1
|
Al‐kuraishy HM, Al‐Maiahy TJ, Al‐Gareeb AI, Alexiou A, Papadakis M, Saad HM, Batiha GE. The possible role furin and furin inhibitors in endometrial adenocarcinoma: A narrative review. Cancer Rep (Hoboken) 2024; 7:e1920. [PMID: 38018319 PMCID: PMC10809206 DOI: 10.1002/cnr2.1920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Endometrial adenocarcinoma (EAC) is a malignant tumor of the endometrium. EAC is the most common female malignancy following the menopause period. About 40% of patients with EAC are linked with obesity and interrelated with hypertension, diabetes mellitus, and high circulating estrogen levels. Proprotein convertase (PC) furin was involved in the progression of EAC. RECENT FINDINGS Furin is a protease enzyme belonging to the subtilisin PC family called PC subtilisin/kexin type 3 that converts precursor proteins to biologically active forms and products. Aberrant activation of furin promotes abnormal cell proliferation and the development of cancer. Furin promotes angiogenesis, malignant cell proliferation, and tissue invasion by malignant cells through its pro-metastatic and oncogenic activities. Furin activity is correlated with the malignant proliferation of EAC. Higher expression of furin may increase the development of EAC through overexpression of pro-renin receptors and disintegrin and metalloprotease 17 (ADAM17). As well, inflammatory signaling in EAC promotes the expression of furin with further propagation of malignant transformation. CONCLUSION Furin is associated with the development and progression of EAC through the induction of proliferation, invasion, and metastasis of malignant cells of EAC. Furin induces ontogenesis in EAC through activation expression of ADAM17, pro-renin receptor, CD109, and TGF-β. As well, EAC-mediated inflammation promotes the expression of furin with further propagation of neoplastic growth and invasion.
Collapse
Affiliation(s)
- Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and MedicineCollege of Medicine, Mustansiriyah UniversityBaghdadIraq
| | - Thabat J. Al‐Maiahy
- Department of Gynecology and ObstetricsCollege of Medicine, Mustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and MedicineCollege of Medicine, Mustansiriyah UniversityBaghdadIraq
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh University, Chandigarh‐Ludhiana HighwayMohaliPunjabIndia
- Department of Research & DevelopmentFunogenAthensGreece
- Department of Research & DevelopmentAFNP MedWienAustria
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Hebatallah M. Saad
- Department of PathologyFaculty of Veterinary Medicine, Matrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and TherapeuticsFaculty of Veterinary Medicine, Damanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
2
|
Li Y, Zhang T, Zhang J, Liu Q, Jia Q, Chen W, Tang Q, Xiong Y, Xia Y, Xu Y, Mo L, Huang Y, He J. Dually fibronectin/CD44-mediated nanoparticles targeted disrupt the Golgi apparatus and inhibit the hedgehog signaling in activated hepatic stellate cells to alleviate liver fibrosis. Biomaterials 2023; 301:122232. [PMID: 37418856 DOI: 10.1016/j.biomaterials.2023.122232] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Liver fibrosis is featured by activation of hepatic stellate cells (HSCs) and excessive accumulation of extracellular matrix (ECM). The Golgi apparatus in HSCs plays a vital role in synthesis and secretion of ECM proteins, while its targeted disruption in activated HSCs could be considered as a promising approach for liver fibrosis treatment. Here, we developed a multitask nanoparticle CREKA-CS-RA (CCR) to specifically target the Golgi apparatus of activated HSCs, based on CREKA (a specific ligand of fibronectin) and chondroitin sulfate (CS, a major ligand of CD44), in which retinoic acid (a Golgi apparatus-disturbing agent) chemically conjugated and vismodegib (a hedgehog inhibitor) encapsulated. Our results showed that CCR nanoparticles specifically targeted activated HSCs and preferentially accumulated in the Golgi apparatus. Systemic administration of CCR nanoparticles exhibited significantly accumulation in CCl4-induced fibrotic liver, which was attributed to specific recognition with fibronectin and CD44 on activated HSCs. CCR nanoparticles loaded with vismodegib not only disrupted Golgi apparatus structure and function but also inhibited the hedgehog signaling pathway, thus markedly suppressing HSC activation and ECM secretion in vitro and in vivo. Moreover, vismodegib-loaded CCR nanoparticles effectively inhibited the fibrogenic phenotype in CCl4-induced liver fibrosis mice without causing obvious toxicity. Collectively, these findings indicate that this multifunctional nanoparticle system can effectively deliver therapeutic agents to the Golgi apparatus of activated HSCs, thus has potential treatment of liver fibrosis with minimal side effects.
