1
|
Wang Y, Wei J, Ma D, Zhang C, Yang H, Yu R, Wang X, Wang L, Song L, Zhang H. Two cases report on the relationship between white matter hyperintensity volume and cognitive dysfunction in cerebral small vessel disease based on magnetic resonance imaging. Medicine (Baltimore) 2025; 104:e41577. [PMID: 40068050 PMCID: PMC11902942 DOI: 10.1097/md.0000000000041577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/31/2025] [Indexed: 03/14/2025] Open
Abstract
RATIONALE With the development of magnetic resonance imaging (MRI) technology, most of the research tends to find that there is a significant positive correlation between white matter hyperintensities (WMHs) and cognitive dysfunction in cerebral small vessel vascular disease. In this paper, we report 2 cases of cerebral small vessel disease with significant differences in cognitive function and analyze them by multidimensional assessment using imaging technology so as to provide a methodological reference for identifying and diagnosing the causes of differences in cognitive function in cerebral small vessel disease patients. PATIENT CONCERNS Patient 1 was a 64-year-old middle-aged man who presented 10 years ago with slow reaction time, memory loss, and loss of self-care ability, and MRI suggested multiple ischemic infarct foci with cerebral white matter changes. Patient 2 was a 69-year-old middle-aged woman, who did not have any significant abnormalities in cognitive function, and imaging suggested multiple ischemic foci, infarct foci, and cerebral white matter degeneration. DIAGNOSIS MRI showed a large fusion of high signal in the cerebral white matter in both patients, which belonged to the category of cerebral small vessel disease according to the Fazekas classification of grade 3. INTERVENTIONS We used imaging techniques to compare the 2 MRI brain white matter high signals in a multidimensional manner and further compared the differences in cognitive functioning between the 2 in terms of brain age, brain functional networks, focal loading of white matter fiber tracts, and neuropsychological scales. OUTCOMES Brain age difference was assessed by whole-brain level and brain function network, white matter fiber bundle lesion load, and Montreal Cognitive Assessment and Mini-Mental State Examination scale scores; the results suggested that patient 1 had relatively poor cognitive function. LESSONS In this paper, we concluded that the volume of high white matter signal in WMH is not positively correlated with the severity of cognitive impairment. In addition to cerebral WMHs, we believe that alterations in cerebral network connectivity and white matter microstructure may be the neuroimaging basis of cognitive decline in patients with WMH, which may provide a new idea for the early diagnosis of cognitive function in patients with cerebral small vessel disease.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Jingpei Wei
- Neurology Department of Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dayong Ma
- Neurology Department of Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | - Haihuan Yang
- Beijing University of Chinese Medicine, Beijing, China
| | - Ruiyun Yu
- Beijing University of Chinese Medicine, Beijing, China
| | | | - Li Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Linjing Song
- Beijing University of Chinese Medicine, Beijing, China
| | - Hua Zhang
- Neurology Department of Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Xu M, Wang L, Meng Y, Kang G, Jiang Q, Yan T, Che F. The role of lipid metabolism in cognitive impairment. ARQUIVOS DE NEURO-PSIQUIATRIA 2025; 83:1-13. [PMID: 39814004 PMCID: PMC11735072 DOI: 10.1055/s-0044-1792097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/27/2024] [Indexed: 01/18/2025]
Abstract
Alzheimer's disease (AD), diabetic cognitive impairment (DCI), and vascular dementia (VD) are considered the most common causes of severe cognitive impairment in clinical practice. Numerous factors can influence their progression, and many studies have recently revealed that metabolic disorders play crucial roles in the progression of cognitive impairment. Mounting evidence indicate that the regulation of lipid metabolism is a major factor in maintaining brain homeostasis. Generally, abnormalities in lipid metabolism can affect amyloid-beta (Aβ) deposition, tau hyperphosphorylation, and insulin resistance through lipid metabolic signaling cascades; affect the neuronal membrane structure, neurotransmitter synthesis and release; and promote synapse growth, which can impact neural signal transmission and exacerbate disease progression in individuals with cognitive impairment, including AD, DCI, and VD. Moreover, apolipoprotein E (APOE), a key protein in lipid transport, is involved in the occurrence and development of the aforementioned diseases by regulating lipid metabolism. The present article mainly discusses how lipid metabolic disorders in the brain microenvironment are involved in regulating the progression of cognitive impairment, and it explores the regulatory effects of targeting the key lipid transport protein APOE in the context of the role of lipid metabolism in the common pathogenesis of three diseases-Aβ deposition, tau hyperphosphorylation, and insulin resistance-which will help elucidate the potential of targeting lipid metabolism for the treatment of cognitive impairment.
