1
|
Mohan G, Choudhury A, Bhat J, Phartyal R, Lal R, Verma M. Human Riboviruses: A Comprehensive Study. J Mol Evol 2024:10.1007/s00239-024-10221-9. [PMID: 39739017 DOI: 10.1007/s00239-024-10221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025]
Abstract
The urgency to understand the complex interactions between viruses, their animal reservoirs, and human populations has been necessitated by the continuous spread of zoonotic viral diseases as evidenced in epidemics and pandemics throughout human history. Riboviruses are involved in some of the most prevalent human diseases, responsible for causing epidemics and pandemics. These viruses have an animal origin and have been known to cross the inter-species barrier time and time again, eventually infecting human beings. Their evolution has been a long road to harbour important adaptations for increasing fitness, mutability and virulence; a result of natural selection and mutation pressure, making these viruses highly infectious and difficult to counter. Accumulating favourable mutations in the course, they imitate the GC content and codon usage patterns of the host for maximising the chances of infection. A myriad of viral and host factors determine the fate of specific viral infections, which may include virus protein and host receptor compatibility, host restriction factors and others. Thus, understanding the biology, transmission and molecular mechanisms of Riboviruses is essential for the development of effective antiviral treatments, vaccine development and strategies to prevent and control viral infections. Keeping these aspects in mind, this review aims to provide a holistic approach towards understanding Riboviruses.
Collapse
Affiliation(s)
- Gauravya Mohan
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Akangkha Choudhury
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Jeevika Bhat
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Rajendra Phartyal
- Department of Zoology, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Rup Lal
- PhiXGen Private Limited, Gurugram, Haryana, 122001, India
| | - Mansi Verma
- Department of Zoology, Hansraj College, University of Delhi, Mahatma Hansraj Marg, Malkaganj, Delhi, 110007, India.
| |
Collapse
|
2
|
Li J, Khalid WA, Imtiaz H, Huang L, Ali Y, Yousaf R, Gul F, Mahmood A, Shah AA, Deng H, Khattak S. The deleterious variants of N-acetylgalactosamine-6-sulfatase (GalN6S) enzyme trigger Morquio a syndrome by disrupting protein foldings. J Biomol Struct Dyn 2024; 42:3700-3711. [PMID: 37222604 DOI: 10.1080/07391102.2023.2214234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
Lysosomal enzymes degrade cellular macromolecules, while their inactivation causes human hereditary metabolic disorders. Mucopolysaccharidosis IVA (MPS IVA; Moquio A syndrome) is one of the lysosomal storage disorders caused by a defective Galactosamine-6-sulfatase (GalN6S) enzyme. In several populations, disease incidence is elevated due to missense mutations brought on by non-synonymous allelic variation in the GalN6S enzyme. Here, we studied the effect of non-synonymous single nucleotide polymorphism (nsSNPs) on the structural dynamics of the GalN6S enzyme and its binding with N-acetylgalactosamine (GalNAc) using all-atom molecular dynamics simulation and an essential dynamics approach. Consequently, in this study, we have identified three functionally disruptive mutations in domain-I and domain-II, that is, S80L, R90W, and S162F, which presumably contribute to post-translational modifications. The study delineated that both domains work cooperatively, and alteration in domain II (S80L, R90W) leads to conformational changes in the catalytic site in domain-I, while mutation S162F mainly provokes higher residual flexibility of domain II. These results show that these mutations impair the hydrophobic core, implying that Morquio A syndrome is caused by misfolding of the GalN6S enzyme. The results also show the instability of the GalN6S-GalNAc complex upon substitution. Overall, the structural dynamics resulting from point mutations give the molecular rationale for Moquio A syndrome and, more importantly, the Mucopolysaccharidoses (MPS) family of diseases, re-establishing MPS IVA as a protein-folding disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jiuyi Li
- Department of Anesthesiology, The First People's Hospital of Chenzhou, Chenzhou, Hunan Province, PR China
| | - Waqas Ahmad Khalid
- Government Rana Abdul Raheem Memorial Hospital Sodiwal Lahore, Sodiwal, Punjab, Pakistan
| | - Hina Imtiaz
- Tehsil Headquarters Hospital Bhera, Sarghoda, Bhera, Punjab, Pakistan
| | - Lingkun Huang
- Department of Anesthesiology, The First People's Hospital of Chenzhou, Chenzhou, Hunan Province, PR China
| | - Yasir Ali
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rimsha Yousaf
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fouzia Gul
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Arif Mahmood
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, PR China
| | - Abid Ali Shah
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, PR China
| | - Huiyin Deng
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, PR China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
3
|
Shoaib M, Ali Y, Shen Y, Ni J. Identification of potential natural products derived from fungus growing termite, inhibiting Pseudomonas aeruginosa quorum sensing protein LasR using molecular docking and molecular dynamics simulation approach. J Biomol Struct Dyn 2024; 42:1126-1144. [PMID: 37096792 DOI: 10.1080/07391102.2023.2198607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/26/2023] [Indexed: 04/26/2023]
Abstract
