1
|
Obeagu EI, Obeagu GU. Thromboinflammation in COVID-19: Unraveling the interplay of coagulation and inflammation. Medicine (Baltimore) 2024; 103:e38922. [PMID: 38996158 PMCID: PMC11245273 DOI: 10.1097/md.0000000000038922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has not only challenged global health systems but also spurred intense scientific inquiry into its pathophysiology. Among the multifaceted aspects of the disease, coagulation abnormalities have emerged as a significant contributor to morbidity and mortality. From endothelial dysfunction to dysregulated immune responses, various factors contribute to the hypercoagulable state seen in severe COVID-19 cases. The dysregulation of coagulation in COVID-19 extends beyond traditional thromboembolic events, encompassing a spectrum of abnormalities ranging from microvascular thrombosis to disseminated intravascular coagulation (DIC). Endothelial injury induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection triggers a cascade of events involving platelet activation, coagulation factor consumption, and fibrinolysis impairment. Moreover, the virus direct effects on immune cells and the cytokine storm further exacerbate the prothrombotic milieu. Unraveling this intricate web of interactions between viral pathogenesis and host responses is essential for elucidating novel therapeutic targets and refining existing management strategies for COVID-19-associated coagulopathy. In the quest to unravel the complex interplay between coagulation and COVID-19, numerous clinical and laboratory studies have yielded invaluable insights into potential biomarkers, prognostic indicators, and therapeutic avenues. Anticoagulation therapy has emerged as a cornerstone in the management of severe COVID-19, although optimal dosing regimens and patient selection criteria remain subjects of ongoing investigation. Additionally, innovative approaches such as targeting specific components of the coagulation cascade or modulating endothelial function hold promise for future therapeutic development.
Collapse
|
2
|
Yaluri N, Stančáková Yaluri A, Žeňuch P, Žeňuchová Z, Tóth Š, Kalanin P. Cardiac Biomarkers and Their Role in Identifying Increased Risk of Cardiovascular Complications in COVID-19 Patients. Diagnostics (Basel) 2023; 13:2508. [PMID: 37568870 PMCID: PMC10417576 DOI: 10.3390/diagnostics13152508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Cardiovascular disease (CVD) is a global health concern, causing significant morbidity and mortality. Both lifestyle and genetics influence the development of CVD. It is often diagnosed late, when the treatment options are limited. Early diagnosis of CVD with help of biomarkers is necessary to prevent adverse outcomes. SARS-CoV-2 infection can cause cardiovascular complications even in patients with no prior history of CVD. This review highlights cardiovascular biomarkers, including novel ones, and their applications as diagnostic and prognostic markers of cardiovascular complications related to SARS-CoV-2 infection. Patients with severe SARS-CoV-2 infection were shown to have elevated levels of cardiac biomarkers, namely N-terminal pro-brain natriuretic peptide (NT-pro-BNP), creatine kinase-myocardial band (CK-MB), and troponins, indicating acute myocardial damage. These biomarkers were also associated with higher mortality rates and therefore should be used throughout COVID-19 patient care to identify high-risk patients promptly to optimize their outcomes. Additionally, microRNAs (miRNAs) are also considered as potential biomarkers and predictors of cardiac and vascular damage in SARS-CoV-2 infection. Identifying molecular pathways contributing to cardiovascular manifestations in COVID-19 is essential for development of early biomarkers, identification of new therapeutic targets, and better prediction and management of cardiovascular outcomes.