Collapse
Affiliation(s)
- Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ting Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jinhang Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qinhui Liu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qingyi Jia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wenfei Chen
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qin Tang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yimin Xiong
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yan Xia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ying Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Mo
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan Province, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
3
|
Dusabimana T, Je J, Yun SP, Kim HJ, Kim H, Park SW. GOLPH3 promotes endotoxemia-induced liver and kidney injury through Golgi stress-mediated apoptosis and inflammatory response. Cell Death Dis 2023; 14:458. [PMID: 37479687 PMCID: PMC10361983 DOI: 10.1038/s41419-023-05975-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Sepsis is a serious clinical condition characterized by a systemic inflammatory response, a leading cause of acute liver and kidney injury, and is associated with a high morbidity and mortality. Understanding the molecular mechanisms underlying the acute liver and kidney injury is crucial for developing an effective therapy. Golgi apparatus plays important roles and has various substrates mediating cellular stress responses. Golgi phosphoprotein 3 (GOLPH3), linking Golgi membranes to the cytoskeleton, has been identified as an important oncogenic regulator; however, its role in endotoxemia-induced acute liver and kidney injury remains elusive. Here, we found that upregulation of GOLPH3 was associated with endotoxemia-induced acute liver and kidney injury. Lipopolysaccharide (LPS) treatment increased Golgi stress and fragmentation, and associated pro-inflammatory mediator (Tnfα, IL-6, and IL-1β) production in vivo and in vitro. Interestingly, the downregulation of GOLPH3 significantly decreased LPS-induced Golgi stress and pro-inflammatory mediators (Tnfα, IL-6, Mcp1, and Nos2), and reversed apoptotic cell deaths in LPS-treated hepatocytes and renal tubular cells. GOLPH3 knockdown also reduced inflammatory response in LPS-treated macrophages. The AKT/NF-kB signaling pathway was suppressed in GOLPH3 knockdown, which may be associated with a reduction of inflammatory response and apoptosis and the recovery of Golgi morphology and function. Taken together, GOLPH3 plays a crucial role in the development and progression of acute liver and kidney injury by promoting Golgi stress and increasing inflammatory response and apoptosis, suggesting GOLPH3 as a potential therapeutic target for endotoxemia-induced tissue injury.
Collapse
Affiliation(s)
- Theodomir Dusabimana
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Anti-aging Bio Cell factory Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jihyun Je
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Anti-aging Bio Cell factory Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Sciences, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Sciences, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Hwajin Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.
- Anti-aging Bio Cell factory Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju, 52727, Republic of Korea.
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.
- Anti-aging Bio Cell factory Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju, 52727, Republic of Korea.
- Department of Convergence Medical Sciences, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea.
| |
Collapse
|
4
|
Gu W, Pang R, Chen Y, Deng F, Zhang M, Shao Z, Zhang S, Duan H, Tang S. Short-term exposure to antimony induces hepatotoxicity and metabolic remodeling in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114852. [PMID: 37023648 DOI: 10.1016/j.ecoenv.2023.114852] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/18/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Antimony (Sb) poses a significant threat to human health due to sharp increases in its exploitation and application globally, but few studies have explored the pathophysiological mechanisms of acute hepatotoxicity induced by Sb exposure. We established an in vivo model to comprehensively explore the endogenous mechanisms underlying liver injury induced by short-term Sb exposure. Adult female and male Sprague-Dawley rats were orally administrated various concentrations of potassium antimony tartrate for 28 days. After exposure, the serum Sb concentration, liver-to-body weight ratio, and serum glucose levels significantly increased in a dose-dependent manner. Body weight gain and serum concentrations of biomarkers of hepatic injury (e.g., total cholesterol, total protein, alkaline phosphatase, and the aspartate aminotransferase/alanine aminotransferase ratio) decreased with increasing Sb exposure. Through integrative non-targeted metabolome and lipidome analyses, alanine, aspartate, and glutamate metabolism; phosphatidylcholines; sphingomyelins; and phosphatidylinositols were the most significantly affected pathways in female and male rats exposed to Sb. Additionally, correlation analysis showed that the concentrations of certain metabolites and lipids (e.g., deoxycholic acid, N-methylproline, palmitoylcarnitine, glycerophospholipids, sphingomyelins, and glycerol) were significantly associated with hepatic injury biomarkers, indicating that metabolic remodeling may be involved in apical hepatotoxicity. Our study demonstrated that short-term exposure to Sb induces hepatotoxicity, possibly through a glycolipid metabolism disorder, providing an important reference for the health risks of Sb pollution.
