1
|
Muheyuddeen G, Khan MY, Ahmad T, Srivastava S, Verma S, Ansari MS, Sahu N. Design, synthesis, and biological evaluation of novel imidazole derivatives as analgesic and anti-inflammatory agents: experimental and molecular docking insights. Sci Rep 2024; 14:23121. [PMID: 39367036 PMCID: PMC11452658 DOI: 10.1038/s41598-024-72399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 09/06/2024] [Indexed: 10/06/2024] Open
Abstract
Imidazole moieties exhibit a broad range of biological activities, including analgesic, anti-depressant, anticancer, anti-fungal, anti-tubercular, anti-inflammatory, antimicrobial, antiviral, and antifungal properties. In this study, we explored the use of Schiff base for the synthesis of new imidazole derivatives as anti-inflammatory and pain-relieving agents. A series of eight novel imidazole analogues (2a-h) were prepared in three steps with excellent yields. All compounds were characterized using IR, NMR, and mass spectral data. Their analgesic and anti-inflammatory activities were evaluated using hot plate and paw oedema methods. Compound 2 g (1-(2,3-dichlorophenyl)-2-(3-nitrophenyl)-4,5-diphenyl-1H-imidazole) showed significant analgesic activity (89% at 100 mg/kg b.w.), while compounds 2a (2-(2,6-dichlorophenyl)-1-(4-ethoxyphenyl)-4,5-diphenyl-1H-imidazole) and 2b (2-(2,3-dichlorophenyl)-1-(2-chlorophenyl)-4,5-diphenyl-1H-imidazole) exhibited good anti-inflammatory activity (100% at 100 mg/kg b.w.), comparable to diclofenac salt (100% at 50 mg/kg b.w.). Molecular docking studies were conducted using Schrödinger software version 2021-2, employing the OPLS4 force field for both receptor and ligand preparation. The results were visualized using molecular visualization software such as PyMOL. These studies revealed that compound 2g exhibited the highest binding affinity with the COX-2 receptor (-5.516 kcal/mol). Compound 2g formed three conventional hydrogen bonds with residues GLN-242 (bond length: 2.3 Å) and ARG-343 (bond lengths: 2.2 Å & 2.4 Å). This binding affinity was comparable to that of Diclofenac salt, which showed the highest binding affinity of -5.627 kcal/mol with the COX-2 receptor. Diclofenac salt formed two conventional hydrogen bonds with the residues ARG-344 (bond length: 2.0 Å) and TRP-140 (bond length: 1.7 Å). Later, molecular dynamic simulations confirmed the stable binding affinity of compound 2g with the protein. Furthermore, other compounds also demonstrated potential binding to the receptor-binding pocket region. The anti-inflammatory potential of the synthesized compounds was evaluated using the carrageenan-induced rat hind paw oedema model, while the analgesic potential was assessed using the hot plate method. These evaluations were conducted in comparison with Diclofenac sodium, serving as the standard compound. However, compound 2g stood out for its superior analgesic activity, as confirmed by in-vivo examination. These findings suggest that these novel imidazole derivatives have potential as anti-inflammatory and analgesic agents.
Collapse
Affiliation(s)
- Gulam Muheyuddeen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jahangirabad Institute of Technology, Jahangirabad Fort, Jahangirabad, Barabanki, 225203, Uttar Pradesh, India.
| | - Mohd Yaqub Khan
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Tanzeem Ahmad
- Department of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Shriyansh Srivastava
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi, 110017, India
| | - Stuti Verma
- Department of Pharmacy, Aryakul College of Pharmacy and Research, Sitapur Village, Jajjaur, Post, Manawa (Near Krishi Vigyan Kendra Sitapur) Sidhauli, Sitapur, Uttar Pradesh, India
| | - Mo Suheb Ansari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jahangirabad Institute of Technology, Jahangirabad Fort, Jahangirabad, Barabanki, 225203, Uttar Pradesh, India
| | - Nilanchala Sahu
- Sharda School of Pharmacy, Sharda University, Greater Noida, 201310, Uttar Pradesh, India.