Collapse
Affiliation(s)
- Meifang Xu
- Second Medical University, School of Clinical Medicine, Weifang Shandong Province, China.
- Linyi People's Hospital, Department of Neurology, Linyi Shandong Province, China.
| | - Liyuan Wang
- Second Medical University, School of Clinical Medicine, Weifang Shandong Province, China.
| | - Yun Meng
- Linyi People's Hospital, Department of Neurology, Linyi Shandong Province, China.
| | - Guiqiong Kang
- Guangzhou University of Chinese Medicine, Linyi People's Hospital, Linyi Shandong Province, China.
| | - Qing Jiang
- Harbin Medical University, First Affiliated Hospital, Department of Neurosurgery, Harbin Heilongjiang Province, China.
- Key Colleges and Universities, Laboratory of Neurosurgery, Harbin Heilongjiang Province, China.
| | - Tao Yan
- Linyi People's Hospital, Department of Neurology, Linyi Shandong Province, China.
| | - Fengyuan Che
- Second Medical University, School of Clinical Medicine, Weifang Shandong Province, China.
- Linyi People's Hospital, Department of Neurology, Linyi Shandong Province, China.
| |
Collapse
|
3
|
Lin C, Huang Y, Lin Q. The impact of tonsillectomy and/or adenoidectomy on cognitive function and brain structure in pediatric patients with OSAHS. Technol Health Care 2025; 33:321-331. [PMID: 39302401 DOI: 10.3233/thc-241028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
BACKGROUND Tonsillectomy and/or adenoidectomy can treat children with obstructive sleep apnea/hypopnea syndrome (OSAHS). OBJECTIVE This study investigated the effects of tonsillectomy and/or adenoidectomy on cognitive function and brain structure in children with OSAHS. METHODS This study included 40 obstructive sleep apnea/hypopnea syndrome children and 40 healthy children. The cognitive function and brain structure changes of OSAHS children before and after surgery and 40 healthy children were evaluated by the Swanson, Nolan, and Pelham Rating Scale (SNAP-IV) and the Integrated Visual and Auditory Continuous Performance Test (IVA-CPT), as well as brain resting-state fMRI functional magnetic resonance imaging (rs-fMRI). RESULTS Children with OSAHS showed higher Swanson, Nolan, and Pelham Rating Scale and lower Integrated Visual and Auditory Continuous Performance Test scores than healthy peers, indicating cognitive impairment. Post-surgery, there was a significant improvement in cognitive function, evidenced by decreased Swanson, Nolan, and Pelham Rating Scale and increased Integrated Visual and Auditory Continuous Performance Test scores. Compared to healthy children, OSAHS children displayed altered ReHo values in certain brain regions, such as decreased values in the right angular gyrus, right precuneus, left parahippocampal gyrus, and left middle frontal gyrus, but increased values in the right posterior cerebellum. After surgery, ReHo values increased in regions like the right precuneus, right temporal lobe, right posterior cingulate gyrus, and left limbic lobe, suggesting neurological changes associated with treatment. CONCLUSIONS Children with obstructive sleep apnea/hypopnea syndrome had cognitive impairment and abnormal changes in multiple brain regions. Tonsillectomy and/or adenoidectomy could improve cognitive function and contribute to the reconstruction of brain function and structure in children with obstructive sleep apnea/hypopnea syndrome.
