/26/2022] Open
Abstract
In view of the unsatisfactory treatment of cognitive disorders, in particular Alzheimer’s disease (AD), the aim of this review was to perform a computer-aided analysis of the state of the art that will help in the search for innovative polypharmacology-based therapeutic approaches to fight against AD. Apart from 20-year unrenewed cholinesterase- or NMDA-based AD therapy, the hope of effectively treating Alzheimer’s disease has been placed on serotonin 5-HT6 receptor (5-HT6R), due to its proven, both for agonists and antagonists, beneficial procognitive effects in animal models; however, research into this treatment has so far not been successfully translated to human patients. Recent lines of evidence strongly emphasize the role of kinases, in particular microtubule affinity-regulating kinase 4 (MARK4), Rho-associated coiled-coil-containing protein kinase I/II (ROCKI/II) and cyclin-dependent kinase 5 (CDK5) in the etiology of AD, pointing to the therapeutic potential of their inhibitors not only against the symptoms, but also the causes of this disease. Thus, finding a drug that acts simultaneously on both 5-HT6R and one of those kinases will provide a potential breakthrough in AD treatment. The pharmacophore- and docking-based comprehensive literature analysis performed herein serves to answer the question of whether the design of these kind of dual agents is possible, and the conclusions turned out to be highly promising.
Collapse
|
39
|
Yousuf M, Shamsi A, Khan S, Khan P, Shahwan M, Elasbali AM, Haque QMR, Hassan MI. Naringenin as a potential inhibitor of human cyclin-dependent kinase 6: Molecular and structural insights into anti-cancer therapeutics. Int J Biol Macromol 2022; 213:944-954. [PMID: 35690164 DOI: 10.1016/j.ijbiomac.2022.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/28/2022] [Accepted: 06/05/2022] [Indexed: 12/13/2022]
Abstract
Cancer is one of the major causes of global deaths and needs immediate therapeutic development. So far, several strategies have been undertaken to prevent cancer, including kinase targeting by small-molecule inhibitors. Cyclin dependent kinase 6 (CDK6) plays an essential role in cancer progression and development as its overexpression is associated with tumor development and progression. The present study demonstrated that Naringenin (NAG) binds strongly to CDK6 with a binding affinity of -7.51 kcal/mol. ATPase assay of CDK6 in the presence of NAG shows that it inhibits CDK6 with an IC50 = 3.13 μM. Fluorescence and isothermal titration calorimetry studies demonstrated that NAG binds to CDK6 with the binding constant (K) values of 3.55 × 106 M-1 and 7.06 ± 2.70 × 106 M-1, respectively. The cell-based functional studies showed that NAG decreases the cell viability of human cancer cell lines, induces apoptosis, and reduces their colonization ability. Outcomes of the present in silico and in vitro studies highlighted the significance of NAG for the development of anti-cancer leads in terms of CDK6 inhibitors and provided future implications for combinatorial anti-cancer therapies.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shama Khan
- Vaccines and Infectious Disease Analytics (VIDA), University of the Witwatersrand, Johannesburg, South Africa
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Moyad Shahwan
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka, Saudi Arabia; Department of Pathology, Faculty of Medicine, University of Benghazi, Benghazi-Libya.
