1
|
Soiniemi L, Solje E, Suominen AL, Kanninen KM, Kullaa AM. The association between oral diseases and neurodegenerative disorders. J Alzheimers Dis 2024; 102:577-586. [PMID: 39529279 DOI: 10.1177/13872877241289548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND The association between cognitive neurodegenerative disease and oral diseases has been under great interest recently. Several studies have suggested a connection between periodontitis and Alzheimer's disease (AD) or other neurodegenerative disorders. OBJECTIVE This study aimed to review the potential mechanisms between oral diseases and neurodegenerative diseases. METHODS The study was executed as a literature review of English-language publications from 2018-2022. The databases used for the search were PubMed, Cochrane, Scopus, and Web of Science. The search phrases used were "neurodegenerative diseases" AND "oral health" and "neurodegenerative diseases" AND "oral diseases." RESULTS The linkage between the two disease groups was observed in several distinct publications and several potential mechanisms were found. The link between periodontitis and AD proved to be the most significant. The effect was accentuated in elderly people where individuals possessed also other risk factors for neurodegenerative diseases and had generally worse oral health conditions. CONCLUSIONS Oral diseases may be risks for neurodegenerative changes along many different pathways. Good oral health should be acknowledged as a potential preventative or risk-reducing act against neurodegenerative diseases.
Collapse
Affiliation(s)
- Lauriina Soiniemi
- Institute of Dentistry, Medical School, University of Eastern Finland, and Oral and Maxillofacial Teaching Unit, Kuopio University Hospital, Kuopio, Finland
| | - Eino Solje
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, and Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Anna Liisa Suominen
- Institute of Dentistry, Medical School, University of Eastern Finland, and Oral and Maxillofacial Teaching Unit, Kuopio University Hospital, Kuopio, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Arja M Kullaa
- Institute of Dentistry, Medical School, University of Eastern Finland, and Oral and Maxillofacial Teaching Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
2
|
Pulcini R, Chiarelli AM, Sinjari B, Esposito JE, Avolio F, Martinotti R, Pignatelli V, Pignatelli L, Berlincioni L, Martinotti S, Toniato E. A Randomized Clinical Study of a Curcumin and Melatonin Toothpaste Against Periodontal Bacteria. Biomedicines 2024; 12:2499. [PMID: 39595065 PMCID: PMC11592225 DOI: 10.3390/biomedicines12112499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Background: The mouth and the oropharyngeal system are home to numerous bacterial species that constitute the so-called oral microbiome and play an important role for the integrity of the oral cavity, influencing the overall health of the body, as demonstrated by several studies. The aim of this study was to evaluate the bacterial modulation potential of a toothpaste (bioredoxin) containing curcumin and melatonin. Both substances have anti-inflammatory properties, as documented in several scientific reports. Methods: The in vivo study we present was a single-center, double-blind trial and was conducted in parallel groups. We enlisted 20 volunteers who were randomly assigned to four distinct groups using blinded four different toothpaste preparations: a standard toothpaste indicated as placebo, a toothpaste with curcumin, a toothpaste with melatonin, and a toothpaste with melatonin and curcumin. Results: The samples from the gingival tasks were taken at time 0 and after 8 weeks of toothpaste treatment. By evaluating the DNA content of the most significant periodontal bacteria related to the total bacteria count using quantitative PCR assays, including the saprophyte component of the microbiome, we demonstrated that the Curcumin and Melatonin treatment has a statistically relevant effect on decreasing the level of periodontal pathogenic bacteria DNA. The toothpaste with the addition of curcumin and melatonin showed a modulation between t0 and t1 of the Campylobacter rectus (14,568 vs. 3532.8) and Peptostreptococcus micro (1320.8 vs. 319) bacteria. In addition, a modulation of pathogenic bacteria and saprophytic bacteria was shown. The synergistic action of the two additives would therefore appear to lead to promising results. Conclusions: Despite the fact that additional studies may be necessary in evaluating the effect of the Curcumin/melatonin combination in modulating a proposed therapeutic effect on infections of the oropharyngeal apparatus, in this report, we show for the first time that a combination of curcumin and melatonin supplemented using an oral cosmetic vehicle has the capacity to decrease the level of periodontal pathogenic bacteria, possibly ameliorating health and the physiological conditions in the buccal scenario.