Collapse
|
4
|
Corneliusson L, Öhlin J, Toots A, Gustafson Y, Olofsson B. The association between gait speed and depressive disorders - A cross-sectional analysis of very old adults in the 21st century. Aging Ment Health 2024:1-8. [PMID: 39648653 DOI: 10.1080/13607863.2024.2436479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/24/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVES To investigate the association between gait speed and depressive disorders among very old adults (≥85 years). METHOD This study utilized the GERDA-database, which encompasses a representative sample of those aged 85, 90, and 95+ years residing in northern Sweden and western Finland. From four data collections between 2000 and 2017, this study included 1794 participants. Self-paced gait speed was measured over 2.4-m and depressive disorders was evaluated by a specialist in geriatric medicine according to the DSM-IV-TR criteria. T-tests and multivariable logistic regressions were used to explore differences and associations between gait speed and depressive disorders. RESULTS Gait speed was independently associated with depressive disorders among very old adults (p < .001). The results showed significantly different mean gait speeds (m/s) between individuals with/without a depressive disorder (0.34 ± 0.24/0.52 ± 0.26, p < .001), between individuals with a depressive disorder with/without antidepressant treatment (0.35 ± 0.24/0.44 ± 0.24, p < .001) and between non-responders/responders to antidepressants (0.36 ± 0.21/0.42 ± 0.22, p = .020). CONCLUSION This is the first study focusing on very old adults that has shown an independent association between gait speed and depressive disorders. Responders to antidepressant medication had a higher mean gait speed than non-responders, which may imply shifts in function upon successful treatment.
Collapse
Affiliation(s)
| | - Jerry Öhlin
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden
| | - Annika Toots
- Department of Community Medicine and Rehabilitation, Physiotherapy, Geriatric Medicine, Umeå University, Umeå, Sweden
| | - Yngve Gustafson
- Department of Community Medicine and Rehabilitation, Geriatric Medicine, Umeå University, Umeå, Sweden
| | - Birgitta Olofsson
- Department of Nursing, Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Orthopedics, Umeå University, Umeå, Sweden
| |
Collapse
|
5
|
Duarte KTN, Sidhu AS, Barros MC, Gobbi DG, McCreary CR, Saad F, Camicioli R, Smith EE, Bento MP, Frayne R. Multi-stage semi-supervised learning enhances white matter hyperintensity segmentation. Front Comput Neurosci 2024; 18:1487877. [PMID: 39502452 PMCID: PMC11534601 DOI: 10.3389/fncom.2024.1487877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction White matter hyperintensities (WMHs) are frequently observed on magnetic resonance (MR) images in older adults, commonly appearing as areas of high signal intensity on fluid-attenuated inversion recovery (FLAIR) MR scans. Elevated WMH volumes are associated with a greater risk of dementia and stroke, even after accounting for vascular risk factors. Manual segmentation, while considered the ground truth, is both labor-intensive and time-consuming, limiting the generation of annotated WMH datasets. Un-annotated data are relatively available; however, the requirement of annotated data poses a challenge for developing supervised machine learning models. Methods To address this challenge, we implemented a multi-stage semi-supervised learning (M3SL) approach that first uses un-annotated data segmented by traditional processing methods ("bronze" and "silver" quality data) and then uses a smaller number of "gold"-standard annotations for model refinement. The M3SL approach enabled fine-tuning of the model weights with the gold-standard annotations. This approach was integrated into the training of a U-Net model for WMH segmentation. We used data from three scanner vendors (over more than five scanners) and from both cognitively normal (CN) adult and patients cohorts [with mild cognitive impairment and Alzheimer's disease (AD)]. Results An analysis of WMH segmentation performance across both scanner and clinical stage (CN, MCI, AD) factors was conducted. We compared our results to both conventional and transfer-learning deep learning methods and observed better generalization with M3SL across different datasets. We evaluated several metrics (F-measure, IoU, and Hausdorff distance) and found significant improvements with our method compared to conventional (p < 0.001) and transfer-learning (p < 0.001). Discussion These findings suggest that automated, non-machine learning, tools have a role in a multi-stage learning framework and can reduce the impact of limited annotated data and, thus, enhance model performance.