Pseudomonas aeruginosa, the most common opportunistic pathogen, is becoming antibiotic-resistant worldwide. The fate of P. aeruginosa, a multidrug-resistant strain, can be determined by multidrug efflux pumps, enzyme synthesis, outer membrane protein depletion, and target alterations. Microbial niches have long used quorum sensing (QS) to synchronize virulence gene expression. Computational methods can aid in the development of novel P. aeruginosa drug-resistant treatments. The tripartite symbiosis in termites that grow fungus may help special microbes find new antimicrobial drugs. To find anti-quorum sensing natural products that could be used as alternative therapies, a library of 376 fungal-growing termite-associated natural products (NPs) was screened for their physicochemical properties, pharmacokinetics, and drug-likeness. Using GOLD, the top 74 NPs were docked to the QS transcriptional regulator LasR protein. The five lead NPs with the highest gold score and drug-like properties were chosen for a 200-ns molecular dynamics simulation to test the competitive activity of different compounds against negative catechin. Fridamycin and Daidzein had stable conformations, with mean RMSDs of 2.48 and 3.67 Å, respectively, which were similar to Catechin's 3.22 Å. Fridamycin and Daidzein had absolute binding energies of -71.186 and -52.013 kcal/mol, respectively, which were higher than the control's -42.75 kcal/mol. All the compounds within the active site of the LasR protein were kept intact by Trp54, Arg55, Asp67, and Ser123. These findings indicate that termite gut and fungus-associated NPs, specifically Fridamycin and Daidzein, are potent QS antagonists that can be used to treat P. aeruginosa's multidrug resistance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Shoaib
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, P. R. China
- Institute of Health Sciences, Islamabad Campus, Khyber Medical University, Peshawar, Pakistan
| | - Yasir Ali
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, P. R. China
| | - Jinfeng Ni
- Institute of Health Sciences, Islamabad Campus, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
4
|
Wang Y, Chi C, Zhang J, Zhang K, Deng D, Zheng W, Chen N, Meurens F, Zhu J. Systematic analysis of the codon usage patterns of African swine fever virus genome coding sequences reveals its host adaptation phenotype. Microb Genom 2024; 10:001186. [PMID: 38270515 PMCID: PMC10868601 DOI: 10.1099/mgen.0.001186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
African swine fever (ASF) is a severe haemorrhagic disease caused by the African swine fever virus (ASFV), transmitted by ticks, resulting in high mortality among domestic pigs and wild boars. The global spread of ASFV poses significant economic threats to the swine industry. This study employs diverse analytical methods to explore ASFV's evolution and host adaptation, focusing on codon usage patterns and associated factors. Utilizing phylogenetic analysis methods including neighbour-joining and maximum-likelihood, 64 ASFV strains were categorized into four clades. Codon usage bias (CUB) is modest in ASFV coding sequences. This research identifies multiple factors - such as nucleotide composition, mutational pressures, natural selection and geographical diversity - contributing to the formation of CUB in ASFV. Analysis of relative synonymous codon usage reveals CUB variations within clades and among ASFVs and their hosts. Both Codon Adaptation Index and Similarity Index analyses confirm that ASFV strains are highly adapted to soft ticks (Ornithodoros moubata) but less so to domestic pigs, which could be a result of the long-term co-evolution of ASFV with ticks. This study sheds light on the factors influencing ASFV's codon usage and fitness dynamics, enriching our understanding of its evolution, adaptation and host interactions.
Collapse
Affiliation(s)
- Yuening Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, PR China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Chenglin Chi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, PR China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Jiajia Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, PR China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Kaili Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, PR China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Dafu Deng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, PR China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, PR China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, PR China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - François Meurens
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, St. Hyacinthe, QC, J2S 2M2, Canada
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, PR China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| |
Collapse
|
5
|
Basak S, Kayet P, Ghosh M, Chatterjee J, Dutta S. Emergence of Genomic Diversity in the Spike Protein of the "Omicron" Variant. Viruses 2023; 15:2132. [PMID: 37896909 PMCID: PMC10612054 DOI: 10.3390/v15102132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus) has constantly been evolving into different forms throughout its spread in the population. Emerging SARS-CoV-2 variants, predominantly the variants of concern (VOCs), could have an impact on the virus spread, pathogenicity, and diagnosis. The recently emerged "Omicron" variant has exhibited rapid transmission and divergence. The spike protein of SARS-CoV-2 has consistently been appearing as the mutational hotspot of all these VOCs. In order to determine a deeper understanding of the recently emerged and extremely divergent "Omicron", a study of amino acid usage patterns and their substitution patterns was performed and compared with those of the other four successful variants of concern ("Alpha", "Beta", "Gamma", and "Delta"). We observed that the amino acid usage of "Omicron" has a distinct pattern that distinguishes it from other VOCs and is significantly correlated with the increased hydrophobicity in spike proteins. We observed an increase in the non-synonymous substitution rate compared with the other four VOCs. Considering the phylogenetic relationship, we hypothesized about the functional interdependence between recombination and the mutation rate that might have resulted in a shift in the optimum of the mutation rate for the evolution of the "Omicron" variant. The results suggest that for improved disease prevention and control, more attention should be given to the significant genetic differentiation and diversity of newly emerging variants.