Collapse
Affiliation(s)
- Nagendra Yaluri
- Center of Clinical and Preclinical Research, University Research Park Medipark, P. J. Šafárik University, 040 01 Košice, Slovakia
| | | | - Pavol Žeňuch
- Center of Clinical and Preclinical Research, University Research Park Medipark, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Zuzana Žeňuchová
- Center of Clinical and Preclinical Research, University Research Park Medipark, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Štefan Tóth
- Center of Clinical and Preclinical Research, University Research Park Medipark, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Peter Kalanin
- Center of Clinical and Preclinical Research, University Research Park Medipark, P. J. Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
3
|
Burns N, Nijmeh H, Lapel M, Riddle S, Yegutkin GG, Stenmark KR, Gerasimovskaya E. Isolation of vasa vasorum endothelial cells from pulmonary artery adventitia: Implementation to vascular biology research. Microvasc Res 2023; 147:104479. [PMID: 36690271 DOI: 10.1016/j.mvr.2023.104479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Isolated endothelial cells are valuable in vitro model for vascular research. At present, investigation of disease-relevant changes in vascular endothelium at the molecular level requires established endothelial cell cultures, preserving vascular bed-specific phenotypic characteristics. Vasa vasorum (VV) form a microvascular network around large blood vessels, in both the pulmonary and systemic circulations, that are critically important for maintaining the integrity and oxygen supply of the vascular wall. However, despite the pathophysiological significance of the VV, methods for the isolation and culture of vasa vasorum endothelial cells (VVEC) have not yet been reported. In our prior studies, we demonstrated the presence of hypoxia-induced angiogenic expansion of the VV in the pulmonary artery (PA) of neonatal calves; an observation which has been followed by a series of in vitro studies on isolated PA VVEC. Here we present a detailed protocol for reproducible isolation, purification, and culture of PA VVEC. We show these cells to express generic endothelial markers, (vWF, eNOS, VEGFR2, Tie1, and CD31), as well as progenitor markers (CD34 and CD133), bind lectin Lycopersicon Esculentum, and incorporate acetylated low-density lipoproteins labeled with acetylated LDL (DiI-Ac-LDL). qPCR analysis additionally revealed the expression of CD105, VCAM-1, ICAM-1, MCAM, and NCAM. Ultrastructural electron microscopy and immunofluorescence staining demonstrated that VVEC are morphologically characterized by a developed actin and microtubular cytoskeleton, mitochondrial network, abundant intracellular vacuolar/secretory system, and cell-surface filopodia. VVEC exhibit exponential growth in culture and can be mitogenically activated by multiple growth factors. Thus, our protocol provides the opportunity for VVEC isolation from the PA, and potentially from other large vessels, enabling advances in VV research.
Collapse
Affiliation(s)
- Nana Burns
- Department of Pediatric Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States of America
| | - Hala Nijmeh
- Department of Pediatric Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States of America
| | - Martin Lapel
- Department of Pediatric Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States of America
| | - Suzette Riddle
- Department of Pediatric Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States of America
| | - Gennady G Yegutkin
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
| | - Kurt R Stenmark
- Department of Pediatric Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States of America
| | - Evgenia Gerasimovskaya
- Department of Pediatric Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States of America.
| |
Collapse
|
4
|
COVID-19 and Vasa vasorum: New Atherogenic Factor? A Case Report and Autopsy Findings. Diagnostics (Basel) 2023; 13:diagnostics13061097. [PMID: 36980405 PMCID: PMC10047382 DOI: 10.3390/diagnostics13061097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Patients with COVID-19 demonstrate higher rates of cardiovascular complications, including thromboses and thromboembolism. One may suppose that the action of SARS-CoV-2 transforms stable atherosclerotic plaques into unstable status. Cardiovascular complications in COVID-19 may be caused by progressive viral alteration of the blood vessels, including Vasa vasorum. A lethal case of ischemic brain disease caused by cerebral atherosclerosis and exacerbated by a stroke during COVID-19 infection is briefly described. The results of the autopsy showed perivascular lymphocytic infiltration and signs of Vasa vasorum vasculitis with thrombi of adventitial microvasculature. The data discussed in the article are interpreted in the context of the concept giving the important role in atherogenesis to Vasa vasorum.