Collapse
Affiliation(s)
- Kauê T. N. Duarte
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Calgary Image Processing and Analysis Centre, Foothills Medical Centre, Calgary, AB, Canada
| | - Abhijot S. Sidhu
- Department of Biomedical Engineering, Schulich School of Engineering, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, AB, Canada
| | - Murilo C. Barros
- School of Technology, University of Campinas, Limeira, São Paulo, Brazil
| | - David G. Gobbi
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Calgary Image Processing and Analysis Centre, Foothills Medical Centre, Calgary, AB, Canada
| | - Cheryl R. McCreary
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, AB, Canada
| | - Feryal Saad
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Richard Camicioli
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Eric E. Smith
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Mariana P. Bento
- Department of Biomedical Engineering, Schulich School of Engineering, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Richard Frayne
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Calgary Image Processing and Analysis Centre, Foothills Medical Centre, Calgary, AB, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, AB, Canada
| |
Collapse
|
6
|
Lee M, Suh CH, Sohn JH, Kim C, Han SW, Sung JH, Yu KH, Lim JS, Lee SH. Impact of white matter hyperintensity volumes estimated by automated methods using deep learning on stroke outcomes in small vessel occlusion stroke. Front Aging Neurosci 2024; 16:1399457. [PMID: 38974905 PMCID: PMC11224430 DOI: 10.3389/fnagi.2024.1399457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction Although white matter hyperintensity (WMH) shares similar vascular risk and pathology with small vessel occlusion (SVO) stroke, there were few studies to evaluate the impact of the burden of WMH volume on early and delayed stroke outcomes in SVO stroke. Materials and methods Using a multicenter registry database, we enrolled SVO stroke patients between August 2013 and November 2022. The WMH volume was estimated by automated methods using deep learning (VUNO Med-DeepBrain, Seoul, South Korea), which was a commercially available segmentation model. After propensity score matching (PSM), we evaluated the impact of WMH volume on early neurological deterioration (END) and poor functional outcomes at 3-month modified Ranking Scale (mRS), defined as mRS score >2 at 3 months, after an SVO stroke. Results Among 1,718 SVO stroke cases, the prevalence of subjects with severe WMH (Fazekas score ≥ 3) was 68.9%. After PSM, END and poor functional outcomes at 3-month mRS (mRS > 2) were higher in the severe WMH group (END: 6.9 vs. 13.5%, p < 0.001; 3-month mRS > 2: 11.4 vs. 24.7%, p < 0.001). The logistic regression analysis using the PSM cohort showed that total WMH volume increased the risk of END [odd ratio [OR], 95% confidence interval [CI]; 1.01, 1.00-1.02, p = 0.048] and 3-month mRS > 2 (OR, 95% CI; 1.02, 1.01-1.03, p < 0.001). Deep WMH was associated with both END and 3-month mRS > 2, but periventricular WMH was associated with 3-month mRS > 2 only. Conclusion This study used automated methods using a deep learning segmentation model to assess the impact of WMH burden on outcomes in SVO stroke. Our findings emphasize the significance of WMH burden in SVO stroke prognosis, encouraging tailored interventions for better patient care.
Collapse
Affiliation(s)
- Minwoo Lee
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Chong Hyun Suh
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jong-Hee Sohn
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
- Institute of New Frontier Research Team, Hallym University, Chuncheon, Republic of Korea
| | - Chulho Kim
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
- Institute of New Frontier Research Team, Hallym University, Chuncheon, Republic of Korea
| | - Sang-Won Han
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
- Institute of New Frontier Research Team, Hallym University, Chuncheon, Republic of Korea
| | - Joo Hye Sung
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
- Institute of New Frontier Research Team, Hallym University, Chuncheon, Republic of Korea
| | - Kyung-Ho Yu
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Jae-Sung Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Hwa Lee
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
- Institute of New Frontier Research Team, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
7
|
Zahr NM. Alcohol Use Disorder and Dementia: A Review. Alcohol Res 2024; 44:03. [PMID: 38812709 PMCID: PMC11135165 DOI: 10.35946/arcr.v44.1.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