Collapse
Affiliation(s)
- Riccardo Pulcini
- Department of Innovative Technology in Medicine and Dentistry, Center of Advanced Studies and Technology, University of Chieti, 66100 Chieti, Italy; (R.P.); (B.S.); (J.E.E.); (F.A.)
| | - Antonio Maria Chiarelli
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Bruna Sinjari
- Department of Innovative Technology in Medicine and Dentistry, Center of Advanced Studies and Technology, University of Chieti, 66100 Chieti, Italy; (R.P.); (B.S.); (J.E.E.); (F.A.)
| | - Jessica Elisabetta Esposito
- Department of Innovative Technology in Medicine and Dentistry, Center of Advanced Studies and Technology, University of Chieti, 66100 Chieti, Italy; (R.P.); (B.S.); (J.E.E.); (F.A.)
| | - Francesco Avolio
- Department of Innovative Technology in Medicine and Dentistry, Center of Advanced Studies and Technology, University of Chieti, 66100 Chieti, Italy; (R.P.); (B.S.); (J.E.E.); (F.A.)
| | - Riccardo Martinotti
- Recidency Program in Clinical Oncology, Umberto I, University Hospital, La Sapienza, 00142 Rome, Italy;
| | | | | | | | - Stefano Martinotti
- Unit of Clinical Pathology and Microbiology, Department of Medicine, Miulli General Hospital, LUM University, 70021 Acquaviva delle Fonti, Italy;
| | - Elena Toniato
- Department of Innovative Technology in Medicine and Dentistry, Center of Advanced Studies and Technology, University of Chieti, 66100 Chieti, Italy; (R.P.); (B.S.); (J.E.E.); (F.A.)
| |
Collapse
|
3
|
Arcas VC, Tig IA, Moga DFC, Vlad AL, Roman-Filip C, Fratila AM. A Systematic Literature Review on Inflammatory Markers in the Saliva of Patients with Multiple Sclerosis: A Cause or a Consequence of Periodontal Diseases. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:859. [PMID: 38929476 PMCID: PMC11205661 DOI: 10.3390/medicina60060859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: Multiple sclerosis (MS) is a chronic neurodegenerative disease often linked with systemic conditions such as periodontal diseases (PDs). This systematic review aims to explore the association between inflammatory markers in saliva and PDs in MS patients, assessing the use of saliva as a non-invasive tool to monitor disease progression. Materials and Methods: 82 publications were examined after a thorough search of scholarly databases to determine whether inflammatory markers were present in MS patients and whether they were associated with periodontal disease (PD). Quality and bias were assessed using the Newcastle-Ottawa Scale, resulting in eight articles that were thoroughly analyzed. Results: The results point to a strong correlation between MS and periodontal disorders, which may point to the same pathophysiological mechanism. It does, however, underscore the necessity of additional study to determine a definitive causal association. Conclusions: The findings indicate a strong association between MS and PDs, likely mediated by systemic inflammatory responses detectable in saliva. The review highlights the importance of oral health in managing MS and supports the utility of saliva as a practical, non-invasive medium for monitoring systemic inflammation. Further research is necessary to confirm the causal relationships and to consider integrating salivary diagnostics into routine clinical management for MS patients.
Collapse
Affiliation(s)
- Vasile Calin Arcas
- Doctoral School of Biomedical Sciences, Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania;
| | - Ioan Andrei Tig
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Doru Florian Cornel Moga
- Department of Dental Medicine and Nursing, Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (C.R.-F.); (A.M.F.)
- Military Clinical Emergency Hospital of Sibiu, 550024 Sibiu, Romania
| | - Alexandra Lavinia Vlad
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
| | - Corina Roman-Filip
- Department of Dental Medicine and Nursing, Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (C.R.-F.); (A.M.F.)
- Neurology Department, Emergency County Clinical Hospital Sibiu, 550245 Sibiu, Romania
| | - Anca Maria Fratila
- Department of Dental Medicine and Nursing, Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (C.R.-F.); (A.M.F.)