| |
Collapse
|
2
|
Li C, Cao Y, Peng Y, Ma T, Wu F, Hua Y, Wang X, Bai T, Wei Y, Ji P. Changes in PI3K/AKT and NRF2/HO-1 signaling expression and intestinal microbiota in bleomycin-induced pulmonary fibrosis. Food Chem Toxicol 2024; 190:114796. [PMID: 38852756 DOI: 10.1016/j.fct.2024.114796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/19/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Pulmonary fibrosis is the outcome of the prolonged interstitial pneumonia, characterized by excessive accumulation of fibroblasts and collagen deposition, leading to its development. This study aimed to study the changes in PI3K/AKT and NRF2/HO-1 signaling expression and intestinal microbiota in a rat model of a novel bleomycin-induced pulmonary fibrosis. The findings of our study showed the model was successfully established. The results showed that the alveolar septum in the model was significantly widened and infiltrated by severe inflammatory cells. Alveolar atrophy occurred due to the formation of multiple inflammatory foci. During this period, fibrous tissue was distributed in strips and patches, primarily around the pulmonary interstitium and bronchus. Moreover, lung damage and fibrosis progressively worsened over time. The mRNA expression of HO-1 and NRF2 in the model decreased while the mRNA expression of HIF-1α, VEGF, PI3K and AKT increased. Furthermore, it was observed to decrease the protein expression of E-cad, HO-1 and NRF2, and increase the protein expression of α-SMA and p-AKT. Additionally, this model leaded to an imbalance in the intestinal microbiota. This study demonstrate that the novel pulmonary fibrosis model activates the NRF2/HO-1 pathway and the PI3K/AKT pathway in rat lung tissues, and leading to intestinal barrier disorder.
Collapse
Affiliation(s)
- Chenchen Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yuxia Cao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yousheng Peng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Ting Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Fanlin Wu
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Yongli Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiuqin Wang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry, Yinchuan, 750002, Ningxia, China
| | - Tong Bai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| |
Collapse
|
3
|
Tsoupras A, Gkika DA, Siadimas I, Christodoulopoulos I, Efthymiopoulos P, Kyzas GZ. The Multifaceted Effects of Non-Steroidal and Non-Opioid Anti-Inflammatory and Analgesic Drugs on Platelets: Current Knowledge, Limitations, and Future Perspectives. Pharmaceuticals (Basel) 2024; 17:627. [PMID: 38794197 PMCID: PMC11124379 DOI: 10.3390/ph17050627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely utilized pharmaceuticals worldwide. Besides their recognized anti-inflammatory effects, these drugs exhibit various other pleiotropic effects in several cells, including platelets. Within this article, the multifaceted properties of NSAIDs on platelet functions, activation and viability, as well as their interaction(s) with established antiplatelet medications, by hindering several platelet agonists' pathways and receptors, are thoroughly reviewed. The efficacy and safety of NSAIDs as adjunctive therapies for conditions involving inflammation and platelet activation are also discussed. Emphasis is given to the antiplatelet potential of commonly administered NSAIDs medications, such as ibuprofen, diclofenac, naproxen and ketoprofen, alongside non-opioid analgesic and antipyretic medications like paracetamol. This article delves into their mechanisms of action against different pathways of platelet activation, aggregation and overall platelet functions, highlighting additional health-promoting properties of these anti-inflammatory and analgesic agents, without neglecting the induced by these drugs' side-effects on platelets' functionality and thrombocytopenia. Environmental issues emerging from the ever-increased subscription of these drugs are also discussed, along with the need for novel water treatment methodologies for their appropriate elimination from water and wastewater samples. Despite being efficiently eliminated during wastewater treatment processes on occasion, NSAIDs remain prevalent and are found at significant concentrations in water bodies that receive effluents from wastewater treatment plants (WWTPs), since there is no one-size-fits-all solution for removing all contaminants from wastewater, depending on the specific characteristics of the wastewater. Several novel methods have been studied, with adsorption being proposed as a cost-effective and environmentally friendly method for wastewater purification from such drugs. This article also presents limitations and future prospects regarding the observed antiplatelet effects of NSAIDs, as well as the potential of novel derivatives of these compounds, with benefits in other important platelet functions.