PURPOSE By 2040, 21.6% of Americans will be over age 65, and the population of those older than age 85 is estimated to reach 14.4 million. Although not causative, older age is a risk factor for dementia: every 5 years beyond age 65, the risk doubles; approximately one-third of those older than age 85 are diagnosed with dementia. As current alcohol consumption among older adults is significantly higher compared to previous generations, a pressing question is whether drinking alcohol increases the risk for Alzheimer's disease or other forms of dementia. SEARCH METHODS Databases explored included PubMed, Web of Science, and ScienceDirect. To accomplish this narrative review on the effects of alcohol consumption on dementia risk, the literature covered included clinical diagnoses, epidemiology, neuropsychology, postmortem pathology, neuroimaging and other biomarkers, and translational studies. Searches conducted between January 12 and August 1, 2023, included the following terms and combinations: "aging," "alcoholism," "alcohol use disorder (AUD)," "brain," "CNS," "dementia," "Wernicke," "Korsakoff," "Alzheimer," "vascular," "frontotemporal," "Lewy body," "clinical," "diagnosis," "epidemiology," "pathology," "autopsy," "postmortem," "histology," "cognitive," "motor," "neuropsychological," "magnetic resonance," "imaging," "PET," "ligand," "degeneration," "atrophy," "translational," "rodent," "rat," "mouse," "model," "amyloid," "neurofibrillary tangles," "α-synuclein," or "presenilin." When relevant, "species" (i.e., "humans" or "other animals") was selected as an additional filter. Review articles were avoided when possible. SEARCH RESULTS The two terms "alcoholism" and "aging" retrieved about 1,350 papers; adding phrases-for example, "postmortem" or "magnetic resonance"-limited the number to fewer than 100 papers. Using the traditional term, "alcoholism" with "dementia" resulted in 876 citations, but using the currently accepted term "alcohol use disorder (AUD)" with "dementia" produced only 87 papers. Similarly, whereas the terms "Alzheimer's" and "alcoholism" yielded 318 results, "Alzheimer's" and "alcohol use disorder (AUD)" returned only 40 citations. As pertinent postmortem pathology papers were published in the 1950s and recent animal models of Alzheimer's disease were created in the early 2000s, articles referenced span the years 1957 to 2024. In total, more than 5,000 articles were considered; about 400 are herein referenced. DISCUSSION AND CONCLUSIONS Chronic alcohol misuse accelerates brain aging and contributes to cognitive impairments, including those in the mnemonic domain. The consensus among studies from multiple disciplines, however, is that alcohol misuse can increase the risk for dementia, but not necessarily Alzheimer's disease. Key issues to consider include the reversibility of brain damage following abstinence from chronic alcohol misuse compared to the degenerative and progressive course of Alzheimer's disease, and the characteristic presence of protein inclusions in the brains of people with Alzheimer's disease, which are absent in the brains of those with AUD.
Collapse
Affiliation(s)
- Natalie M Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California. Center for Health Sciences, SRI International, Menlo Park, California
| |
Collapse
|
8
|
Thomas RJ. A matter of fragmentation. Sleep 2024; 47:zsae030. [PMID: 38285604 DOI: 10.1093/sleep/zsae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Indexed: 01/31/2024] Open
Affiliation(s)
- Robert Joseph Thomas
- Professor of Medicine, Harvard Medical School, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
9
|
Li B, Gu Z, Wang W, Du B, Wu C, Li B, Wang T, Yin G, Gao X, Chen J, Bi X, Zhang H, Sun X. The associations between peripheral inflammatory and lipid parameters, white matter hyperintensity, and cognitive function in patients with non-disabling ischemic cerebrovascular events. BMC Neurol 2024; 24:86. [PMID: 38438839 PMCID: PMC10910845 DOI: 10.1186/s12883-024-03591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The global prevalence of VCI has increased steadily in recent years, but diagnostic biomarkers for VCI in patients with non-disabling ischemic cerebrovascular incidents (NICE) remain indefinite. The primary objective of this research was to investigate the relationship between peripheral serological markers, white matter damage, and cognitive function in individuals with NICE. METHODS We collected clinical data, demographic information, and medical history from 257 patients with NICE. Using the MoCA upon admission, patients were categorized into either normal cognitive function (NCF) or VCI groups. Furthermore, they were classified as having mild white matter hyperintensity (mWMH) or severe WMH based on Fazekas scores. We then compared the levels of serological markers between the cognitive function groups and the WMH groups. RESULTS Among 257 patients with NICE, 165 were male and 92 were female. Lymphocyte count (OR = 0.448, P < 0.001) and LDL-C/HDL-C (OR = 0.725, P = 0.028) were protective factors for cognitive function in patients with NICE. The sWMH group had a higher age and inflammation markers but a lower MoCA score, and lymphocyte count than the mWMH group. In the mWMH group, lymphocyte count (AUC = 0.765, P < 0.001) and LDL-C/HDL-C (AUC = 0.740, P < 0.001) had an acceptable diagnostic value for the diagnosis of VCI. In the sWMH group, no significant differences were found in serological markers between the NCF and VCI groups. CONCLUSION Lymphocyte count, LDL-C/HDL-C were independent protective factors for cognitive function in patients with NICE; they can be used as potential biological markers to distinguish VCI in patients with NICE and are applicable to subgroups of patients with mWMH.