- Military Clinical Emergency Hospital of Sibiu, 550024 Sibiu, Romania
| |
Collapse
|
4
|
Cabanillas J, Risco R, Munive-Degregori A, Guerrero ME, Mauricio F, Mayta-Tovalino F. Periodontitis and Neuropathic Diseases: A Literature Review. J Int Soc Prev Community Dent 2024; 14:10-15. [PMID: 38559636 PMCID: PMC10980301 DOI: 10.4103/jispcd.jispcd_68_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 04/04/2024] Open
Abstract
Aim This narrative review aimed at identifying the existing scientific literature investigating periodontitis and neuropathic diseases. Materials and Methods A search of the literature published between 2000 and 2022 was carried out in the electronic databases of Scopus and PubMed. Studies in which the eligible articles were mainly published in English were included. Descriptive correlational studies, case-control studies, comparative studies, and cohort studies were also included. The following main keywords were used: "Neuropathic diseases," "Periodontitis," "Alzheimer's disease," and "Porphyromonas gingivalis." Results This narrative review found that cognitively impaired persons with severe periodontitis had a higher prevalence and incidence of periodontal diseases than the rest of the population. A significant positive correlation of salivary interleukin (IL)-1beta and immediate recall scores involved in cognition was also evident. It indicates that the most investigated parameter was whether there is any common link between periodontal disease and neurodegeneration. No randomized controlled clinical studies were found in the current literature review. Conclusions Based on the literature reviewed, there is currently no strong scientific evidence to support or discourage the cause-effect relationship of periodontal diseases and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jesus Cabanillas
- Academic Department, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Peru
| | - Ruth Risco
- Academic Department, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Peru
| | - Arnaldo Munive-Degregori
- Academic Department of Rehabilitative Stomatology, Faculty of Dentistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Maria Eugenia Guerrero
- Academic Department of Medical and Surgical Stomatology, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Franco Mauricio
- Academic Department, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Peru
| | - Frank Mayta-Tovalino
- CHANGE Research Working Group, Faculty of Health Sciences, Universidad Cientifica del Sur, Lima, Peru
| |
Collapse
|
5
|
Franciotti R, Pignatelli P, D’Antonio DL, Mancinelli R, Fulle S, De Rosa MA, Puca V, Piattelli A, Thomas AM, Onofrj M, Sensi SL, Curia MC. The Immune System Response to Porphyromonas gingivalis in Neurological Diseases. Microorganisms 2023; 11:2555. [PMID: 37894213 PMCID: PMC10609495 DOI: 10.3390/microorganisms11102555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Previous studies have reported an association between oral microbial dysbiosis and the development and progression of pathologies in the central nervous system. Porphyromonas gingivalis (Pg), the keystone pathogen of the oral cavity, can induce a systemic antibody response measured in patients' sera using enzyme-linked immunosorbent assays. The present case-control study quantified the immune system's response to Pg abundance in the oral cavities of patients affected by different central nervous system pathologies. The study cohort included 87 participants: 23 healthy controls (HC), 17 patients with an acute neurological condition (N-AC), 19 patients with a chronic neurological condition (N-CH), and 28 patients with neurodegenerative disease (N-DEG). The results showed that the Pg abundance in the oral cavity was higher in the N-DEG patients than in the HC (p = 0.0001) and N-AC patients (p = 0.01). In addition, the Pg abundance was higher in the N-CH patients than the HCs (p = 0.005). Only the N-CH patients had more serum anti-Pg antibodies than the HC (p = 0.012). The inadequate response of the immune system of the N-DEG group in producing anti-Pg antibodies was also clearly indicated by an analysis of the ratio between the anti-Pg antibodies quantity and the Pg abundance. Indeed, this ratio was significantly lower between the N-DEG group than all other groups (p = 0.0001, p = 0.002, and p = 0.03 for HC, N-AC, and N-CH, respectively). The immune system's response to Pg abundance in the oral cavity showed a stepwise model: the response diminished progressively from the patients affected with an acute condition to the patients suffering from chronic nervous system disorders and finally to the patients affected by neurodegenerative diseases.
Collapse
Affiliation(s)
- Raffaella Franciotti
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
| | - Pamela Pignatelli
- COMDINAV DUE, Nave Cavour, Italian Navy, Stazione Navale Mar Grande, Viale Jonio, 74122 Taranto, Italy;
| | - Domenica Lucia D’Antonio
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (M.C.C.)