Collapse
|
5
|
Pieri M, Vayianos P, Nicolaidou V, Felekkis K, Papaneophytou C. Alterations in Circulating miRNA Levels after Infection with SARS-CoV-2 Could Contribute to the Development of Cardiovascular Diseases: What We Know So Far. Int J Mol Sci 2023; 24:ijms24032380. [PMID: 36768701 PMCID: PMC9917196 DOI: 10.3390/ijms24032380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and poses significant complications for cardiovascular disease (CVD) patients. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and influence several physiological and pathological processes, including CVD. This critical review aims to expand upon the current literature concerning miRNA deregulation during the SARS-CoV-2 infection, focusing on cardio-specific miRNAs and their association with various CVDs, including cardiac remodeling, arrhythmias, and atherosclerosis after SARS-CoV-2 infection. Despite the scarcity of research in this area, our findings suggest that changes in the expression levels of particular COVID-19-related miRNAs, including miR-146a, miR-27/miR-27a-5p, miR-451, miR-486-5p, miR-21, miR-155, and miR-133a, may be linked to CVDs. While our analysis did not conclusively determine the impact of SARS-CoV-2 infection on the profile and/or expression levels of cardiac-specific miRNAs, we proposed a potential mechanism by which the miRNAs mentioned above may contribute to the development of these two pathologies. Further research on the relationship between SARS-CoV-2, CVDs, and microRNAs will significantly enhance our understanding of this connection and may lead to the use of these miRNAs as biomarkers or therapeutic targets for both pathologies.
Collapse
Affiliation(s)
- Myrtani Pieri
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
- Non-Coding RNA Research Laboratory, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| | - Panayiotis Vayianos
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| | - Vicky Nicolaidou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
- Non-Coding RNA Research Laboratory, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| | - Kyriacos Felekkis
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
- Non-Coding RNA Research Laboratory, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
- Correspondence: (K.F.); (C.P.)
| | - Christos Papaneophytou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
- Non-Coding RNA Research Laboratory, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
- Correspondence: (K.F.); (C.P.)
| |
Collapse
|
6
|
MicroRNA-155 is a main part of proinflammatory puzzle during severe coronavirus disease 2019 (COVID-19). Allergol Immunopathol (Madr) 2023; 51:115-119. [PMID: 36916095 DOI: 10.15586/aei.v51i2.698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/28/2022] [Indexed: 03/08/2023]
Abstract
Genetic and epigenetic parameters play critical roles in determining the outcomes of the severe acute respiratory syndrome coronavirus type 19 (SARS-CoV-2) infection. MicroRNAs (miRNAs) are an important part of the epigenetic factors that regulate several functions of the immune cells and also viruses. Accordingly, the molecules can regulate expression of the immune cell proteins and virus in the host cells. Among the miRNAs, miRNA-155 (miR-155) is well-studied in patients suffering from severe coronavirus disease 2019 (COVID-19). It has been reported that the SARS-CoV-2 infected patients may be directed to induce a cytokine storm or severe proinflammatory responses. This review article discusses the pathological roles of miR-155 during COVID-19 infection.
Collapse
|
7
|
Wirth KJ, Löhn M. Orthostatic Intolerance after COVID-19 Infection: Is Disturbed Microcirculation of the Vasa Vasorum of Capacitance Vessels the Primary Defect? MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1807. [PMID: 36557009 PMCID: PMC9788017 DOI: 10.3390/medicina58121807] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Following COVID-19 infection, a substantial proportion of patients suffer from persistent symptoms known as Long COVID. Among the main symptoms are fatigue, cognitive dysfunction, muscle weakness and orthostatic intolerance (OI). These symptoms also occur in myalgic encephalomyelitis/chronic fatigue (ME/CFS). OI is highly prevalent in ME/CFS and develops early during or after acute COVID-19 infection. The causes for OI are unknown and autonomic dysfunction is hypothetically assumed to be the primary cause, presumably as a consequence of neuroinflammation. Here, we propose an alternative, primary vascular mechanism as the underlying cause of OI in Long COVID. We assume that the capacitance vessel system, which plays a key role in physiologic orthostatic regulation, becomes dysfunctional due to a disturbance of the microvessels and the vasa vasorum, which supply large parts of the wall of those large vessels. We assume that the known microcirculatory disturbance found after COVID-19 infection, resulting from endothelial dysfunction, microthrombus formation and rheological disturbances of blood cells (altered deformability), also affects the vasa vasorum to impair the function of the capacitance vessels. In an attempt to compensate for the vascular deficit, sympathetic activity overshoots to further worsen OI, resulting in a vicious circle that maintains OI. The resulting orthostatic stress, in turn, plays a key role in autonomic dysfunction and the pathophysiology of ME/CFS.