Collapse
Affiliation(s)
- Binghan Li
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Zhengsheng Gu
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Weisen Wang
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Bingying Du
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Chenghao Wu
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Bin Li
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Tianren Wang
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Ge Yin
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Xin Gao
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Jingjing Chen
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Xiaoying Bi
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Hailing Zhang
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China.
| | - Xu Sun
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China.
| |
Collapse
|
10
|
Dhabalia R, Kashikar SV, Parihar PS, Mishra GV. Unveiling the Intricacies: A Comprehensive Review of Magnetic Resonance Imaging (MRI) Assessment of T2-Weighted Hyperintensities in the Neuroimaging Landscape. Cureus 2024; 16:e54808. [PMID: 38529430 PMCID: PMC10961652 DOI: 10.7759/cureus.54808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/24/2024] [Indexed: 03/27/2024] Open
Abstract
T2-weighted hyperintensities in neuroimaging represent areas of heightened signal intensity on magnetic resonance imaging (MRI) scans, holding crucial importance in neuroimaging. This comprehensive review explores the T2-weighted hyperintensities, providing insights into their definition, characteristics, clinical relevance, and underlying causes. It highlights the significance of these hyperintensities as sensitive markers for neurological disorders, including multiple sclerosis, vascular dementia, and brain tumors. The review also delves into advanced neuroimaging techniques, such as susceptibility-weighted and diffusion tensor imaging, and the application of artificial intelligence and machine learning in hyperintensities analysis. Furthermore, it outlines the challenges and pitfalls associated with their assessment and emphasizes the importance of standardized protocols and a multidisciplinary approach. The review discusses future directions for research and clinical practice, including the development of biomarkers, personalized medicine, and enhanced imaging techniques. Ultimately, the review underscores the profound impact of T2-weighted hyperintensities in shaping the landscape of neurological diagnosis, prognosis, and treatment, contributing to a deeper understanding of complex neurological conditions and guiding more informed and effective patient care.
Collapse
Affiliation(s)
- Rishabh Dhabalia
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Shivali V Kashikar
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Pratap S Parihar
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Gaurav V Mishra
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
11
|
Lin K, Wen W, Lipnicki DM, Mewton L, Chen R, Du J, Wang D, Skoog I, Sterner TR, Najar J, Kim KW, Han JW, Kim JS, Ng TP, Ho R, Chua DQL, Anstey KJ, Cherbuin N, Mortby ME, Brodaty H, Kochan N, Sachdev PS, Jiang J. Risk factors and cognitive correlates of white matter hyperintensities in ethnically diverse populations without dementia: The COSMIC consortium. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12567. [PMID: 38487075 PMCID: PMC10937819 DOI: 10.1002/dad2.12567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 03/17/2024]
Abstract
INTRODUCTION White matter hyperintensities (WMHs) are an important imaging marker for cerebral small vessel diseases, but their risk factors and cognitive associations have not been well documented in populations of different ethnicities and/or from different geographical regions. METHODS We investigated how WMHs were associated with vascular risk factors and cognition in both Whites and Asians, using data from five population-based cohorts of non-demented older individuals from Australia, Singapore, South Korea, and Sweden (N = 1946). WMH volumes (whole brain, periventricular, and deep) were quantified with UBO Detector and harmonized using the ComBat model. We also harmonized various vascular risk factors and scores for global cognition and individual cognitive domains. RESULTS Factors associated with larger whole brain WMH volumes included diabetes, hypertension, stroke, current smoking, body mass index, higher alcohol intake, and insufficient physical activity. Hypertension and stroke had stronger associations with WMH volumes in Whites than in Asians. No associations between WMH volumes and cognitive performance were found after correction for multiple testing. CONCLUSION The current study highlights ethnic differences in the contributions of vascular risk factors to WMHs.