- Fondazione Villaserena per la Ricerca, 65013 Città Sant’Angelo, Pescara, Italy
| | - Rosa Mancinelli
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
| | - Matteo Alessandro De Rosa
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Puca
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University for Health Sciences, 00131 Rome, Italy;
- Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain
| | - Astrid Maria Thomas
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano Luca Sensi
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (M.C.C.)
| |
Collapse
|
6
|
Ab Malik N, Walls A. Periodontal health status of people with dementia - A systematic review of case-control studies. Saudi Dent J 2023; 35:625-640. [PMID: 37817782 PMCID: PMC10562093 DOI: 10.1016/j.sdentj.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 10/12/2023] Open
Abstract
Background The number of older people increases globally, so is the risk of cognitive impairment. Periodontal diseases are common among older adults with significant tooth loss and periodontal problems. Thus, this review explored the periodontal disease conditions among individuals with and without dementia. Methods Available databases such as Medline/Pubmed, Web of Science, Scopus, Cochrane Library and Embase/OVID were used in the search. Case-control studies reporting on periodontal disease and dementia parameters were selected based on PICO (Population, Intervention, Comparison and Outcomes) framework. A Newcastle-Ottawa Scale (NOS) was used to assess the quality reporting of the studies and PRISMA guideline was used for screening. Results A total of ten studies were identified for analysis. Most studies reported higher plaque index score (PI), bleeding on probing (BoP), pocket depth (PD) and clinical attachment loss (CAL) among individuals diagnosed with dementia or Alzheimer's disease compared with clinically healthy controls or individual diagnosed without dementia. A higher prevalence of subjects with severe periodontal disease was also observed in individuals diagnosed with dementia/Alzheimer's disease. The quality of the studies was found to be moderate with lower comparability and ascertainment criteria scores. Conclusion This qualitative analysis has shown poor periodontal health and increased inflammatory mediators in case groups compared to the control groups. Thus, more quality studies and novel intervention are warranted to reduce the impact of periodontal health on dementia globally.
Collapse
Affiliation(s)
- N. Ab Malik
- Edinburgh Dental Institute, University of Edinburgh, Scotland, United Kingdom
- Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| | - A.W.G. Walls
- Edinburgh Dental Institute, University of Edinburgh, Scotland, United Kingdom
| |
Collapse
|
7
|
Shen MT, Shahin B, Chen Z, Adami GR. Unexpected lower level of oral periodontal pathogens in patients with high numbers of systemic diseases. PeerJ 2023; 11:e15502. [PMID: 37465146 PMCID: PMC10351517 DOI: 10.7717/peerj.15502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/14/2023] [Indexed: 07/20/2023] Open
Abstract
Background Periodontal disease is associated with systemic conditions such as diabetes, arthritis, and cardiovascular disease, all diseases with large inflammatory components. Some, but not all, reports show periopathogens Porphyromonas gingivialis and Tannerella forsythia at higher levels orally in people with one of these chronic diseases and in people with more severe cases. These oral pathogens are thought to be positively associated with systemic inflammatory diseases through induction of oral inflammation that works to distort systemic inflammation or by directly inducing inflammation at distal sites in the body. This study aimed to determine if, among patients with severe periodontal disease, those with multi-morbidity (or many chronic diseases) showed higher levels of periodontal pathogens. Methods A total of 201 adult subjects, including 84 with severe periodontal disease were recruited between 1/2017 and 6/2019 at a city dental clinic. Electronic charts supplied self-reported diseases and conditions which informed a morbidity index based on the number of chronic diseases and conditions present. Salivary composition was determined by 16S rRNA gene sequencing. Results As expected, patients with severe periodontal disease showed higher levels of periodontal pathogens in their saliva. Also, those with severe periodontal disease showed higher levels of multiple chronic diseases (multimorbidity). An examination of the 84 patients with severe periodontal disease revealed some subjects despite being of advanced age were free or nearly free of systemic disease. Surprisingly, the salivary microbiota of the least healthy of these 84 subjects, defined here as those with maximal multimorbidity, showed significantly lower relative numbers of periodontal pathogens, including Porphyromonas gingivalis and Tannerella Forsythia, after controlling for active caries, tobacco usage, age, and gender. Analysis of a control group with none to moderate periodontal disease revealed no association of multimorbidity or numbers of medications used and specific oral bacteria, indicating the importance of severe periodontal disease as a variable of interest. Conclusion The hypothesis that periodontal disease patients with higher levels of multimorbidity would have higher levels of oral periodontal pathogens is false. Multimorbidity is associated with a reduced relative number of periodontal pathogens Porphyromonas gingivalis and Tannerella forsythia.