Collapse
Affiliation(s)
- Surajit Basak
- Division of Bioinformatics, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Pratanu Kayet
- Division of Bioinformatics, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Manisha Ghosh
- Division of Bioinformatics, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Joyeeta Chatterjee
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry 605014, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| |
Collapse
|
6
|
Ajmal A, Ali Y, Khan A, Wadood A, Rehman AU. Identification of novel peptide inhibitors for the KRas-G12C variant to prevent oncogenic signaling. J Biomol Struct Dyn 2023; 41:8866-8875. [PMID: 36300526 DOI: 10.1080/07391102.2022.2138550] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/15/2022] [Indexed: 10/31/2022]
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRas) activating mutations are common in solid tumors, accounting for 90%, 45%, and 35% of pancreatic, colorectal, and lung cancers (LC), respectively. Each year, nearly 150k new cases (both men and women) of KRas-mutated malignancies are reported in the United States. NSCLC (non-small cell lung cancer) accounts for 80% of all LC cases. KRas mutations are found in 15% to 25% of NSCLC patients. The main cause of NSCLC is the KRas-G12C mutation. The drugs Sotorasib and Adagrasib were recently developed to treat advanced NSCLC caused by the KRas-G12C mutation. Most patients do not respond to KRas-G12C inhibitors due to cellular, molecular, and genetic resistance. Because of their safety, efficacy, and selectivity, peptide inhibitors have the potential to treat newly developing KRas mutations. Based on the KRas mutations, peptide inhibitors that are highly selective and specific to individual lung cancers can be rationally designed. The current study uses an alanine and residue scanning approach to design peptide inhibitors for KRas-G12C based on the known peptide. Our findings show that substitution of F3K, G11T, L8C, T14C, K13D, G11S, and G11P considerably enhances the binding affinity of the novel peptides, whereas F3K, G11T, L8C, and T14C peptides have higher stability and favorable binding to the altered peptides. Overall, our study paves the road for the development of potential therapeutic peptidomimetics that target the KRas-G12C complex and may inhibit the KRas and SOS complex from interacting.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amar Ajmal
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Yasir Ali
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Ashfaq Ur Rehman
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
7
|
Wu X, Shan K, Zan F, Tang X, Qian Z, Lu J. Optimization and Deoptimization of Codons in SARS-CoV-2 and Related Implications for Vaccine Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205445. [PMID: 37267926 PMCID: PMC10427376 DOI: 10.1002/advs.202205445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/08/2023] [Indexed: 06/04/2023]
Abstract
The spread of coronavirus disease 2019 (COVID-19), caused by severe respiratory syndrome coronavirus 2 (SARS-CoV-2), has progressed into a global pandemic. To date, thousands of genetic variants have been identified among SARS-CoV-2 isolates collected from patients. Sequence analysis reveals that the codon adaptation index (CAI) values of viral sequences have decreased over time but with occasional fluctuations. Through evolution modeling, it is found that this phenomenon may result from the virus's mutation preference during transmission. Using dual-luciferase assays, it is further discovered that the deoptimization of codons in the viral sequence may weaken protein expression during virus evolution, indicating that codon usage may play an important role in virus fitness. Finally, given the importance of codon usage in protein expression and particularly for mRNA vaccines, it is designed several codon-optimized Omicron BA.2.12.1, BA.4/5, and XBB.1.5 spike mRNA vaccine candidates and experimentally validated their high levels of expression. This study highlights the importance of codon usage in virus evolution and provides guidelines for codon optimization in mRNA and DNA vaccine development.
Collapse
Affiliation(s)
- Xinkai Wu
- State Key Laboratory of Protein and Plant Gene ResearchCenter for BioinformaticsSchool of Life SciencesPeking UniversityBeijing100871China
| | - Ke‐jia Shan
- State Key Laboratory of Protein and Plant Gene ResearchCenter for BioinformaticsSchool of Life SciencesPeking UniversityBeijing100871China
| | - Fuwen Zan
- NHC Key Laboratory of Systems Biology of PathogensInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100176China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene ResearchCenter for BioinformaticsSchool of Life SciencesPeking UniversityBeijing100871China
| | - Zhaohui Qian
- NHC Key Laboratory of Systems Biology of PathogensInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100176China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene ResearchCenter for BioinformaticsSchool of Life SciencesPeking UniversityBeijing100871China
| |
Collapse
|
8
|
Noor F, Ashfaq UA, Bakar A, Qasim M, Masoud MS, Alshammari A, Alharbi M, Riaz MS. Identification and characterization of codon usage pattern and influencing factors in HFRS-causing hantaviruses. Front Immunol 2023; 14:1131647. [PMID: 37492567 PMCID: PMC10364125 DOI: 10.3389/fimmu.2023.1131647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/22/2023] [Indexed: 07/27/2023] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is an acute viral zoonosis carried and transmitted by infected rodents through urine, droppings, or saliva. The etiology of HFRS is complex due to the involvement of viral factors and host immune and genetic factors which hinder the development of potential therapeutic solutions for HFRS. Hantaan virus (HTNV), Dobrava-Belgrade virus (DOBV), Seoul virus (SEOV), and Puumala virus (PUUV) are predominantly found in hantaviral species that cause HFRS in patients. Despite ongoing prevention and control efforts, HFRS remains a serious economic burden worldwide. Furthermore, recent studies reported that the hantavirus nucleocapsid protein is a multi-functional protein and plays a major role in the replication cycle of the hantavirus. However, the precise mechanism of the nucleoproteins in viral pathogenesis is not completely understood. In the framework of the current study, various in silico approaches were employed to identify the factors influencing the codon usage pattern of hantaviral nucleoproteins. Based on the relative synonymous codon usage (RSCU) values, a comparative analysis was performed between HFRS-causing hantavirus and their hosts, suggesting that HTNV, DOBV, SEOV, and PUUV, were inclined to evolve their codon usage patterns that were comparable to those of their hosts. The results indicated that most of the overrepresented codons had AU-endings, which revealed that mutational pressure is the major force shaping codon usage patterns. However, the influence of natural selection and geographical factors cannot be ignored on viral codon usage bias. Further analysis also demonstrated that HFRS causing hantaviruses adapted host-specific codon usage patterns to sustain successful replication and transmission chains within hosts. To our knowledge, no study to date reported the factors influencing the codon usage pattern within hantaviral nucleoproteins. Thus, the proposed computational scheme can help in understanding the underlying mechanism of codon usage patterns in HFRS-causing hantaviruses which lend a helping hand in designing effective anti-HFRS treatments in future. This study, although comprehensive, relies on in silico methods and thus necessitates experimental validation for more solid outcomes. Beyond the identified factors influencing viral behavior, there could be other yet undiscovered influences. These potential factors should be targets for further research to improve HFRS therapeutic strategies.