Collapse
Affiliation(s)
- Alexandros Tsoupras
- Hephaestus Laboratory, Department of Chemistry, School of Science, Democritus University of Thrace, GR 65404 Kavala, Greece; (D.A.G.); (P.E.); (G.Z.K.)
| | | | | | | | | | | |
Collapse
|
4
|
Lu X, Zhu C, Gao Y, Yu Z, Yan Q, Liu Y, Luo M, Shi X. Design, synthesis, and evaluation of pirfenidone-NSAIDs conjugates for the treatment of idiopathic pulmonary fibrosis. Bioorg Chem 2024; 143:107018. [PMID: 38071874 DOI: 10.1016/j.bioorg.2023.107018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/15/2023] [Accepted: 12/02/2023] [Indexed: 01/24/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal, chronic and progressive lung disease that threaten public health like many cancers. In this study, targeting the significant driving factor, inflammatory response, of the IPF, several conjugates of pirfenidone (PFD) with non-steroidal anti-inflammatory drugs (NSAIDs), along with their derivatives, were designed and synthesized to enhance the anti-IPF potency of PFD. Among these compounds, the (S)-ibuprofen-PFD conjugate 5b exhibited the most potent anti-proliferation activity against NIH3T3 cells, demonstrating up to a 343-fold improvement compared to PFD (IC50 = 0.04 mM vs IC50 = 13.72 mM). Notably, 5b exhibited superior activity in inhibiting the migration of macrophages induced by TGF-β compared to PFD. Additionally, 5b demonstrated significant suppression of TGF-β-induced migration of NIH3T3 cells and induction of apoptosis in NIH3T3 cells. Mechanistic studies revealed that 5b reduced the expression of collagen I and α-SMA by inhibiting the TGF-β/SMAD3 pathway. In a bleomycin-induced pulmonary fibrosis model, treatment with 5b (40 mg/kg/day, orally) exhibited a more pronounced effect on reducing the degree of histopathological changes in lung tissue and alleviating collagen deposition compared to PFD (100 mg/kg/day, orally). Moreover, 5b could block the expression of collagen I, α-SMA, fibronectin, and pro-inflammatory factors (IL-6, IFN-γ, and TNF-α) compared to PFD, while demonstrating low toxicity in vivo. These preliminary results indicated that the hybridization of PFD with NSAIDs represented an effective modification approach to improve the anti-IPF potency of PFD. Consequently, 5b emerged as a promising candidate for the further development of new anti-IPF agents.