Collapse
Affiliation(s)
- Michael T Shen
- Oral Medicine and Diagnostic Sciences, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States of America
| | - Betti Shahin
- Restorative Dentistry, University of Illinois Chicago, Chicago, IL, United States of America
| | - Zhengjia Chen
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, IL, United States of America
- Biostatistics Shared Resource Core, University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, United States of America
| | - Guy R Adami
- Oral Medicine and Diagnostic Sciences, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States of America
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, United States of America
| |
Collapse
|
8
|
Lima A, França A, Muzny CA, Taylor CM, Cerca N. DNA extraction leads to bias in bacterial quantification by qPCR. Appl Microbiol Biotechnol 2022; 106:7993-8006. [PMID: 36374332 PMCID: PMC10493044 DOI: 10.1007/s00253-022-12276-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
Abstract
Quantitative PCR (qPCR) has become a widely used technique for bacterial quantification. The affordability, ease of experimental design, reproducibility, and robustness of qPCR experiments contribute to its success. The establishment of guidelines for minimum information for publication of qPCR experiments, now more than 10 years ago, aimed to mitigate the publication of contradictory data. Unfortunately, there are still a significant number of recent research articles that do not consider the main pitfalls of qPCR for quantification of biological samples, which undoubtedly leads to biased experimental conclusions. qPCR experiments have two main issues that need to be properly tackled: those related to the extraction and purification of genomic DNA and those related to the thermal amplification process. This mini-review provides an updated literature survey that critically analyzes the following key aspects of bacterial quantification by qPCR: (i) the normalization of qPCR results by using exogenous controls, (ii) the construction of adequate calibration curves, and (iii) the determination of qPCR reaction efficiency. It is primarily focused on original papers published last year, where qPCR was applied to quantify bacterial species in different types of biological samples, including multi-species biofilms, human fluids, and water and soil samples. KEY POINTS: • qPCR is a widely used technique used for absolute bacterial quantification. • Recently published papers lack proper qPCR methodologies. • Not including proper qPCR controls significantly affect experimental conclusions.
Collapse
Affiliation(s)
- Angela Lima
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| | - Angela França
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| | - Christina A Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology, and Parasitology & Microbial Genomics Resource Group, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Nuno Cerca
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal.
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
9
|
Curia MC, Pignatelli P, D’Antonio DL, D’Ardes D, Olmastroni E, Scorpiglione L, Cipollone F, Catapano AL, Piattelli A, Bucci M, Magni P. Oral Porphyromonas gingivalis and Fusobacterium nucleatum Abundance in Subjects in Primary and Secondary Cardiovascular Prevention, with or without Heterozygous Familial Hypercholesterolemia. Biomedicines 2022; 10:biomedicines10092144. [PMID: 36140246 PMCID: PMC9496065 DOI: 10.3390/biomedicines10092144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background: Low-grade chronic inflammation, promoted by dysbiosis of the gut and oral microbiota, has been shown to contribute to individual susceptibility to atherosclerotic cardiovascular disease (ASCVD). High oral Porphyromonas gingivalis (Pg) and lower Fusobacterium nucleatum (Fn) concentrations have been associated with clinical and experimental atherosclerosis. We assessed oral Pg and Fn abundance in very high-risk patients with previously diagnosed ASCVD, with or without heterozygous familial hypercholesterolemia (HeFH), in subjects with HeFH in primary prevention and in healthy subjects. Methods: In this cross-sectional study, 40 patients with previously diagnosed ASCVD (10 with genetically proven HeFH, and 30 without FH), 26 subjects with HeFH in primary prevention, and 31 healthy subjects were selected to quantify oral Pg and Fn abundance by qPCR and assess oral health status. Results: Compared to healthy subjects, patients with previously diagnosed ASCVD showed greater Pg abundance (1101.3 vs. 192.4, p = 0.03), but similar Fn abundance. HeFH patients with ASCVD had an even greater Pg abundance than did non-HeFH patients and healthy subjects (1770.6 vs. 758.4 vs. 192.4, respectively; p = 0.048). No differences were found in the levels of Pg and Fn abundance in HeFH subjects in primary prevention, as compared to healthy subjects. Conclusions: Greater oral Pg abundance is present in very high-risk patients with previously diagnosed ASCVD, with or without FH, suggesting a potential relationship with CV events. Future studies will assess the predictive value of Pg abundance measurement in ASCVD risk stratification.