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
40
|
Yousuf M, Shamsi A, Mohammad T, Azum N, Alfaifi SYM, Asiri AM, Mohamed Elasbali A, Islam A, Hassan MI, Haque QMR. Inhibiting Cyclin-Dependent Kinase 6 by Taurine: Implications in Anticancer Therapeutics. ACS OMEGA 2022; 7:25844-25852. [PMID: 35910117 PMCID: PMC9330843 DOI: 10.1021/acsomega.2c03479] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Cyclin-dependent kinase 6 (CDK6) is linked with a cyclin partner and plays a crucial role in the early stages of cancer development. It is currently a potential drug target for developing therapeutic molecules targeting cancer therapy. Here, we have identified taurine as an inhibitor of CDK6 using combined in silico and experimental studies. We performed various experiments to find the binding affinity of taurine with CDK6. Molecular docking analysis revealed critical residues of CDK6 that are involved in taurine binding. Fluorescence measurement studies showed that taurine binds to CDK6 with a significant binding affinity, with a binding constant of K = 0.7 × 107 M-1 for the CDK6-taurine complex. Enzyme inhibition assay suggested taurine as a good inhibitor of CDK6 possessing an IC50 value of 4.44 μM. Isothermal titration calorimetry analysis further confirmed a spontaneous binding of taurine with CDK6 and delineated the thermodynamic parameters for the CDK6-taurine system. Altogether, this study established taurine as a CDK6 inhibitor, providing a base for using taurine and its derivatives in CDK6-associated cancer and other diseases.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department
of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anas Shamsi
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Centre
of
Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Taj Mohammad
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Naved Azum
- Center
of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Sulaiman Y. M. Alfaifi
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Abdullah M. Asiri
- Center
of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Clinical
Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka 72388, Saudi Arabia
| | - Asimul Islam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | | |
Collapse
|
41
|
Ashraf GM, DasGupta D, Alam MZ, Baeesa SS, Alghamdi BS, Anwar F, Alqurashi TMA, Sharaf SE, Al Abdulmonem W, Alyousef MA, Alhumaydhi FA, Shamsi A. Inhibition of Microtubule Affinity Regulating Kinase 4 by Metformin: Exploring the Neuroprotective Potential of Antidiabetic Drug through Spectroscopic and Computational Approaches. Molecules 2022; 27:molecules27144652. [PMID: 35889524 PMCID: PMC9320910 DOI: 10.3390/molecules27144652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 01/22/2023] Open
Abstract
Microtubule affinity regulating kinase 4 (MARK4) regulates the mechanism of microtubules by its ability to phosphorylate the microtubule-associated proteins (MAP's). MARK4 is known for its major role in tau phosphorylation via phosphorylating Ser262 residue in the KXGS motif, which results in the detachment of tau from microtubule. In lieu of this vital role in tau pathology, a hallmark of Alzheimer's disease (AD), MARK4 is a druggable target to treat AD and other neurodegenerative disorders (NDs). There is growing evidence that NDs and diabetes are connected with many pieces of literature demonstrating a high risk of developing AD in diabetic patients. Metformin (Mtf) has been a drug in use against type 2 diabetes mellitus (T2DM) for a long time; however, recent studies have established its therapeutic effect in neurodegenerative diseases (NDs), namely AD, Parkinson's disease (PD) and amnestic mild cognitive impairment. In this study, we have explored the MARK4 inhibitory potential of Mtf, employing in silico and in vitro approaches. Molecular docking demonstrated that Mtf binds to MARK4 with a significant affinity of -6.9 kcal/mol forming interactions with binding pocket's critical residues. Additionally, molecular dynamics (MD) simulation provided an atomistic insight into the binding of Mtf with MARK4. ATPase assay of MARK4 in the presence of Mtf shows that it inhibits MARK4 with an IC50 = 7.05 µM. The results of the fluorescence binding assay demonstrated significant binding of MARK4 with a binding constant of 0.6 × 106 M-1. The present study provides an additional axis towards the utilization of Mtf as MARK4 inhibitor targeting diabetes with NDs.
Collapse
Affiliation(s)
- Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: (G.M.A.); (A.S.)
| | - Debarati DasGupta
- College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA;
| | - Mohammad Zubair Alam
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.Z.A.); (B.S.A.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Saleh S. Baeesa
- Division of Neurosurgery, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Badrah S. Alghamdi
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.Z.A.); (B.S.A.)