Collapse
Affiliation(s)
- Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Abu Bakar
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
9
|
Khan HA, Asif MU, Ijaz MK, Alharbi M, Ali Y, Ahmad F, Azhar R, Ahmad S, Irfan M, Javed M, Naseer N, Aziz A. In Silico Characterization and Analysis of Clinically Significant Variants of Lipase-H (LIPH Gene) Protein Associated with Hypotrichosis. Pharmaceuticals (Basel) 2023; 16:803. [PMID: 37375751 DOI: 10.3390/ph16060803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/14/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Hypotrichosis is an uncommon type of alopecia (hair loss) characterized by coarse scalp hair caused by the reduced or fully terminated activity of the Lipase-H (LIPH) enzyme. LIPH gene mutations contribute to the development of irregular or non-functional proteins. Because several cellular processes, including cell maturation and proliferation, are inhibited when this enzyme is inactive, the hair follicles become structurally unreliable, undeveloped, and immature. This results in brittle hair, as well as altered hair shaft development and structure. Because of these nsSNPs, the protein's structure and/or function may be altered. Given the difficulty in discovering functional SNPs in genes associated with disease, it is possible to assess potential functional SNPs before conducting broader population investigations. As a result, in our in silico analysis, we separated potentially hazardous nsSNPs of the LIPH gene from benign representatives using a variety of sequencing and architecture-based bioinformatics approaches. Using seven prediction algorithms, 9 out of a total of 215 nsSNPs were shown to be the most likely to cause harm. In order to distinguish between potentially harmful and benign nsSNPs of the LIPH gene, in our in silico investigation, we employed a range of sequence- and architecture-based bioinformatics techniques. Three nsSNPs (W108R, C246S, and H248N) were chosen as potentially harmful. The present findings will likely be helpful in future large population-based studies, as well as in drug discovery, particularly in the creation of personalized medicine, since this study provides an initial thorough investigation of the functional nsSNPs of LIPH.
Collapse
Affiliation(s)
- Hamza Ali Khan
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak 27200, Pakistan
| | | | | | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yasir Ali
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Faisal Ahmad
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ramsha Azhar
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32611, USA
| | - Maryana Javed
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Noorulain Naseer
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Abdul Aziz
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak 27200, Pakistan
| |
Collapse
|
10
|
Ali Y, Imtiaz H, Tahir MM, Gul F, Saddozai UAK, ur Rehman A, Ren ZG, Khattak S, Ji XY. Fragment-Based Approaches Identified Tecovirimat-Competitive Novel Drug Candidate for Targeting the F13 Protein of the Monkeypox Virus. Viruses 2023; 15:v15020570. [PMID: 36851785 PMCID: PMC9959752 DOI: 10.3390/v15020570] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Monkeypox is a serious public health issue in tropical and subtropical areas. Antivirals that target monkeypox proteins might lead to more effective and efficient therapy. The F13 protein is essential for the growth and maturation of the monkeypox virus. F13 inhibition might be a viable therapeutic target for monkeypox. The in silico fragment-based drug discovery method for developing antivirals may provide novel therapeutic options. In this study, we generated 800 compounds based on tecovirimat, an FDA-approved drug that is efficacious at nanomolar quantities against monkeypox. These compounds were evaluated to identify the most promising fragments based on binding affinity and pharmacological characteristics. The top hits from the chemical screening were docked into the active site of the F13 protein. Molecular dynamics simulations were performed on the top two probable new candidates from molecular docking. The ligand-enzyme interaction analysis revealed that the C2 ligand had lower binding free energy than the standard ligand tecovirimat. Water bridges, among other interactions, were shown to stabilize the C2 molecule. Conformational transitions and secondary structure changes in F13 protein upon C2 binding show more native three-dimensional folding of the protein. Prediction of pharmacological properties revealed that compound C2 may be promising as a drug candidate for monkeypox fever. However, additional in vitro and in vivo testing is required for validation.
Collapse
Affiliation(s)
- Yasir Ali
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Hina Imtiaz
- Tehsil Headquarter Hospital Bhera, Sargodha, Punjab 40540, Pakistan
| | | | - Fouzia Gul
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Umair Ali Khan Saddozai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Ashfaq ur Rehman
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 2697-3900, USA
| | - Zhi-Guang Ren
- The First Affiliated Hospital, Henan University, Kaifeng 475004, China
- Correspondence: (Z.-G.R.); (S.K.); (X.-Y.J.)
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Correspondence: (Z.-G.R.); (S.K.); (X.-Y.J.)