Collapse
Affiliation(s)
- Xiang Lu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China
| | - Chaoran Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yiwen Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenqiang Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qingqing Yan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yang Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingjin Luo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiufang Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Sgambellone S, Febo M, Durante M, Marri S, Villano S, Bereshchenko O, Migliorati G, Masini E, Riccardi C, Bruscoli S, Lucarini L. Role of histamine H 4 receptor in the anti-inflammatory pathway of glucocorticoid-induced leucin zipper (GILZ) in a model of lung fibrosis. Inflamm Res 2023; 72:2037-2052. [PMID: 37815550 PMCID: PMC10611623 DOI: 10.1007/s00011-023-01802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
INTRODUCTION This study investigates the interactions between histaminergic system and glucocorticoid-induced leucin zipper (GILZ) in the inflammatory process and glucocorticoid modulation in lung fibrosis. METHODS Wild-type (WT) and GILZ Knock-Out (KO) mice were treated with bleomycin (0.05 IU) or saline, delivered by intra-tracheal injection. After surgery, mice received a continuous infusion of JNJ7777120 (JNJ, 2 mg/kg b.wt.) or vehicle for 21 days. Lung function was studied by measuring airway resistance to air insufflation through the analysis of pressure at airway opening (PAO). Lung samples were collected to evaluate the expression of histamine H4R, Anx-A1, and p65-NF-kB, the activity of myeloperoxidase (MPO), and the production of pro-inflammatory cytokines. RESULTS Airway fibrosis and remodeling were assessed by measuring TGF-β production and α-SMA deposition. JNJ reduces PAO in WT but not in GILZ KO mice (from 22 ± 1 mm to 15 ± 0.5 and from 24 ± 1.5 to 19 ± 0.5 respectively), MPO activity (from 204 ± 3.13 pmol/mg to 73.88 ± 2.63 in WT and from 221 ± 4.46 pmol/mg to 107 ± 5.54 in GILZ KO), the inflammatory response, TGF-β production, and α-SMA deposition in comparison to WT and GILZ KO vehicle groups. CONCLUSION In conclusion, the role of H4R and GILZ in relation to glucocorticoids could pave the way for innovative therapies to counteract pulmonary fibrosis.
Collapse
Affiliation(s)
- Silvia Sgambellone
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Marta Febo
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, 1 06132 S. Andrea Delle Fratte, Perugia, Italy
| | - Mariaconcetta Durante
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Silvia Marri
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Serafina Villano
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Oxana Bereshchenko
- Department of Philosophy, Social Sciences and Education, University of Perugia, 06100, Perugia, Italy
| | - Graziella Migliorati
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, 1 06132 S. Andrea Delle Fratte, Perugia, Italy
| | - Emanuela Masini
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, 1 06132 S. Andrea Delle Fratte, Perugia, Italy
| | - Stefano Bruscoli
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, 1 06132 S. Andrea Delle Fratte, Perugia, Italy
| | - Laura Lucarini
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy.
| |
Collapse
|
6
|
Phytocannabinoids Act Synergistically with Non-Steroidal Anti-Inflammatory Drugs Reducing Inflammation in 2D and 3D In Vitro Models. Pharmaceuticals (Basel) 2022; 15:ph15121559. [PMID: 36559009 PMCID: PMC9787964 DOI: 10.3390/ph15121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Lung inflammation is associated with elevated pro-inflammatory cytokines and chemokines. Treatment with FCBD:std (standard mix of cannabidiol [CBD], cannabigerol [CBG] and tetrahydrocannabivarin [THCV]) leads to a marked reduction in the inflammation of alveolar epithelial cells, but not in macrophages. In the present study, the combined anti-inflammatory effect of FCBD:std with two corticosteroids (dexamethasone and budesonide) and two non-steroidal anti-inflammatory drugs (NSAID; ibuprofen and diclofenac), was examined. Enzyme-linked immunosorbent assay (ELISA) was used to determine protein levels. Gene expression was determined by quantitative real-time PCR. Inhibition of cyclo-oxygenase (COX) activity was determined in vitro. FCBD:std and diclofenac act synergistically, reducing IL-8 levels in macrophages and lung epithelial cells. FCBD:std plus diclofenac also reduced IL-6, IL-8 and CCL2 expression levels in co-cultures of macrophages and lung epithelial cells, in 2D and 3D models. Treatment by FCBD:std and/or NSAID reduced COX-1 and COX-2 gene expression but not their enzymatic activity. FCBD:std and diclofenac exhibit synergistic anti-inflammatory effects on macrophages and lung epithelial cells, yet this combined activity needs to be examined in pre-clinical studies and clinical trials.
