1
|
Pou S, Winter RW, Liebman KM, Dodean RA, Nilsen A, DeBarber A, Doggett JS, Riscoe MK. Synthesis of Deuterated Endochin-Like Quinolones. J Labelled Comp Radiopharm 2024; 67:186-196. [PMID: 38661253 PMCID: PMC11081819 DOI: 10.1002/jlcr.4092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 04/26/2024]
Abstract
Malaria continues to be a serious and debilitating disease. The emergence and spread of high-level resistance to multiple antimalarial drugs by Plasmodium falciparum has brought about an urgent need for new treatments that will be active against multidrug resistant malaria infections. One such treatment, ELQ-331 (MMV-167), an alkoxy carbonate prodrug of 4(1H)-quinolone ELQ-300, is currently in preclinical development with the Medicines for Malaria Venture. Clinical development of ELQ-331 or similar compounds will require the availability of isotopically labeled analogs. Unfortunately, a suitable method for the deuteration of these important compounds was not found in the literature. Here, we describe a facile and scalable method for the deuteration of 4(1H)-quinolone ELQ-300, its alkoxycarbonate prodrug ELQ-331, and their respective N-oxides using deuterated acetic acid.
Collapse
Affiliation(s)
- Sovitj Pou
- Medical Research Service, VA Healthcare System, Portland, Oregon, USA
| | - Rolf W Winter
- Medical Research Service, VA Healthcare System, Portland, Oregon, USA
| | | | - Rosie A Dodean
- Medical Research Service, VA Healthcare System, Portland, Oregon, USA
| | - Aaron Nilsen
- Medical Research Service, VA Healthcare System, Portland, Oregon, USA
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Andrea DeBarber
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - J Stone Doggett
- Medical Research Service, VA Healthcare System, Portland, Oregon, USA
- Division of Infectious Diseases, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Michael K Riscoe
- Medical Research Service, VA Healthcare System, Portland, Oregon, USA
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
2
|
Bao Y, Lu W. Targeting cerebral diseases with enhanced delivery of therapeutic proteins across the blood-brain barrier. Expert Opin Drug Deliv 2023; 20:1681-1698. [PMID: 36945117 DOI: 10.1080/17425247.2023.2193390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Cerebral diseases have been threatening public physical and psychological health in the recent years. With the existence of the blood-brain barrier (BBB), it is particularly hard for therapeutic proteins like peptides, enzymes, antibodies, etc. to enter the central nervous system (CNS) and function in diagnosis and treatment in cerebral diseases. Fortunately, the past decade has witnessed some emerging strategies of delivering macromolecular therapeutic proteins across the BBB. AREAS COVERED Based on the structure, functions, and substances transport mechanisms, various enhanced delivery strategies of therapeutic proteins were reviewed, categorized by molecule-mediated delivery strategies, carrier-mediated delivery strategies, and other delivery strategies. EXPERT OPINION As for molecule-mediated delivery strategies, development of genetic engineering technology, optimization of protein expression and purification techniques, and mature of quality control systems all help to realize large-scale production of recombinant antibodies, making it possible to apply to the clinical practice. In terms of carrier-mediated delivery strategies and others, although nano-carriers/adeno-associated virus (AAV) are also promising candidates for delivering therapeutic proteins or genes across the BBB, some issues still remain to be further investigated, including safety concerns related to applied materials, large-scale production costs, quality control standards, combination therapies with auxiliary delivery strategies like focused ultrasound, etc.
Collapse
Affiliation(s)
- Yanning Bao
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, and Shanghai Frontiers Science Center for Druggability of Cardiovascular non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, China
- Department of Research and Development, Shanghai Tayzen PharmLab Co., Ltd. Lingang of Shanghai, China
| |
Collapse
|
3
|
Yao M, Xu F, Yao Y, Wang H, Ju X, Wang L. Assessment of Novel Oligopeptides from Rapeseed Napin ( Brassica napus) in Protecting HepG2 Cells from Insulin Resistance and Oxidative Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12418-12429. [PMID: 36129441 DOI: 10.1021/acs.jafc.2c03718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oligopeptides (Thr-His-Leu-Pro-Lys (THLPK), His-Pro-Leu-Lys (HPLK), Leu-Pro-Lys (LPK), His-Leu-Lys (HLK), and Leu-His-Lys (LHK)) are newly identified from rapeseed napin (Brassica napus) protein-derived hydrolysates with the capability of upregulating glucose transporter-4 (GLUT4) expression and translocation. However, whether each of them enhances GLUT4 expression and translocation and their specific mechanisms remain unclear. Here, we assess the effects of the oligopeptides against insulin resistance (IR) and oxidative stress in hepatocytes and screen out the most antidiabetic one. Specifically, compared with other oligopeptides, LPK not only remarkably elevated glucose consumption to 8.45 mmol/L protein; superoxide dismutase (SOD) activity to 319 U/mg protein; GLUT4 expression and translocation; and phosphorylated level of insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt) (P < 0.05) but also remarkably attenuated the reactive oxygen species (ROS) level to 2255, lactate dehydrogenase (LDH) activity to 20.5 U/mg protein, malondialdehyde (MDA) content to 241 nmol/mg protein, and NO content to 1302 μmol/mL protein (P < 0.05). These findings demonstrated that antidiabetic oligopeptide LPK possessed the most potential to protect HepG2 cells from IR and oxidative stress via activating IRS-1/PI3K/Akt/GLUT4 and regulating common oxidative markers in vitro.