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory for Infectious Diseases and Biosafety, Kaifeng 475004, China
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Mazhai, Erqi District, Zhengzhou 450064, China
- Correspondence: (Z.-G.R.); (S.K.); (X.-Y.J.)
| |
Collapse
|
11
|
Khattak S, Rauf MA, Ali Y, Yousaf MT, Liu Z, Wu DD, Ji XY. The monkeypox diagnosis, treatments and prevention: A review. Front Cell Infect Microbiol 2023; 12:1088471. [PMID: 36814644 PMCID: PMC9939471 DOI: 10.3389/fcimb.2022.1088471] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/30/2022] [Indexed: 02/08/2023] Open
Abstract
The world is currently dealing with a second viral outbreak, monkeypox, which has the potential to become an epidemic after the COVID-19 pandemic. People who reside in or close to forest might be exposed indirectly or at a low level, resulting in subclinical disease. However, the disease has lately emerged in shipped African wild mice in the United States. Smallpox can cause similar signs and symptoms to monkeypox, such as malaise, fever, flu-like signs, headache, distinctive rash, and back pain. Because Smallpox has been eliminated, similar symptoms in a monkeypox endemic zone should be treated cautiously. Monkeypox is transmitted to humans primarily via interaction with diseased animals. Infection through inoculation via interaction with skin or scratches and mucosal lesions on the animals is conceivable significantly once the skin barrier is disrupted by scratches, bites, or other disturbances or trauma. Even though it is clinically unclear from other pox-like infections, laboratory diagnosis is essential. There is no approved treatment for human monkeypox virus infection, however, smallpox vaccination can defend counter to the disease. Human sensitivity to monkeypox virus infection has grown after mass vaccination was discontinued in the 1980s. Infection may be prevented by reducing interaction with sick patients or animals and reducing respiratory exposure among people who are infected.
Collapse
Affiliation(s)
- Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Mohd Ahmar Rauf
- School of Pharmaceutical Sciences, Wayne State University, Detroit, MI, United States
| | - Yasir Ali
- National Center for Bioinformatics, Quaid-e-Azam University, Islamabad, Pakistan
| | - Muhammad Tufail Yousaf
- Institute of Microbiology, Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Zhihui Liu
- Department of General Practice, Henan Provincial Peoples Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China,*Correspondence: Zhihui Liu, ; Dong-Dong Wu, ; Xin-Ying Ji,
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China,School of Stomatology, Henan University, Kaifeng, Henan, China,*Correspondence: Zhihui Liu, ; Dong-Dong Wu, ; Xin-Ying Ji,
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China,*Correspondence: Zhihui Liu, ; Dong-Dong Wu, ; Xin-Ying Ji,
| |
Collapse
|
12
|
Shoaib M, Shehzadi I, Asif MU, Shen Y, Ni J. Identification of fungus-growing termite-associated halogenated-PKS maduralactomycin a as a potential inhibitor of MurF protein of multidrug-resistant Acinetobacter baumannii. Front Mol Biosci 2023; 10:1183073. [PMID: 37152898 PMCID: PMC10160657 DOI: 10.3389/fmolb.2023.1183073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
Multidrug-resistant Acinetobacter baumannii infections have become a major public health concern globally. Inhibition of its essential MurF protein has been proposed as a potential target for broad-spectrum drugs. This study aimed to evaluate the potential of a novel ecological niche of 374 fungus-growing termite associated Natural Products (NPs). The molecular docking and computational pharmacokinetics screened four compounds, i.e., Termstrin B, Fridamycin A, Maduralactomycin A, and Natalenamide C, as potential compounds that have higher binding affinities and favourable protein-ligand interactions. The compound Maduralactomycin A induced more stability based on its lowest average RMSD value (2.31 Å) and low standard deviation (0.35) supported by the consistent flexibility and β-factor during the protein's time-dependent motion. While hydrogen bond analysis indicated that Termstrin B has formed the strongest intra-protein interaction, solvent accessibility was in good agreement with Maduralactomycin A compactness. Maduralactomycin A has the strongest binding energy among all the compounds (-348.48 kcal/mol) followed by Termstrin B (-321.19 kcal/mol). Since these findings suggest Maduralactomycin A and Termstrin B as promising candidates for inhibition of MurF protein, the favourable binding energies of Maduralactomycin A make it a more important compound to warrant further investigation. However, experimental validation using animal models and clinical trials is recommended before reaching any final conclusions.
Collapse
Affiliation(s)
- Muhammad Shoaib
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | | | | | - Yulong Shen
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
- *Correspondence: Yulong Shen, ; Jinfeng Ni,
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
- *Correspondence: Yulong Shen, ; Jinfeng Ni,
| |
Collapse
|
13
|
Ali Y, Ahmad F, Ullah MF, Haq NU, Haq MIU, Aziz A, Zouidi F, Khan MI, Eldin SM. Structural Evaluation and Conformational Dynamics of ZNF141T474I Mutation Provoking Postaxial Polydactyly Type A. Bioengineering (Basel) 2022; 9:bioengineering9120749. [PMID: 36550955 PMCID: PMC9774408 DOI: 10.3390/bioengineering9120749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/09/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Postaxial Polydactyly (PAP) is a congenital disorder of limb abnormalities characterized by posterior extra digits. Mutations in the N-terminal region of the Zinc finger protein 141 (ZNF141) gene were recently linked with PAP type A. Zinc finger proteins exhibit similarity at their N-terminal regions due to C2-H2 type Zinc finger domains, but their functional preferences vary significantly by the binding patterns of DNA. Methods: This study delineates the pathogenic association, miss-fold aggregation, and conformational paradigm of a missense variant (c.1420C > T; p.T474I) in ZNF141 gene segregating PAP through a molecular dynamics simulations approach. Results: In ZNF141 protein, helices play a crucial role by attaching three specific target DNA base pairs. In ZNF141T474I protein, H1, H3, and H6 helices attain more flexibility by acquiring loop conformation. The outward disposition of the proximal portion of H9-helix in mutant protein occurs due to the loss of prior beta-hairpins at the C terminal region of the C2-H2 domain. The loss of hydrogen bonds and exposure of hydrophobic residues to solvent and helices turning to loops cause dysfunction of ZNF141 protein. These significant changes in the stability and conformation of the mutant protein were validated using essential dynamics and cross-correlation maps, which revealed that upon point mutation, the overall motion of the proteins and the correlation between them were completely different, resulting in Postaxial polydactyly type A. Conclusions: This study provides molecular insights into the structural association of ZNF141 protein with PAP type A. Identification of active site residues and legends offers new therapeutic targets for ZNF141 protein. Further, it reiterates the functional importance of the last residue of a protein.