Collapse
Affiliation(s)
- Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, Università degli Studi “Gabriele d’Annunzio” di Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: (M.C.C.); (M.B.); (P.M.)
| | - Pamela Pignatelli
- Department of Medical, Oral and Biotechnological Sciences, Università degli Studi “Gabriele d’Annunzio” di Chieti-Pescara, 66100 Chieti, Italy
- Department of Oral and Maxillofacial Sciences, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Domenica Lucia D’Antonio
- Department of Medical, Oral and Biotechnological Sciences, Università degli Studi “Gabriele d’Annunzio” di Chieti-Pescara, 66100 Chieti, Italy
| | - Damiano D’Ardes
- Regional Center for the Study of Atherosclerosis, Hypertension and Dyslipidemia, “SS Annunziata” Hospital—ASL, 66100 Chieti, Italy
- C.A.S.T., Università degli Studi “Gabriele d’Annunzio” di Chieti-Pescara, 66100 Chieti, Italy
| | - Elena Olmastroni
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Luca Scorpiglione
- Regional Center for the Study of Atherosclerosis, Hypertension and Dyslipidemia, “SS Annunziata” Hospital—ASL, 66100 Chieti, Italy
- C.A.S.T., Università degli Studi “Gabriele d’Annunzio” di Chieti-Pescara, 66100 Chieti, Italy
| | - Francesco Cipollone
- Regional Center for the Study of Atherosclerosis, Hypertension and Dyslipidemia, “SS Annunziata” Hospital—ASL, 66100 Chieti, Italy
- C.A.S.T., Università degli Studi “Gabriele d’Annunzio” di Chieti-Pescara, 66100 Chieti, Italy
| | - Alberico Luigi Catapano
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
- IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
| | - Adriano Piattelli
- Master Course in Microsurgery in Odontostomatology, Saint Camillus International University for Health Sciences (Unicamillus), 00131 Rome, Italy
- Fondazione Villaserena per la Ricerca, 65013 Città Sant’Angelo, Pescara, Italy
- Casa di Cura Villa Serena, 65013 Città Sant’Angelo, Pescara, Italy
| | - Marco Bucci
- Regional Center for the Study of Atherosclerosis, Hypertension and Dyslipidemia, “SS Annunziata” Hospital—ASL, 66100 Chieti, Italy
- C.A.S.T., Università degli Studi “Gabriele d’Annunzio” di Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: (M.C.C.); (M.B.); (P.M.)
| | - Paolo Magni
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
- IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
- Correspondence: (M.C.C.); (M.B.); (P.M.)