Collapse
Affiliation(s)
| | - Matthias Löhn
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt am Main, Goethe-University, Theodor-Stern Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
8
|
Liu Y, Rao J, Mi Y, Chen L, Feng L, Li Q, Geng J, Yang X, Zhan X, Ren L, Chen J, Zhang X. SARS-CoV-2 RNAs are processed into 22-nt vsRNAs in Vero cells. Front Immunol 2022; 13:1008084. [DOI: 10.3389/fimmu.2022.1008084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global pandemic, resulting in great fatalities around the world. Although the antiviral roles of RNA interference (RNAi) have been well studied in plants, nematodes and insects, the antiviral roles of RNAi in mammalians are still debating as RNAi effect is suspected to be suppressed by interferon (IFN) signaling pathways in most cell types. To determine the role of RNAi in mammalian resistance to SARS-CoV-2, we studied the profiling of host small RNAs and SARS-CoV-2 virus-derived small RNAs (vsRNAs) in the early infection stages of Vero cells, an IFN-deficient cell line. We found that host microRNAs (miRNAs) were dysregulated upon SARS-CoV-2 infection, resulting in downregulation of microRNAs playing antiviral functions and upregulation of microRNAs facilitating viral proliferations. Moreover, vsRNA peaked at 22 nt at negative strand but not the positive strand of SARS-CoV-2 and formed successive Dicer-spliced pattern at both strands. Similar characteristics of vsRNAs were observed in IFN-deficient cell lines infected with Sindbis and Zika viruses. Together, these findings indicate that host cell may deploy RNAi pathway to combat SARS-CoV-2 infection in IFN-deficient cells, informing the alternative antiviral strategies to be developed for patients or tissues with IFN deficiency.
Collapse
|
9
|
Kamalia MA, Carlson SF, Melamed J, Ubert A, Rossi PJ, Durham LA. Adhered ECMO cannula in COVID-19 related severe acute respiratory failure. J Cardiothorac Surg 2022; 17:263. [PMID: 36209244 PMCID: PMC9547677 DOI: 10.1186/s13019-022-02004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Crescent cannula adhesion in the setting of COVID-19 respiratory failure requiring extracorporeal membrane oxygenation (ECMO) support is a novel complication. The objective of this case presentation is to highlight this rare complication and to explore potential predisposing factors and our management strategies. Case presentation We present the case of a 25 y.o. patient with COVID-19 respiratory failure requiring ECMO support for 16-days in which a 32 Fr crescent cannula became adherent to the SVC and proximal jugular vein. Attempts to remove the cannula at the bedside failed due to immobility of the cannula. Ultrasound of the right neck was unremarkable, so he was taken to the hybrid OR where both TEE and fluoroscopy were unrevealing. An upper sternotomy was performed, and the superior vena cava and proximal jugular vein were dissected revealing a 2 cm segment of the distal SVC and proximal jugular vein that was densely sclerosed and adherent to the cannula. The vessel was opened across the adherent area at the level of the innominate vein and the cannula was then able to be withdrawn. The patient suffered no ill effects and had an unremarkable recovery to discharge. Conclusions To date, there have been no reports of crescent cannula adhesion related complications. In patients with COVID-19 respiratory failure requiring ECMO, clinicians should be aware of widespread hypercoagulability and the potential of unprovoked, localized venous sclerosis and cannula adhesion. We report our technique of decannulation in the setting of cannula adhesion and hope that presentation will shed further light on this complication allowing clinicians to optimize patient care.