Collapse
|
7
|
Sgambellone S, Marri S, Catarinicchia S, Pini A, Tosh DK, Jacobson KA, Masini E, Salvemini D, Lucarini L. Adenosine A 3 Receptor (A 3AR) Agonist for the Treatment of Bleomycin-Induced Lung Fibrosis in Mice. Int J Mol Sci 2022; 23:13300. [PMID: 36362112 PMCID: PMC9657240 DOI: 10.3390/ijms232113300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/25/2023] Open
Abstract
Adenosine receptors (ARs) are involved in the suppression and development of inflammatory and fibrotic conditions. Specifically, AR activation promotes differentiation of lung fibroblasts into myofibroblasts, typical of a fibrotic event. Pulmonary fibrosis is a severe disease characterized by inflammation and fibrosis of unknown etiology and lacking an effective treatment. The present investigation explored the action of MRS5980, a new, highly potent and selective A3AR agonist, in an established murine model of lung fibrosis. The effects of either vehicle or MRS5980 were studied in mice following intratracheal bleomycin administration. We evaluated the role of the A3AR agonist on lung stiffness, studying the airway resistance to inflation, oxidative stress (8-OHdG and MDA), inflammation, pro- and anti-inflammatory marker levels (IL-1β, IL-6, TNF-α, IL-10 and IL-17A) and fibrosis establishment, evaluating transforming growth factor (TGF)-β expression and α-smooth muscle actin (α-SMA) deposition in lungs. Bleomycin administration increased lung stiffness, TGF-β levels, α-SMA deposition, and inflammatory and oxidative stress markers. The treatment with MRS5980 attenuated all the analyzed functional, biochemical and histopathological markers in a dose-dependent manner. Our findings support the therapeutic potential of A3AR agonists in lung fibrosis by demonstrating reduced disease progression, as indicated by decreased inflammation, TGF-β expression and fibrotic remodeling.
Collapse
Affiliation(s)
- Silvia Sgambellone
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Silvia Marri
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Stefano Catarinicchia
- Department of Experimental and Clinical Medicine, Section of Histology, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine, Section of Histology, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Dilip K. Tosh
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Kenneth A. Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Emanuela Masini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Daniela Salvemini
- Pharmacology and Physiology, Saint Louis University, School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Laura Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| |
Collapse
|
8
|
Khirfan F, Jarrar Y, Al-Qirim T, Goh KW, Jarrar Q, Ardianto C, Awad M, Al-Ameer HJ, Al-Awaida W, Moshawih S, Ming LC. Analgesics Induce Alterations in the Expression of SARS-CoV-2 Entry and Arachidonic-Acid-Metabolizing Genes in the Mouse Lungs. Pharmaceuticals (Basel) 2022; 15:696. [PMID: 35745615 PMCID: PMC9227818 DOI: 10.3390/ph15060696] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022] Open
Abstract
Paracetamol and nonsteroidal anti-inflammatory drugs are widely used in the management of respiratory viral infections. This study aimed to determine the effects of the most commonly used analgesics (paracetamol, ibuprofen, and diclofenac) on the mRNA expression of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry and arachidonic-acid-metabolizing genes in mouse lungs. A total of twenty eight Balb/c mice were divided into four groups and treated separately with vehicle, paracetamol, ibuprofen, and diclofenac in clinically equivalent doses for 14 days. Then, the expressions of SARS-CoV-2 entry, ACE2, TMPRSS2, and Ctsl genes, in addition to the arachidonic-acid-metabolizing cyp450, cox, and alox genes, were analyzed using real-time PCR. Paracetamol increased the expressions of TMPRSS2 and Ctsl genes by 8.5 and 5.6 folds, respectively, while ibuprofen and diclofenac significantly decreased the expression of the ACE2 gene by more than 2.5 folds. In addition, all tested drugs downregulated (p < 0.05) cox2 gene expression, and paracetamol reduced the mRNA levels of cyp4a12 and 2j5. These molecular alterations in diclofenac and ibuprofen were associated with pathohistological alterations, where both analgesics induced the infiltration of inflammatory cells and airway wall thickening. It is concluded that analgesics such as paracetamol, ibuprofen, and diclofenac alter the expression of SARS-CoV-2 entry and arachidonic-acid-metabolizing genes in mouse lungs.