| |
Collapse
|
10
|
Li C, Li S, Liu J, Cai H, Liu G, Deng X, Chang W. Escherichia coli O88 induces intestinal damage and inflammatory response through the oxidative phosphorylation and ribosome pathway in Pekin ducks. Front Cell Infect Microbiol 2022; 12:940847. [PMID: 36061867 PMCID: PMC9433110 DOI: 10.3389/fcimb.2022.940847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Colibacillosis is one of the major health threats in the poultry industry worldwide. Understanding the pathogenic mechanisms involved in Escherichia coli-induced inflammatory response may lead to the development of new therapies to combat the disease. To address this, a total of 96 1-day-old male lean Pekin ducklings were employed and randomly allocated to two treatments, each with six replicates of eight ducks. Ducks in the experiment group (EG) and the control group (CG) were separately orally administered with 0.2 ml of pathogenic E. coli O88 (3 × 109 CFU/ml) or equivalent volumes of 0.9% sterile saline solution on day 7, two times with an 8-h interval. Serum and intestinal samples were collected on days 9, 14, and 28. Results showed that ducks challenged with E. coli had lower average daily gain and higher feed intake/weight gain during days 9–14 and overall (P < 0.05). Histopathological examination showed that E. coli decreased the villus height and the ratio of villus height/crypt depth in the jejunum (P < 0.05) on days 9 and 14. The intestinal barrier was disrupted, presenting in E. coli ducks having higher serum DAO and D-LA on days 9 and 14 (P < 0.05) and greater content of serum LPS on day 9 (P < 0.05). Escherichia coli infection also triggered a systemic inflammatory response including the decrease of the serum IgA, IgM, and jejunal sIgA on day 14 (P < 0.05). In addition to these, 1,062 differentially expressed genes were detected in the jejunum tissues of ducks by RNA-seq, consisting of 491 upregulated and 571 downregulated genes. Based on the KEGG database, oxidative phosphorylation and the ribosome pathway were the most enriched. These findings reveal the candidate pathways and genes that may be involved in E. coli infection, allow a better understanding of the molecular mechanisms of inflammation progression and may facilitate the genetic improvement of ducks, and provide further insights to tackle the drug sensitivity and animal welfare issues.
Collapse
Affiliation(s)
- Chong Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Shuzhen Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Jinmei Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Huiyi Cai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
- Research and Development Department, National Engineering Research Center of Biological Feed, Beijing, China
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Xuejuan Deng
- Research and Development Department, National Engineering Research Center of Biological Feed, Beijing, China
| | - Wenhuan Chang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
- *Correspondence: Wenhuan Chang,
| |
Collapse
|
11
|
The Mechanistic Pathways of Periodontal Pathogens Entering the Brain: The Potential Role of Treponema denticola in Tracing Alzheimer’s Disease Pathology. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159386. [PMID: 35954742 PMCID: PMC9368682 DOI: 10.3390/ijerph19159386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
Abstract
Alzheimer’s Disease (AD) is a complex neurodegenerative disease and remains the most common form of dementia. The pathological features include amyloid (Aβ) accumulation, neurofibrillary tangles (NFTs), neural and synaptic loss, microglial cell activation, and an increased blood–brain barrier permeability. One longstanding hypothesis suggests that a microbial etiology is key to AD initiation. Among the various periodontal microorganisms, Porphyromonas gingivalis has been considered the keystone agent to potentially correlate with AD, due to its influence on systemic inflammation. P. gingivalis together with Treponema denticola and Tannerella forsythia belong to the red complex consortium of bacteria advocated to sustain periodontitis within a local dysbiosis and a host response alteration. Since the implication of P. gingivalis in the pathogenesis of AD, evidence has emerged of T. denticola clusters in some AD brain tissue sections. This narrative review explored the potential mode of spirochetes entry into the AD brain for tracing pathology. Spirochetes are slow-growing bacteria, which can hide within ganglia for many years. It is this feature in combination with the ability of these bacteria to evade the hosts’ immune responses that may account for a long lag phase between infection and plausible AD disease symptoms. As the locus coeruleus has direct connection between the trigeminal nuclei to periodontal free nerve endings and proprioceptors with the central nervous system, it is plausible that they could initiate AD pathology from this anatomical region.
Collapse
|
12
|
Nicholson JS, Landry KS. Oral Dysbiosis and Neurodegenerative Diseases: Correlations and Potential Causations. Microorganisms 2022; 10:microorganisms10071326. [PMID: 35889043 PMCID: PMC9317272 DOI: 10.3390/microorganisms10071326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Biofilms are a heterogenous complex community of vegetative cells and extracellular polymeric substances that can adhere to various surfaces and are responsible for a variety of chronic and acute diseases. The impact of bacterial biofilms on oral and intestinal health is well studied, but the correlation and causations of biofilms and neurodegenerative diseases are still in their infancy. However, the correlations between biofilms and diseases such as Alzheimer’s Disease, Multiple Sclerosis, and even Parkinson’s Disease are starting to demonstrate the role bacterial biofilms have in promoting and exasperating various illnesses. The review article provides insight into the role bacterial biofilms may have on the development and progression of various neurodegenerative diseases and hopefully shine a light on this very important area of research.