Collapse
Affiliation(s)
- Keshuo Lin
- Centre for Healthy Brain AgeingSchool of Clinical MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Wei Wen
- Centre for Healthy Brain AgeingSchool of Clinical MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Darren M. Lipnicki
- Centre for Healthy Brain AgeingSchool of Clinical MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Louise Mewton
- Centre for Healthy Brain AgeingSchool of Clinical MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Rory Chen
- Centre for Healthy Brain AgeingSchool of Clinical MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Jing Du
- Centre for Healthy Brain AgeingSchool of Clinical MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Dadong Wang
- Quantitative Imaging Research TeamCSIRO Informatics and StatisticsNorth RydeNew South WalesAustralia
| | - Ingmar Skoog
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Centre for Ageing and Health (AGECAP)University of GothenburgGothenburgSweden
- Psychiatry, Cognition and Old Age Psychiatry ClinicSahlgrenska University HospitalGothenburgSweden
| | - Therese Rydberg Sterner
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Centre for Ageing and Health (AGECAP)University of GothenburgGothenburgSweden
- Aging Research CenterDepartment of NeurobiologyCare Sciences and SocietyKarolinska Institutet and Stockholm UniversityStockholmSweden
| | - Jenna Najar
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Centre for Ageing and Health (AGECAP)University of GothenburgGothenburgSweden
- Section Genomics of Neurodegenerative Diseases and AgingDepartment of Human GeneticsAmsterdam Universitair Medische CentraAmsterdamthe Netherlands
| | - Ki Woong Kim
- Department of NeuropsychiatrySeoul National University Bundang HospitalSeongnamSouth Korea
- Department of PsychiatrySeoul National University College of MedicineSeoulSouth Korea
- Department of Brain and Cognitive SciencesSeoul National University College of Natural SciencesSeoulSouth Korea
| | - Ji Won Han
- Department of NeuropsychiatrySeoul National University Bundang HospitalSeongnamSouth Korea
- Department of PsychiatrySeoul National University College of MedicineSeoulSouth Korea
| | - Jun Sung Kim
- Department of NeuropsychiatrySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Tze Pin Ng
- Department of Psychological MedicineKhoo Teck Puat HospitalYishunSingapore
- Geriatric Education and Research InstituteMinistry of HealthSingaporeSingapore
| | - Roger Ho
- Institute for Health Innovation and Technology (iHealthtech)National University of SingaporeSingaporeSingapore
| | - Denise Qian Ling Chua
- Department of Psychological MedicineNational University of SingaporeSingaporeSingapore
| | - Kaarin J. Anstey
- School of PsychologyUniversity of New South WalesSydneyNew South WalesAustralia
- Department of NeurodegenerationNeuroscience Research AustraliaSydneyNew South WalesAustralia
- Ageing Futures InstituteUniversity of New South WalesSydneyNew South WalesAustralia
| | - Nicolas Cherbuin
- National Centre for Epidemiology and Population HealthCollege of Health and MedicineAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Moyra E. Mortby
- School of PsychologyUniversity of New South WalesSydneyNew South WalesAustralia
- Department of NeurodegenerationNeuroscience Research AustraliaSydneyNew South WalesAustralia
- Ageing Futures InstituteUniversity of New South WalesSydneyNew South WalesAustralia
| | - Henry Brodaty
- Centre for Healthy Brain AgeingSchool of Clinical MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Nicole Kochan
- Centre for Healthy Brain AgeingSchool of Clinical MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Perminder S. Sachdev
- Centre for Healthy Brain AgeingSchool of Clinical MedicineUniversity of New South WalesSydneyNew South WalesAustralia
- Neuropsychiatric InstituteThe Prince of Wales HospitalSydneyNew South WalesAustralia
| | - Jiyang Jiang
- Centre for Healthy Brain AgeingSchool of Clinical MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | | |
Collapse
|
12
|
Yang A, Yang YT, Zhao XM. An augmented Mendelian randomization approach provides causality of brain imaging features on complex traits in a single biobank-scale dataset. PLoS Genet 2023; 19:e1011112. [PMID: 38150468 PMCID: PMC10775988 DOI: 10.1371/journal.pgen.1011112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/09/2024] [Accepted: 12/12/2023] [Indexed: 12/29/2023] Open
Abstract
Mendelian randomization (MR) is an effective approach for revealing causal risk factors that underpin complex traits and diseases. While MR has been more widely applied under two-sample settings, it is more promising to be used in one single large cohort given the rise of biobank-scale datasets that simultaneously contain genotype data, brain imaging data, and matched complex traits from the same individual. However, most existing multivariable MR methods have been developed for two-sample setting or a small number of exposures. In this study, we introduce a one-sample multivariable MR method based on partial least squares and Lasso regression (MR-PL). MR-PL is capable of considering the correlation among exposures (e.g., brain imaging features) when the number of exposures is extremely upscaled, while also correcting for winner's curse bias. We performed extensive and systematic simulations, and demonstrated the robustness and reliability of our method. Comprehensive simulations confirmed that MR-PL can generate more precise causal estimates with lower false positive rates than alternative approaches. Finally, we applied MR-PL to the datasets from UK Biobank to reveal the causal effects of 36 white matter tracts on 180 complex traits, and showed putative white matter tracts that are implicated in smoking, blood vascular function-related traits, and eating behaviors.