Collapse
Affiliation(s)
- Fatima Khirfan
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11731, Jordan; (F.K.); (T.A.-Q.); (M.A.)
| | - Yazun Jarrar
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11731, Jordan; (F.K.); (T.A.-Q.); (M.A.)
| | - Tariq Al-Qirim
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11731, Jordan; (F.K.); (T.A.-Q.); (M.A.)
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia;
| | - Qais Jarrar
- Department of Applied Pharmaceutical Sciences, Faculty of Pharmacy, Al-Isra University, Amman 11622, Jordan;
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Mohammad Awad
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11731, Jordan; (F.K.); (T.A.-Q.); (M.A.)
| | - Hamzeh J. Al-Ameer
- Department of Biology and Biotechnology, American University of Madaba, Madaba 17110, Jordan; (H.J.A.-A.); (W.A.-A.)
| | - Wajdy Al-Awaida
- Department of Biology and Biotechnology, American University of Madaba, Madaba 17110, Jordan; (H.J.A.-A.); (W.A.-A.)
| | - Said Moshawih
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam;
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam;
| |
Collapse
|
9
|
Beltrán-Noboa A, Proaño-Ojeda J, Guevara M, Gallo B, Berrueta LA, Giampieri F, Perez-Castillo Y, Battino M, Álvarez-Suarez JM, Tejera E. Metabolomic profile and computational analysis for the identification of the potential anti-inflammatory mechanisms of action of the traditional medicinal plants Ocimum basilicum and Ocimum tenuiflorum. Food Chem Toxicol 2022; 164:113039. [PMID: 35461962 DOI: 10.1016/j.fct.2022.113039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 12/28/2022]
Abstract
Ocimum basilicum and Ocimum tenuiflorum are two basil species widely used medicinally as an anti-inflammatory, antimicrobial and cardioprotective agent. This study focuses on the chemical characterization of the majoritarian compounds of both species and their anti-inflammatory potential. Up to 22 compounds such as various types of salvianolic acids, derivatives of rosmaniric acid and flavones were identified in both plants. The identified compounds were very similar between both plants and are consistent with previous finding in other studies in Portugal and Italy. Based on the identified molecules a consensus target prediction was carried out. Among the main predicted target proteins, we found a high representation of the carbonic anhydrase family (CA2, CA7 and CA12) and several key proteins from the arachidonic pathway (LOX5, PLA2, COX1 and COX2). Both pathways are well related to inflammation. The interaction between the compounds and these targets were explored through molecular docking and molecular dynamics simulation. Our results suggest that some molecules present in both plants can induce an anti-inflammatory response through a non-steroidal mechanism of action connected to the carbon dioxide metabolism.
Collapse
Affiliation(s)
- Andrea Beltrán-Noboa
- Grupo de Bioquimioinformática. Universidad de Las Américas, Quito, Ecuador; Departamento de Química Analítica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| | - John Proaño-Ojeda
- Grupo de Bioquimioinformática. Universidad de Las Américas, Quito, Ecuador; Facultad de Ingeniería y Ciencias Aplicadas. Carrera de Biotecnología, Universidad de Las Américas, Quito, Ecuador
| | - Mabel Guevara
- Grupo de Bioquimioinformática. Universidad de Las Américas, Quito, Ecuador; Grupo de Investigación en Polifenoles. Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Blanca Gallo
- Departamento de Química Analítica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| | - Luis A Berrueta
- Departamento de Química Analítica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| | - Francesca Giampieri
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yunierkis Perez-Castillo
- Grupo de Bioquimioinformática. Universidad de Las Américas, Quito, Ecuador; Escuela de Ciencias Físicas y Matemáticas. Universidad de Las Américas, Quito, Ecuador
| | - Maurizio Battino
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - José M Álvarez-Suarez
- Ingeniería en Alimentos, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Quito, Ecuador; King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito, Quito, Ecuador.