Collapse
Affiliation(s)
- Yasir Ali
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak 27200, Pakistan
- National Centre for Bioinformatics, Quaid-I-Azam University, Islamabad 44000, Pakistan
| | - Faisal Ahmad
- National Centre for Bioinformatics, Quaid-I-Azam University, Islamabad 44000, Pakistan
| | - Muhammad Farhat Ullah
- National Centre for Bioinformatics, Quaid-I-Azam University, Islamabad 44000, Pakistan
| | - Noor Ul Haq
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak 27200, Pakistan
| | - M. Inam Ul Haq
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak 27200, Pakistan
| | - Abdul Aziz
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak 27200, Pakistan
| | - Ferjeni Zouidi
- Biology Department, Faculty of Arts and Sciences of Muhayil Aseer, King Khalid University, Abha 62529, Saudi Arabia
| | - M. Ijaz Khan
- Department of Mathematics and Statistics, Riphah International University I-14, Islamabad 44000, Pakistan
- Department of Mechanical Engineering, Lebanese American University, Beirut 13-5053, Lebanon
- Correspondence: or
| | - Sayed M. Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt
| |
Collapse
|
14
|
Rahmasari R, Raekiansyah M, Azallea SN, Nethania M, Bilqisthy N, Rozaliyani A, Bowolaksono A, Sauriasari R. Low-cost SYBR Green-based RT-qPCR assay for detecting SARS-CoV-2 in an Indonesian setting using WHO-recommended primers. Heliyon 2022; 8:e11130. [PMCID: PMC9617658 DOI: 10.1016/j.heliyon.2022.e11130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/22/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent for the ongoing coronavirus disease 2019 (COVID-19) pandemic. For laboratory diagnosis, low-cost detection of SARS-CoV-2 is urgently needed, particularly in developing countries with limited resources. Probe- or TaqMan-based real-time reverse transcription polymerase chain reaction (RT-qPCR) is currently the gold standard for diagnosing infected individuals, as recommended by the World Health Organization (WHO). However, this assay is expensive, making it difficult to use for diagnosis on a large scale. Therefore, in this study, we develop and validate an alternative approach for RT-qPCR diagnosis by employing the DNA intercalating dye SYBR Green. We evaluate and use two WHO-recommended primers, namely CCDC-N and HKU-ORF1b-nsp14. The compatibility of the two primers was tested in silico with Indonesian SARS-CoV-2 genome sequences retrieved from the GISAID database and using bioinformatic tools. Using in vitro-transcribed RNA, optimization, sensitivity, and linearity of the two assays targeting the N and Nsp-14 genes were carried out. For further evaluation, we used clinical samples from patients and performed the SYBR Green-based RT-qPCR assay protocol in parallel with TaqMan-based commercial assay. Our results show that our methodology performs similarly to the broadly used TaqMan-based detection method in terms of specificity and sensitivity and thus offers an alternative assay for the detection of SARS-CoV-2 RNA for diagnostic purposes.
Collapse
Affiliation(s)
- Ratika Rahmasari
- Microbiology and Biotechnology Laboratory, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
| | | | - Syifa Naura Azallea
- Microbiology and Biotechnology Laboratory, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
| | - Marvella Nethania
- Microbiology and Biotechnology Laboratory, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
| | - Navany Bilqisthy
- Microbiology and Biotechnology Laboratory, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
| | - Anna Rozaliyani
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, West Java, Indonesia
| | - Anom Bowolaksono
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, West Java, Indonesia
| | - Rani Sauriasari
- Clinical Pharmacy Laboratory, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia,Corresponding author
| |
Collapse
|
15
|
Shah AA, Amjad M, Hassan JU, Ullah A, Mahmood A, Deng H, Ali Y, Gul F, Xia K. Molecular Insights into the Role of Pathogenic nsSNPs in GRIN2B Gene Provoking Neurodevelopmental Disorders. Genes (Basel) 2022; 13:genes13081332. [PMID: 35893069 PMCID: PMC9394290 DOI: 10.3390/genes13081332] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
The GluN2B subunit of N-methyl-D-aspartate receptors plays an important role in the physiology of different neurodevelopmental diseases. Genetic variations in the GluN2B coding gene (GRIN2B) have consistently been linked to West syndrome, intellectual impairment with focal epilepsy, developmental delay, macrocephaly, corticogenesis, brain plasticity, as well as infantile spasms and Lennox–Gastaut syndrome. It is unknown, however, how GRIN2B genetic variation impacts protein function. We determined the cumulative pathogenic impact of GRIN2B variations on healthy participants using a computational approach. We looked at all of the known mutations and calculated the impact of single nucleotide polymorphisms on GRIN2B, which encodes the GluN2B protein. The pathogenic effect, functional impact, conservation analysis, post-translation alterations, their driving residues, and dynamic behaviors of deleterious nsSNPs on protein models were then examined. Four polymorphisms were identified as phylogenetically conserved PTM drivers and were related to structural and functional impact: rs869312669 (p.Thr685Pro), rs387906636 (p.Arg682Cys), rs672601377 (p.Asn615Ile), and rs1131691702 (p.Ser526Pro). The combined impact of protein function is accounted for by the calculated stability, compactness, and total globularity score. GluN2B hydrogen occupancy was positively associated with protein stability, and solvent-accessible surface area was positively related to globularity. Furthermore, there was a link between GluN2B protein folding, movement, and function, indicating that both putative high and low local movements were linked to protein function. Multiple GRIN2B genetic variations are linked to gene expression, phylogenetic conservation, PTMs, and protein instability behavior in neurodevelopmental diseases. These findings suggest the relevance of GRIN2B genetic variations in neurodevelopmental problems.