Collapse
Affiliation(s)
- Meng Yao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing210023, Jiangsu, China
| | - Feiran Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei230009, Anhui, China
| | - Yijun Yao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing210023, Jiangsu, China
| | - Haiou Wang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing210017, Jiangsu, China
| | - Xingrong Ju
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing210023, Jiangsu, China
| | - Lifeng Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing210023, Jiangsu, China
| |
Collapse
|
4
|
Deigin VI, Poluektova EA, Beniashvili AG, Kozin SA, Poluektov YM. Development of Peptide Biopharmaceuticals in Russia. Pharmaceutics 2022; 14:pharmaceutics14040716. [PMID: 35456550 PMCID: PMC9030433 DOI: 10.3390/pharmaceutics14040716] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Peptides are low-molecular-weight substances that participate in numerous important physiological functions, such as human growth and development, stress, regulation of the emotional state, sexual behavior, and immune responses. Their mechanisms of action are based on receptor–ligand interactions, which result in highly selective effects. These properties and low toxicity enable them to be considered potent drugs. Peptide preparations became possible at the beginning of the 20th century after a method was developed for selectively synthesizing peptides; however, after synthesis of the first peptide drugs, several issues related to increasing the stability, bioavailability, half-life, and ability to move across cell membranes remain unresolved. Here, we briefly review the history of peptide production and development in the biochemical industry and outline potential areas of peptide biopharmaceutical applications and modern approaches for creating pharmaceuticals based on synthetic peptides and their analogs. We also focus on original peptide drugs and the approaches used for their development by the Russian Federation.
Collapse
Affiliation(s)
- Vladislav I. Deigin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Moscow, Russia;
| | - Elena A. Poluektova
- Department of Propaedeutics of Internal Diseases, Gastroenterology and Hepatology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Allan G. Beniashvili
- Mental Health Research Center, Federal State Budgetary Scientific Institution, Ministry of Health of the Russian Federation, 115522 Moscow, Russia;
| | - Sergey A. Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Yuri M. Poluektov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
- Correspondence: ; Tel.: +7-916-407-7570
| |
Collapse
|
5
|
Mitkevich VA, Barykin EP, Eremina S, Pani B, Katkova-Zhukotskaya O, Polshakov VI, Adzhubei AA, Kozin SA, Mironov AS, Makarov AA, Nudler E. Zn-dependent β-amyloid Aggregation and its Reversal by the Tetrapeptide HAEE. Aging Dis 2022; 14:309-318. [PMID: 37008059 PMCID: PMC10017155 DOI: 10.14336/ad.2022.0827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/27/2022] [Indexed: 11/18/2022] Open
Abstract
The pathogenesis of Alzheimer's disease (AD) is associated with the formation of cerebral amyloid plaques, the main components of which are the modified Aβ molecules as well as the metal ions. Aβ isomerized at Asp7 residue (isoD7-Aβ) is the most abundant isoform in amyloid plaques. We hypothesized that the pathogenic effect of isoD7-Aβ is due to the formation of zinc-dependent oligomers, and that this interaction can be disrupted by the rationally designed tetrapeptide (HAEE). Here, we utilized surface plasmon resonance, nuclear magnetic resonance, and molecular dynamics simulation to demonstrate Zn2+-dependent oligomerization of isoD7-Aβ and the formation of a stable isoD7-Aβ:Zn2+:HAEE complex incapable of forming oligomers. To demonstrate the physiological importance of zinc-dependent isoD7-Aβ oligomerization and the ability of HAEE to interfere with this process at the organismal level, we employed transgenic nematodes overexpressing human Aβ. We show that the presence of isoD7-Aβ in the medium triggers extensive amyloidosis that occurs in a Zn2+-dependent manner, enhances paralysis, and shortens the animals' lifespan. Exogenous HAEE completely reverses these pathological effects of isoD7-Aβ. We conclude that the synergistic action of isoD7-Aβ and Zn2+ promotes Aβ aggregation and that the selected small molecules capable of interrupting this process, such as HAEE, can potentially serve as anti-amyloid therapeutics.
Collapse
Affiliation(s)
- Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Evgeny P Barykin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Svetlana Eremina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Bibhusita Pani
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, USA.
| | | | - Vladimir I Polshakov
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow, Russia.
| | - Alexei A Adzhubei
- Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| | - Sergey A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Alexander S Mironov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, USA.
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, USA.
- Correspondence should be addressed to: Dr. Evgeny Nudler, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA. .
| |
Collapse
|