| | - Eduardo Tejera
- Grupo de Bioquimioinformática. Universidad de Las Américas, Quito, Ecuador; Facultad de Ingeniería y Ciencias Aplicadas. Carrera de Biotecnología, Universidad de Las Américas, Quito, Ecuador.
| |
Collapse
|
10
|
Supuran CT. Multitargeting approaches involving carbonic anhydrase inhibitors: hybrid drugs against a variety of disorders. J Enzyme Inhib Med Chem 2021; 36:1702-1714. [PMID: 34325588 PMCID: PMC8330743 DOI: 10.1080/14756366.2021.1945049] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are enzymes involved in a multitude of diseases, and their inhibitors are in clinical use as drugs for the management of glaucoma, epilepsy, obesity, and tumours. In the last decade, multitargeting approaches have been proposed by hybridisation of CA inhibitors (CAIs) of sulphonamide, coumarin, and sulphocoumarin types with NO donors, CO donors, prostaglandin analogs, β-adrenergic blockers, non-steroidal anti-inflammatory drugs, and a variety of anticancer agents (cytotoxic drugs, kinase/telomerase inhibitors, P-gp and thioredoxin inhibitors). Many of the obtained hybrids showed enhanced efficacy compared to the parent drugs, making multitargeting an effective and innovative approach for various pharmacological applications.
Collapse
Affiliation(s)
- Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
11
|
Nocentini A, Angeli A, Carta F, Winum JY, Zalubovskis R, Carradori S, Capasso C, Donald WA, Supuran CT. Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. J Enzyme Inhib Med Chem 2021; 36:561-580. [PMID: 33615947 PMCID: PMC7901698 DOI: 10.1080/14756366.2021.1882453] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inorganic anions inhibit the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) generally by coordinating to the active site metal ion. Cyanate was reported as a non-coordinating CA inhibitor but those erroneous results were subsequently corrected by another group. We review the anion CA inhibitors (CAIs) in the more general context of drug design studies and the discovery of a large number of inhibitor classes and inhibition mechanisms, including zinc binders (sulphonamides and isosteres, dithiocabamates and isosteres, thiols, selenols, benzoxaboroles, ninhydrins, etc.); inhibitors anchoring to the zinc-coordinated water molecule (phenols, polyamines, sulfocoumarins, thioxocoumarins, catechols); CAIs occluding the entrance to the active site (coumarins and derivatives, lacosamide), as well as compounds that bind outside the active site. All these new chemotypes integrated with a general procedure for obtaining isoform-selective compounds (the tail approach) has resulted, through the guidance of rigorous X-ray crystallography experiments, in the development of highly selective CAIs for all human CA isoforms with many pharmacological applications.
Collapse
Affiliation(s)
- Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Andrea Angeli
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Fabrizio Carta
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | | | - Raivis Zalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, National Research Council, Napoli, Italy
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| |
Collapse
|
12
|
Kuzu B, Tan M, Gülçin İ, Menges N. A novel class for carbonic anhydrases inhibitors and evaluation of their non-zinc binding. Arch Pharm (Weinheim) 2021; 354:e2100188. [PMID: 34096646 DOI: 10.1002/ardp.202100188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 11/06/2022]
Abstract
In this study, 23 different imidazole derivatives were synthesized, and the inhibitory properties of these derivatives against carbonic anhydrase I and II isoenzymes were investigated for the first time. The inhibition concentrations of the imidazole derivatives were found to be in the range of 2.89-115.5 nM. Docking studies examined the binding properties of the imidazole derivatives, and the structure-activity relationship is discussed. Theoretical calculations showed that the binding mode of the imidazole ring was non-zinc binding.
Collapse
Affiliation(s)
- Burak Kuzu
- Pharmaceutical Chemistry Section, Van Yüzüncü Yil University, Van, Turkey
| | - Meltem Tan
- Pharmaceutical Chemistry Section, Van Yüzüncü Yil University, Van, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Nurettin Menges
- Pharmaceutical Chemistry Section, Van Yüzüncü Yil University, Van, Turkey
| |
Collapse
|