Collapse
Affiliation(s)
- Abid Ali Shah
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China; (A.A.S.); (A.M.)
| | - Marryam Amjad
- District Headquarter (DHQ) Hospital, Faisalabad 38000, Punjab, Pakistan;
| | | | - Asmat Ullah
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Arif Mahmood
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China; (A.A.S.); (A.M.)
| | - Huiyin Deng
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha 410013, China;
| | - Yasir Ali
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan; (Y.A.); (F.G.)
| | - Fouzia Gul
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan; (Y.A.); (F.G.)
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China; (A.A.S.); (A.M.)
- Hengyang Medical School, University of South China, Hengyang 421000, China
- CAS Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), Chinese Academy of Sciences, Shanghai 200030, China
- Correspondence: ; Tel.: +86-731-8480-5357
| |
Collapse
|
16
|
Wu H, Li B, Miao Z, Hu L, Zhou L, Lu Y. Codon usage of host-specific P genotypes (VP4) in group A rotavirus. BMC Genomics 2022; 23:518. [PMID: 35842571 PMCID: PMC9288207 DOI: 10.1186/s12864-022-08730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022] Open
Abstract
Background Group A rotavirus (RVA) is a common causative agent of acute gastroenteritis in infants and young children worldwide. RVA P genotypes, determined by VP4 sequences, have been confirmed to infect humans and animals. However, their codon usage patterns that are essential to obtain insights into the viral evolution, host adaptability, and genetic characterization remained unclear, especially across animal hosts. Results We performed a comprehensive codon usage analysis of eight host-specific RVA P genotypes, including human RVA (P[4] and P[8]), porcine RVA (P[13] and P[23]), and zoonotic RVA (P[1], P[6], P[7] and P[19]), based on 233 VP4 complete coding sequences. Nucleotide composition, relative synonymous codon usage (RSCU), and effective number of codons (ENC) were calculated. Principal component analysis (PCA) based on RSCU values was used to explore the codon usage patterns of different RVA P genotypes. In addition, mutation pressure and natural selection were identified by using ENC-plot, parity rule 2 plot, and neutrality plot analyses. All VP4 sequences preferred using A/U nucleotides (A: 0.354-0.377, U: 0.267-0.314) than G/C nucleotides across genotypes. Similarly, majority of commonly used synonymous codons were likely to end with A/U nucleotides (A: 9/18-12/18, U: 6/18-9/18). In PCA, human, porcine, and zoonotic genotypes clustered separately in terms of RSCU values, indicating the host-specific codon usage patterns; however, porcine and zoonotic genotypes were partly overlapped. Human genotypes, P[4] and P[8], had stronger codon usage bias, as indicated by more over-represented codons and lower ENC, compared to porcine and zoonotic genotypes. Moreover, natural selection was determined to be a predominant driver in shaping the codon usage bias across the eight P genotypes. In addition, mutation pressure contributed to the codon usage bias of human genotypes. Conclusions Our study identified a strong codon usage bias of human RVA P genotypes attributable to both natural selection and mutation pressure, whereas similar codon usage bias between porcine and zoonotic genotypes predominantly attributable to natural selection. It further suggests possible cross-species transmission. Therefore, it warrants further surveillance of RVA P genotypes for early identification of zoonotic infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08730-2.
Collapse
Affiliation(s)
- Han Wu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, 200032, China
| | - Bingzhe Li
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ziping Miao
- Institute of Communicable Diseases Prevention and Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310052, Zhejiang, China
| | - Linjie Hu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, 200032, China
| | - Lu Zhou
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yihan Lu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Knowledge, Attitude, and Perception of Cancer Patients towards COVID-19 in Pakistan: A Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137926. [PMID: 35805584 PMCID: PMC9265320 DOI: 10.3390/ijerph19137926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022]
Abstract
Background: Cancer patients, being immunocompromised, are at higher risk of coronavirus disease (COVID-19). The current study determines cancer patients’ knowledge, attitude, perception, and impact of the COVID-19 pandemic. Method: A cross-sectional online survey was conducted in Pakistan from 1 April 2020 to 1 May 2020. The study respondents were cancer patients with ages equal to or greater than 18 years. Following a request for participation, the URL for the survey was distributed on numerous channels. Other social media platforms, including WeChat, WhatsApp, Facebook, Twitter, Instagram, Messenger, and LinkedIn, were used to increase cancer patient interaction. The questionnaire comprised five different sections such as: (1) sociodemographic information, (2) knowledge, (3) attitude, (4) perception, and (5) impact of COVID-19 on cancer patients. Descriptive medical statistics such as frequency, percentage, mean, and standard deviation were used to illustrate the demographic characteristics of the study participants. To compare mean knowledge scores with selected demographic variables, independent sample t-tests and one-way analysis of variance (ANOVA) were used, which are also practical methods in epidemiological, public health and medical research. The cut-off point for statistical significance was set at a p-value of 0.05. Results: More than 300 cancer patients were invited, of which 208 agreed to take part. The response rate was 69.33% (208/300). Gender, marital status, and employment status had a significant association with knowledge scores. Of the total recruited participants, 96% (n = 200) (p < 0.01) knew about COVID-19, and 90% were aware of general symptoms of COVID-19 disease, such as route of transmission and preventive measurements. In total, 94.5% (n = 197) (p < 0.01) were willing to accept isolation if they were infected with COVID-19, and 98% (n = 204) (p < 0.01) had reduced their use of public transportation. More than 90% (n = 188) (p < 0.01) of cancer patients were found to be practicing preventative measures such as using a face mask, keeping social distance, and avoiding handshaking and hugging. Around 94.4% (n = 196) (p < 0.01) of cancer patients had been impacted by, stopped or had changed cancer treatment during this pandemic, resulting in COVID-related anxiety and depression. Conclusion: The included cancer patients exhibited a good level of COVID-19 knowledge, awareness, positive attitude, and perception. Large-scale studies and efforts are needed to raise COVID-19 awareness among less educated and high-risk populations. The present survey indicates that mass-level effective health education initiatives are required for developing countries to improve and reduce the gap between KAP and COVID-19.