Collapse
Affiliation(s)
- Wen Gu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ruifang Pang
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yuanyuan Chen
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Miao Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zijin Shao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Shuyi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
5
|
Xi Y, Zhang T, Sun W, Liang R, Ganesh S, Chen H. GOLM1 and FAM49B: Potential Biomarkers in HNSCC Based on Bioinformatics and Immunohistochemical Analysis. Int J Mol Sci 2022; 23:ijms232315433. [PMID: 36499755 PMCID: PMC9737887 DOI: 10.3390/ijms232315433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers worldwide. We aimed to identify potential genetic markers that could predict the prognosis of HNSCC. A total of 44 samples of GSE83519 from Gene Expression Omnibus (GEO) datasets and 546 samples of HNSCC from The Cancer Genome Atlas (TCGA) were adopted. The differently expressed genes (DEGs) of the samples were screened by GEO2R. We integrated the expression information of DEGs with clinical data from GES42743 using the weighted gene co-expression network analysis (WGCNA). A total of 17 hub genes were selected by the module membership (|MM| > 0.8), and the gene significance (|GS| > 0.3) was selected from the turquoise module. GOLM1 and FAM49B genes were chosen based on single-gene analysis results. Survival analysis showed that the higher expression of GOLM1 and FAM49B genes was correlated with a worse prognosis of HNSCC patients. Immunohistochemistry and multiplex immunofluorescence techniques verified that GOLM1 and FAM49B genes were highly expressed in HNSCC cells, and high expressions of GOLM1 were associated with the pathological grades of HNSCC. In conclusion, our study illustrated a new insight that GOLM1 and FAM49B genes might be used as potential biomarkers to determine the development of HNSCC, while GOLM1 and FAM49B have the possibility to be prognostic indicators for HNSCC.
Collapse
Affiliation(s)
- Yue Xi
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Tiange Zhang
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Wei Sun
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ruobing Liang
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Sridha Ganesh
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Honglei Chen
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Correspondence: ; Tel.: +86-27-6781-1732
| |
Collapse
|
6
|
Heiss TK, Dorn RS, Ferreira AJ, Love AC, Prescher JA. Fluorogenic Cyclopropenones for Multicomponent, Real-Time Imaging. J Am Chem Soc 2022; 144:7871-7880. [PMID: 35442034 PMCID: PMC9377832 DOI: 10.1021/jacs.2c02058] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fluorogenic bioorthogonal reactions enable biomolecule visualization in real time. These reactions comprise reporters that "light up" upon reaction with complementary partners. While the spectrum of fluorogenic chemistries is expanding, few transformations are compatible with live cells due to cross-reactivities or insufficient signal turn-on. To address the need for more suitable chemistries for cellular imaging, we developed a fluorogenic reaction featuring cyclopropenone reporters and phosphines. The transformation involves regioselective activation and cyclization of cyclopropenones to form coumarin products. With optimal probes, the reaction provides >1600-fold signal turn-on, one of the highest fluorescence enhancements reported to date. The bioorthogonal motifs were evaluated in vitro and in cells. The reaction was also found to be compatible with other common fluorogenic transformations, enabling multicomponent, real-time imaging. Collectively, these data suggest that the cyclopropenone-phosphine reaction will bolster efforts to track biomolecule targets in their native settings.
Collapse
Affiliation(s)
- Tyler K Heiss
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Robert S Dorn
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Andrew J Ferreira
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Anna C Love
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, California 92697, United States.,Molecular Biology & Biochemistry, University of California, Irvine, California 92697, United States.,Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
7
|
Yang R, Qian L. Research on Gut Microbiota-Derived Secondary Bile Acids in Cancer Progression. Integr Cancer Ther 2022; 21:15347354221114100. [PMID: 35880833 PMCID: PMC9421216 DOI: 10.1177/15347354221114100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The interaction between gut microbiota-derived metabolites and the body plays a
significant role in the occurrence and development of cancer. Secondary bile
acids (BAs) are the important products produced from gut microbial fermentation
of primary BAs, mainly deoxycholic acid (DCA) and lithocholic acid (LCA). In the
gut, they can influence the structure of the microbial communities. Several
studies have demonstrated that secondary BAs, as signaling molecules, can
activate a variety of signaling pathways. They can inhibit the apoptosis of
cancer cells, induce the progression of cancer cell cycles, enhance the ability
of metastasis and invasion of cancer cells, and promote the transformation of
cells into cancer stem cells (CSCs). Moreover, secondary BAs promote cancer by
regulating the function of immune cells. Therefore, targeted manipulation of gut
microbial and secondary BAs has the potential to be developed as for treatment
and prevention of various cancers.