- Department of Physiology, The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| | - Thamer M. A. Alqurashi
- Department of Pharmacology, Faculty of Medicine, King Abdul-Aziz University, Rabigh 21589, Saudi Arabia;
| | - Sharaf E. Sharaf
- Pharmaceutical Chemistry Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Clinical Research Administration, Executive Administration of Research and Innovation, King Abdullah Medical City in Holy Capital, Makkah 24246, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraydah 51452, Saudi Arabia;
| | - Mohammed A. Alyousef
- Division of Neurosurgery, College of Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Correspondence: (G.M.A.); (A.S.)
| |
Collapse
|
42
|
Blagov AV, Grechko AV, Nikiforov NG, Borisov EE, Sadykhov NK, Orekhov AN. Role of Impaired Mitochondrial Dynamics Processes in the Pathogenesis of Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms23136954. [PMID: 35805958 PMCID: PMC9266759 DOI: 10.3390/ijms23136954] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dysfunction is now recognized as a contributing factor to neurodegenerative diseases, including Alzheimer’s disease (AD). Mitochondria are signaling organelles with a variety of functions ranging from energy production to the regulation of cellular metabolism, energy homeostasis, and response to stress. The successful functioning of these complex processes is critically dependent on the accuracy of mitochondrial dynamics, which includes the ability of mitochondria to change shape and position in the cell, which is necessary to maintain proper function and quality control, especially in polarized cells such as neurons. There has been much evidence to suggest that the disruption of mitochondrial dynamics may play a critical role in the pathogenesis of AD. This review highlights aspects of altered mitochondrial dynamics in AD that may contribute to the etiology of this debilitating condition. We also discuss therapeutic strategies to improve mitochondrial dynamics and function that may provide an alternative treatment approach.
Collapse
Affiliation(s)
- Alexander V. Blagov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 8 Baltiiskaya Street, 125315 Moscow, Russia; (N.G.N.); (N.K.S.)
- Correspondence: (A.V.B.); (A.N.O.)
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 14-3 Solyanka Street, 109240 Moscow, Russia;
| | - Nikita G. Nikiforov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 8 Baltiiskaya Street, 125315 Moscow, Russia; (N.G.N.); (N.K.S.)
| | - Evgeny E. Borisov
- Petrovsky National Research Centre of Surgery, AP Avtsyn Institute of Human Morphology, 117418 Moscow, Russia;
| | - Nikolay K. Sadykhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 8 Baltiiskaya Street, 125315 Moscow, Russia; (N.G.N.); (N.K.S.)
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 8 Baltiiskaya Street, 125315 Moscow, Russia; (N.G.N.); (N.K.S.)
- Correspondence: (A.V.B.); (A.N.O.)
| |
Collapse
|
43
|
Xue B, DasGupta D, Alam M, Khan MS, Wang S, Shamsi A, Islam A, Hassan MI. Investigating binding mechanism of thymoquinone to human transferrin, targeting Alzheimer's disease therapy. J Cell Biochem 2022; 123:1381-1393. [PMID: 35722728 DOI: 10.1002/jcb.30299] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022]
Abstract
Iron deposition in the central nervous system (CNS) is one of the causes of neurodegenerative diseases. Human transferrin (hTf) acts as an iron carrier present in the blood plasma, preventing it from contributing to redox reactions. Plant compounds and their derivatives are frequently being used in preventing or delaying Alzheimer's disease (AD). Thymoquinone (TQ), a natural product has gained popularity because of its broad therapeutic applications. TQ is one of the significant phytoconstituent of Nigella sativa. The binding of TQ to hTf was determined by spectroscopic methods and isothermal titration calorimetry. We have observed that TQ strongly binds to hTf with a binding constant (K) of 0.22 × 106 M-1 and forming a stable complex. In addition, isothermal titration calorimetry revealed the spontaneous binding of TQ with hTf. Molecular docking analysis showed key residues of the hTf that were involved in the binding to TQ. We further performed a 250 ns molecular dynamics simulation which deciphered the dynamics and stability of the hTf-TQ complex. Structure analysis suggested that the binding of TQ doesn't cause any significant alterations in the hTf structure during the course of simulation and a stable complex is formed. Altogether, we have elucidated the mechanism of binding of TQ with hTf, which can be further implicated in the development of a novel strategy for AD therapy.