Collapse
|
18
|
Tyagi N, Sardar R, Gupta D. Natural selection plays a significant role in governing the codon usage bias in the novel SARS-CoV-2 variants of concern (VOC). PeerJ 2022; 10:e13562. [PMID: 35765592 PMCID: PMC9233899 DOI: 10.7717/peerj.13562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/19/2022] [Indexed: 01/17/2023] Open
Abstract
The ongoing prevailing COVID-19 pandemic caused by SARS-CoV-2 is becoming one of the major global health concerns worldwide. The SARS-CoV-2 genome encodes spike (S) glycoprotein that plays a very crucial role in viral entry into the host cell via binding of its receptor binding domain (RBD) to the host angiotensin converting enzyme 2 (ACE2) receptor. The continuously evolving SARS-CoV-2 genome results in more severe and transmissible variants characterized by the emergence of novel mutations called 'variants of concern' (VOC). The currently designated alpha, beta, gamma, delta and omicron VOC are the focus of this study due to their high transmissibility, increased virulence, and concerns for decreased effectiveness of the available vaccines. In VOC, the spike (S) gene and other non-structural protein mutations may affect the efficacies of the approved COVID-19 vaccines. To understand the diversity of SARS-CoV-2, several studies have been performed on a limited number of sequences. However, only a few studies have focused on codon usage bias (CUBs) pattern analysis of all the VOC strains. Therefore, to evaluate the evolutionary divergence of all VOC S-genes, we performed CUBs analysis on 300,354 sequences to understand the evolutionary relationship with its adaptation in different hosts, i.e., humans, bats, and pangolins. Base composition and RSCU analysis revealed the presence of 20 preferred AU-ended and 10 under-preferred GC-ended codons. In addition, CpG was found to be depleted, which may be attributable to the adaptive response by viruses to escape from the host defense process. Moreover, the ENC values revealed a higher bias in codon usage in the VOC S-gene. Further, the neutrality plot analysis demonstrated that S-genes analyzed in this study are under 83.93% influence of natural selection, suggesting its pivotal role in shaping the CUBs. The CUBs pattern of S-genes was found to be very similar among all the VOC strains. Interestingly, we observed that VOC strains followed a trend of antagonistic codon usage with respect to the human host. The identified CUBs divergence would help to understand the virus evolution and its host adaptation, thus help design novel vaccine strategies against the emerging VOC strains. To the best of our knowledge, this is the first report for identifying the evolution of CUBs pattern in all the currently identified VOC.
Collapse
Affiliation(s)
- Neetu Tyagi
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India, New Delhi, New Delhi, India,Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Rahila Sardar
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India, New Delhi, New Delhi, India,Biochemistry, Jamia Hamdard University, New Delhi, New Delhi, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India, New Delhi, New Delhi, India
| |
Collapse
|
19
|
Mogro EG, Bottero D, Lozano MJ. Analysis of SARS-CoV-2 synonymous codon usage evolution throughout the COVID-19 pandemic. Virology 2022; 568:56-71. [PMID: 35134624 PMCID: PMC8808327 DOI: 10.1016/j.virol.2022.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2, the seventh coronavirus known to infect humans, can cause severe life-threatening respiratory pathologies. To better understand SARS-CoV-2 evolution, genome-wide analyses have been made, including the general characterization of its codons usage profile. Here we present a bioinformatic analysis of the evolution of SARS-CoV-2 codon usage over time using complete genomes collected since December 2019. Our results show that SARS-CoV-2 codon usage pattern is antagonistic to, and it is getting farther away from that of the human host. Further, a selection of deoptimized codons over time, which was accompanied by a decrease in both the codon adaptation index and the effective number of codons, was observed. All together, these findings suggest that SARS-CoV-2 could be evolving, at least from the perspective of the synonymous codon usage, to become less pathogenic.
Collapse
Affiliation(s)
- Ezequiel G Mogro
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET, CCT-La Plata, Universidad Nacional de La Plata (UNLP), Argentina
| | - Daniela Bottero
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET, CCT-La Plata, Universidad Nacional de La Plata (UNLP), Argentina
| | - Mauricio J Lozano
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET, CCT-La Plata, Universidad Nacional de La Plata (UNLP), Argentina.
| |
Collapse
|