Collapse
Affiliation(s)
- Rong Yang
- Medical College, Yangzhou University, Yangzhou, China
| | - Li Qian
- Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
GOLM1 exacerbates CD8 + T cell suppression in hepatocellular carcinoma by promoting exosomal PD-L1 transport into tumor-associated macrophages. Signal Transduct Target Ther 2021; 6:397. [PMID: 34795203 PMCID: PMC8602261 DOI: 10.1038/s41392-021-00784-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
The immunosuppressive microenvironment plays an important role in tumor progression and immunotherapy responses. Golgi membrane protein 1 (GOLM1) is correlated to hepatocellular carcinoma (HCC) progression and metastasis. However, little is known about the role of GOLM1 in regulating the immunosuppressive environment and its impact on immunotherapeutic efficacy in HCC. In this study, GOLM1 was positively correlated with infiltrating tumor-associated macrophages (TAMs) expressed high levels of programmed death-ligand 1 (PD-L1) and CD8+ T cell suppression in HCC tissues. Both gain- and loss-of-function studies determined a close correlation between GOLM1 and immunosuppression. In the mechanism, GOLM1 promoted COP9 signalosome 5-mediated PD-L1 deubiquitination in HCC cells and increased the transport of PD-L1 into exosomes via suppression of Rab27b expression. Furthermore, co-culture with exosomes derived from HCC cells upregulated the expression of PD-L1 on macrophages. Zoledronic acid in combination with anti-PD-L1 therapy reduced PD-L1+ TAMs infiltration and alleviated CD8+ T cell suppression, resulting in tumor growth inhibition in the mouse HCC model. Together, our study unveils a mechanism by which GOLM1 induces CD8+ T cells suppression through promoting PD-L1 stabilization and transporting PD-L1 into TAMs with exosome dependent. Targeting PD-L1+ TAM could be a novel strategy to enhance the efficacy of anti-PD-L1 therapy in HCC.
Collapse
|
9
|
Li H, Liu Y, Jiang W, Xue J, Cheng Y, Wang J, Yang R, Zhang X. Icaritin promotes apoptosis and inhibits proliferation by down-regulating AFP gene expression in hepatocellular carcinoma. BMC Cancer 2021; 21:318. [PMID: 33765973 PMCID: PMC7992931 DOI: 10.1186/s12885-021-08043-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/15/2021] [Indexed: 11/10/2022] Open
Abstract
Background Icaritin, an active ingredient of the Chinese herb Epimedium, plays an anti-tumor role in liver cancer by inhibiting the proliferation of hepatocellular cells and promoting their apoptosis. In China, phase II and a large phase III clinical trial of icaritin reagent for the treatment of hepatocellular cancer is under-going, but the specific mechanism of icaritin action was unclear. Alpha-fetoprotein (AFP), an oncofetal protein, produced in the healthy fetal liver and yolk sac. Intracellular AFP promoted cellular proliferation and inhibited cellular apoptosis in hepatocellular carcinoma (HCC). The study was aimed to investigate the effect of icaritin on HCC through p53/AFP pathway. Methods Real-time RT PCR and western blot were used to detect p53 and AFP expression levels in HCC cells treated with icaritin. The mechanism of icaritin affecting p53 expression was verified by ubiquitination experiment, and the binding activity of icaritin on p53 in AFP promoter region was verified by luciferase experiment. EdU, MTT and flow cytometry were used to determine whether icaritin affected HCC cellular proliferation and apoptosis through p53/ AFP pathway. Expression levels of p53 and AFP in xenograft mouse model were determined by western blotting. Results Our results showed icaritin inhibited AFP expression at mRNA and protein level. AFP was also identified as the target gene of the p53 transcription factor. Icaritin abrogated murine double minute (Mdm) 2-mediated p53 ubiquitination degradation to improve the stability of p53. Up-regulated p53 protein levels then transcriptionally inhibited the AFP promoter. Icaritin-mediated decrease of AFP through Mdm2/p53 pathways inhibited HCC cellular proliferation and promoted HCC cellular apoptosis. Conclusion Our findings revealed the mechanism of icaritin in promoting apoptosis and inhibiting proliferation in liver cancer cells. The regulatory mechanism of icaritin in AFP protein down-regulation provides a theoretical and experimental basis for further research into new drugs for the treatment of liver cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08043-9.
Collapse
Affiliation(s)
- Hui Li
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, 100191, Beijing, People's Republic of China.
| | - Yujuan Liu
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, 100191, Beijing, People's Republic of China
| | - Wei Jiang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, 100191, Beijing, People's Republic of China
| | - Junhui Xue
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, 100191, Beijing, People's Republic of China
| | - Yuning Cheng
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, 100191, Beijing, People's Republic of China
| | - Jiyin Wang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, 100191, Beijing, People's Republic of China
| | - Ruixiang Yang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, 100191, Beijing, People's Republic of China
| | - Xiaowei Zhang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, 100191, Beijing, People's Republic of China
| |
Collapse
|