Collapse
Affiliation(s)
- Bin Xue
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, China
| | - Debarati DasGupta
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shuo Wang
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, China
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.,Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, UAE, Ajman
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
44
|
Yang H, Zeng F, Luo Y, Zheng C, Ran C, Yang J. Curcumin Scaffold as a Multifunctional Tool for Alzheimer's Disease Research. Molecules 2022; 27:3879. [PMID: 35745002 PMCID: PMC9227459 DOI: 10.3390/molecules27123879] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, which is caused by multi-factors and characterized by two histopathological hallmarks: amyloid-β (Aβ) plaques and neurofibrillary tangles of Tau proteins. Thus, researchers have been devoting tremendous efforts to developing and designing new molecules for the early diagnosis of AD and curative purposes. Curcumin and its scaffold have fluorescent and photochemical properties. Mounting evidence showed that curcumin scaffold had neuroprotective effects on AD such as anti-amyloidogenic, anti-inflammatory, anti-oxidative and metal chelating. In this review, we summarized different curcumin derivatives and analyzed the in vitro and in vivo results in order to exhibit the applications in AD diagnosis, therapeutic monitoring and therapy. The analysis results showed that, although curcumin and its analogues have some disadvantages such as short wavelength and low bioavailability, these shortcomings can be conquered by modifying the structures. Curcumin scaffold still has the potential to be a multifunctional tool for AD research, including AD diagnosis and therapy.
Collapse
Affiliation(s)
- Haijun Yang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China; (H.Y.); (Y.L.)
| | - Fantian Zeng
- School of Public Health, Xiamen University, Xiamen 361000, China;
| | - Yunchun Luo
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China; (H.Y.); (Y.L.)
| | - Chao Zheng
- PET Center, School of Medicine, Yale University, New Haven, CT 06520, USA;
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Jian Yang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China; (H.Y.); (Y.L.)
| |
Collapse
|
45
|
Khan S, Alhumaydhi FA, Khan MS, Sharaf SE, Al Abdulmonem W, Hassan MI, Shamsi A, Kumar Yadav D. Exploring binding mechanism of naringenin to human transferrin using combined spectroscopic and computational methods: Towards therapeutic targeting of neurodegenerative diseases. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Anwar S, DasGupta D, Azum N, Alfaifi SY, Asiri AM, Alhumaydhi FA, Alsagaby SA, Sharaf SE, Shahwan M, Hassan MI. Inhibition of PDK3 by artemisinin, a repurposed antimalarial drug in cancer therapy. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Baig MH, Yousuf M, Khan MI, Khan I, Ahmad I, Alshahrani MY, Hassan MI, Dong JJ. Investigating the Mechanism of Inhibition of Cyclin-Dependent Kinase 6 Inhibitory Potential by Selonsertib: Newer Insights Into Drug Repurposing. Front Oncol 2022; 12:865454. [PMID: 35720007 PMCID: PMC9204300 DOI: 10.3389/fonc.2022.865454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/06/2022] [Indexed: 12/23/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) play significant roles in numerous physiological, and are considered an attractive drug target for cancer, neurodegenerative, and inflammatory diseases. In the present study, we have aimed to investigate the binding affinity and inhibitory potential of selonsertib toward CDK6. Using the drug repurposing approach, we performed molecular docking of selonsertib with CDK6 and observed a significant binding affinity. To ascertain, we further performed essential dynamics analysis and free energy calculation, which suggested the formation of a stable selonsertib-CDK6 complex. The in-silico findings were further experimentally validated. The recombinant CDK6 was expressed, purified, and treated with selonsertib. The binding affinity of selonsertib to CDK6 was estimated by fluorescence binding studies and enzyme inhibition assay. The results indicated an appreciable binding of selonsertib against CDK6, which subsequently inhibits its activity with a commendable IC50 value (9.8 μM). We concluded that targeting CDK6 by selonsertib can be an efficient therapeutic approach to cancer and other CDK6-related diseases. These observations provide a promising opportunity to utilize selonsertib to address CDK6-related human pathologies.