Collapse
Affiliation(s)
| | | | - Joshua Melamed
- Department of Surgery, Division of Cardiothoracic Surgery, Medical College of Wisconsin, HUB for Collaborative Medicine, 5th Floor, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA.
| | - Adam Ubert
- Department of Surgery, Division of Cardiothoracic Surgery, Medical College of Wisconsin, HUB for Collaborative Medicine, 5th Floor, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - Peter J Rossi
- Department of Surgery, Division of Vascular and Endovascular Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lucian A Durham
- Department of Surgery, Division of Cardiothoracic Surgery, Medical College of Wisconsin, HUB for Collaborative Medicine, 5th Floor, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA
| |
Collapse
|
10
|
Duan C, Ma R, Zeng X, Chen B, Hou D, Liu R, Li X, Liu L, Li T, Huang H. SARS-CoV-2 Achieves Immune Escape by Destroying Mitochondrial Quality: Comprehensive Analysis of the Cellular Landscapes of Lung and Blood Specimens From Patients With COVID-19. Front Immunol 2022; 13:946731. [PMID: 35844544 PMCID: PMC9283956 DOI: 10.3389/fimmu.2022.946731] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022] Open
Abstract
Mitochondria get caught in the crossfire of coronavirus disease 2019 (COVID-19) and antiviral immunity. The mitochondria-mediated antiviral immunity represents the host’s first line of defense against viral infection, and the mitochondria are important targets of COVID-19. However, the specific manifestations of mitochondrial damage in patients with COVID-19 have not been systematically clarified. This study comprehensively analyzed one single-cell RNA-sequencing dataset of lung tissue and two bulk RNA-sequencing datasets of blood from COVID-19 patients. We found significant changes in mitochondrion-related gene expression, mitochondrial functions, and related metabolic pathways in patients with COVID-19. SARS-CoV-2 first infected the host alveolar epithelial cells, which may have induced excessive mitochondrial fission, inhibited mitochondrial degradation, and destroyed the mitochondrial calcium uniporter (MCU). The type II alveolar epithelial cell count decreased and the transformation from type II to type I alveolar epithelial cells was blocked, which exacerbated viral immune escape and replication in COVID-19 patients. Subsequently, alveolar macrophages phagocytized the infected alveolar epithelial cells, which decreased mitochondrial respiratory capacity and activated the ROS–HIF1A pathway in macrophages, thereby aggravating the pro-inflammatory reaction in the lungs. Infected macrophages released large amounts of interferon into the blood, activating mitochondrial IFI27 expression and destroying energy metabolism in immune cells. The plasma differentiation of B cells and lung-blood interaction of regulatory T cells (Tregs) was exacerbated, resulting in a cytokine storm and excessive inflammation. Thus, our findings systematically explain immune escape and excessive inflammation seen during COVID-19 from the perspective of mitochondrial quality imbalance.
Collapse
Affiliation(s)
- Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Chenyang Duan, ; He Huang,
| | - Ruiyan Ma
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xue Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bing Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dongyao Hou
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruixue Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuehan Li
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liangming Liu
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Tao Li
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Chenyang Duan, ; He Huang,
| |
Collapse
|
11
|
Phillippi JA. On vasa vasorum: A history of advances in understanding the vessels of vessels. SCIENCE ADVANCES 2022; 8:eabl6364. [PMID: 35442731 PMCID: PMC9020663 DOI: 10.1126/sciadv.abl6364] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/01/2022] [Indexed: 05/09/2023]
Abstract
The vasa vasorum are a vital microvascular network supporting the outer wall of larger blood vessels. Although these dynamic microvessels have been studied for centuries, the importance and impact of their functions in vascular health and disease are not yet fully realized. There is now rich knowledge regarding what local progenitor cell populations comprise and cohabitate with the vasa vasorum and how they might contribute to physiological and pathological changes in the network or its expansion via angiogenesis or vasculogenesis. Evidence of whether vasa vasorum remodeling incites or governs disease progression or is a consequence of cardiovascular pathologies remains limited. Recent advances in vasa vasorum imaging for understanding cardiovascular disease severity and pathophysiology open the door for theranostic opportunities. Approaches that strive to control angiogenesis and vasculogenesis potentiate mitigation of vasa vasorum-mediated contributions to cardiovascular diseases and emerging diseases involving the microcirculation.
Collapse
Affiliation(s)
- Julie A. Phillippi
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|