Collapse
Affiliation(s)
- Justine S. Nicholson
- Delavie Sciences, Worcester, MA 01605, USA;
- Department of Neurobiology, Columbia University, New York, NY 10027, USA
| | - Kyle S. Landry
- Delavie Sciences, Worcester, MA 01605, USA;
- Department of Health Sciences, Boston University, Boston, MA 02215, USA
- Correspondence: or
| |
Collapse
|
13
|
Jungbauer G, Stähli A, Zhu X, Auber Alberi L, Sculean A, Eick S. Periodontal microorganisms and Alzheimer disease - A causative relationship? Periodontol 2000 2022; 89:59-82. [PMID: 35244967 PMCID: PMC9314828 DOI: 10.1111/prd.12429] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 01/10/2023]
Abstract
In the initiation or exacerbation of Alzheimer disease, the dissemination of oral microorganisms into the brain tissue or the low‐level systemic inflammation have been speculated to play a role. However, the impact of oral microorganisms, such as Porphyromonas gingivalis, on the pathogenesis of Alzheimer disease and the potential causative relationship is still unclear. The present review has critically reviewed the literature by examining the following aspects: (a) the oral microbiome and the immune response in the elderly population, (b) human studies on the association between periodontal and gut microorganisms and Alzheimer disease, (c) animal and in vitro studies on microorganisms and Alzheimer disease, and (d) preventive and therapeutic approaches. Factors contributing to microbial dysbiosis seem to be aging, local inflammation, systemic diseases, wearing of dentures, living in nursing homes and no access to adequate oral hygiene measures. Porphyromonas gingivalis was detectable in post‐mortem brain samples. Microbiome analyses of saliva samples or oral biofilms showed a decreased microbial diversity and a different composition in Alzheimer disease compared to cognitively healthy subjects. Many in‐vitro and animal studies underline the potential of P gingivalis to induce Alzheimer disease‐related alterations. In animal models, recurring applications of P gingivalis or its components increased pro‐inflammatory mediators and β‐amyloid in the brain and deteriorated the animals' cognitive performance. Since periodontitis is the result of a disturbed microbial homoeostasis, an effect of periodontal therapy on the oral microbiome and host response related to cognitive parameters may be suggested and should be elucidated in further clinical trials.
Collapse
Affiliation(s)
- Gert Jungbauer
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Private Dental Practice, Straubing, Germany
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Xilei Zhu
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | | | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Sun P, Su L, Zhu H, Li X, Guo Y, Du X, Zhang L, Qin C. Gut Microbiota Regulation and Their Implication in the Development of Neurodegenerative Disease. Microorganisms 2021; 9:microorganisms9112281. [PMID: 34835406 PMCID: PMC8621510 DOI: 10.3390/microorganisms9112281] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, human gut microbiota have become one of the most promising areas of microorganism research; meanwhile, the inter-relation between the gut microbiota and various human diseases is a primary focus. As is demonstrated by the accumulating evidence, the gastrointestinal tract and central nervous system interact through the gut–brain axis, which includes neuronal, immune-mediated and metabolite-mediated pathways. Additionally, recent progress from both preclinical and clinical studies indicated that gut microbiota play a pivotal role in gut–brain interactions, whereas the imbalance of the gut microbiota composition may be associated with the pathogenesis of neurological diseases (particularly neurodegenerative diseases), the underlying mechanism of which is insufficiently studied. This review aims to highlight the relationship between gut microbiota and neurodegenerative diseases, and to contribute to our understanding of the function of gut microbiota in neurodegeneration, as well as their relevant mechanisms. Furthermore, we also discuss the current application and future prospects of microbiota-associated therapy, including probiotics and fecal microbiota transplantation (FMT), potentially shedding new light on the research of neurodegeneration.
Collapse
Affiliation(s)
- Peilin Sun
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Lei Su
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Hua Zhu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Xue Li
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Yaxi Guo
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Xiaopeng Du
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Ling Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
- Correspondence: ; Tel.: +86-10-8777-8141
| |
Collapse
|