Collapse
Affiliation(s)
- Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Mohd. Yousuf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohd. Imran Khan
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, BezmialemVakif University, Istanbul, Turkey
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
48
|
Alzheimer’s Disease and Tau Self-Assembly: In the Search of the Missing Link. Int J Mol Sci 2022; 23:ijms23084192. [PMID: 35457009 PMCID: PMC9032712 DOI: 10.3390/ijms23084192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial neurodegenerative disease characterized by progressive cognitive impairment, apathy, and neuropsychiatric disorders. Two main pathological hallmarks have been described: neurofibrillary tangles, consisting of tau oligomers (hyperphosphorylated tau) and Aβ plaques. The influence of protein kinases and phosphatases on the hyperphosphorylation of tau is already known. Hyperphosphorylated tau undergoes conformational changes that promote its self-assembly. However, the process involving these mechanisms is yet to be elucidated. In vitro recombinant tau can be aggregated by the action of polyanions, such as heparin, arachidonic acid, and more recently, the action of polyphosphates. However, how that process occurs in vivo is yet to be understood. In this review, searching the most accurate and updated literature on the matter, we focus on the precise molecular events linking tau modifications, its misfolding and the initiation of its pathological self-assembly. Among these, we can identify challenges regarding tau phosphorylation, the link between tau heteroarylations and the onset of its self-assembly, as well as the possible metabolic pathways involving natural polyphosphates, that may play a role in tau self-assembly.
Collapse
|
49
|
Khan MS, Shahwan M, Shamsi A, Alhumaydhi FA, Alsagaby SA, Al Abdulmonem W, Abdullaev B, Yadav DK. Elucidating the Interactions of Fluoxetine with Human Transferrin Employing Spectroscopic, Calorimetric, and In Silico Approaches: Implications of a Potent Alzheimer's Drug. ACS OMEGA 2022; 7:9015-9023. [PMID: 35309456 PMCID: PMC8928501 DOI: 10.1021/acsomega.2c00182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/21/2022] [Indexed: 06/12/2023]
Abstract
Neurodegenerative complexities, such as dementia, Alzheimer's disease (AD), and so forth, have been a crucial health concern for ages. Transferrin (Tf) is a chief target to explore in AD management. Fluoxetine (FXT) presents itself as a potent anti-AD drug-like compound and has been explored against several diseases based on the drug repurposing readings. The present study delineates the binding of FXT to Tf employing structure-based docking, molecular dynamics (MD) simulations, and principal component analysis (PCA). Docking results showed the binding of FXT with Tf with an appreciable binding affinity, making various close interactions. MD simulation of FXT with Tf for 100 ns suggested their stable binding without any significant structural alteration. Furthermore, fluorescence-based binding revealed a significant interaction between FXT and Tf. FXT binds to Tf with a binding constant of 5.5 × 105 M-1. Isothermal titration calorimetry (ITC) advocated the binding of FXT to Tf as spontaneous in nature, affirming earlier observations. This work indicated plausible interactions between FXT and Tf, which are worth considering for further studies in the clinical management of neurological disorders, including AD.
Collapse
Affiliation(s)
- Mohd Shahnawaz Khan
- Department
of Biochemistry, College of Sciences, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Moyad Shahwan
- College
of Pharmacy & Health Sciences, Ajman
University, Ajman 346, United Arab Emirates
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Anas Shamsi
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Fahad A. Alhumaydhi
- Department
of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Suliman A. Alsagaby
- Department
of Medical Laboratories Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11932, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department
of Pathology, College of Medicine, Qassim
University, Buraydah 51452, Saudi Arabia
| | | | - Dharmendra Kumar Yadav
- College
of Pharmacy, Gachon University of Medicine
and Science, Hambakmoeiro, Yeonsu-gu, Incheon City 21924, South Korea
| |
Collapse
|
50
|
Anwar S, DasGupta D, Shafie A, Alhumaydhi FA, Alsagaby SA, Shahwan M, Anjum F, Al Abdulmonem W, Sharaf SE, Imtaiyaz Hassan M. Implications of tempol in pyruvate dehydrogenase kinase 3 targeted anticancer therapeutics: Computational, spectroscopic, and calorimetric studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118581] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|