Collapse
Affiliation(s)
- Anyi Yang
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People’s Republic of China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People’s Republic of China
| | - Yucheng T. Yang
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People’s Republic of China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People’s Republic of China
| | - Xing-Ming Zhao
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People’s Republic of China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People’s Republic of China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, People’s Republic of China
- International Human Phenome Institutes (Shanghai), Shanghai, People’s Republic of China
| |
Collapse
|
13
|
Wei C, Chen Y, Yu X, Yang T, Li J, Chen X. HDL-C/LDL-C and Risk of Cerebral White Matter Hyperintensities: A Cross-Sectional Study. Int J Gen Med 2023; 16:5175-5182. [PMID: 37954651 PMCID: PMC10638942 DOI: 10.2147/ijgm.s439150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023] Open
Abstract
Background and Purpose At present, there is still a lack of metabolic indices to predict white matter hyperintensities. This study aimed to explore the correlations of the high-density lipoprotein cholesterol (HDL-C)/low-density lipoprotein cholesterol (LDL-C) ratio with the risk of white matter hyperintensities. Methods Hospitalized patients who underwent inpatient treatment or physical examination due to various chronic diseases between January 18, 2018, and March 20, 2023, were enrolled. Fazekas scores were used to assess the severity of white matter hyperintensities. Logistic regression analysis was used to adjust for possible confounders. Results Of the 1162 enrolled patients, 770 (66.27%) patients were classified as having no or mild WMHs, and 392 (33.73%) were classified as having moderate or severe WMHs. After adjusting for covariates, the logistic regression analysis indicated that the ratio of HDL-C to LDL-C was related to the severity of WMHs (Model 1, OR = 0.23, 95% CI: 0.07-0.73, P=0.012; Model 2, OR = 2.03, 95% CI: 1.12-3.67, P=0.019). Conclusion Our findings suggest that the ratio of HDL-C to LDL-C is related to the severity of WMHs and that a high ratio of HDL-C to LDL-C is a protective factor against WMHs. This suggests that the ratio of HDL-C to LDL-C could be used as a metabolic prediction index of WMH severity.
Collapse
Affiliation(s)
- Cunsheng Wei
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People’s Republic of China
| | - Yuan Chen
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People’s Republic of China
| | - Xiaorong Yu
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People’s Republic of China
| | - Tingting Yang
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People’s Republic of China
| | - Junrong Li
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People’s Republic of China
| | - Xuemei Chen
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People’s Republic of China
| |
Collapse
|
14
|
Wei C, Yu X, Chen Y, Yang T, Li S, Li J, Chen X. Can Patients with Asymptomatic/Mild Illness and Moderate Illness COVID-19 Have White Matter Damage? Int J Gen Med 2023; 16:4585-4593. [PMID: 37840824 PMCID: PMC10576465 DOI: 10.2147/ijgm.s434968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
Background and Purpose Studies have shown that severe coronavirus pandemic 2019 infection could lead to white matter hyperintensities, but the relationship between asymptomatic/mild illness and moderate illness coronavirus pandemic 2019 and white matter hyperintensities remains largely unknown. This study aimed to investigate the relationship between asymptomatic/mild illness and moderate illness coronavirus pandemic 2019 and the risk of white matter hyperintensities. Methods Hospitalized patients who were confirmed to have coronavirus pandemic 2019 for the first time were enrolled. Fazekas scores were used for assessment of the severity of white matter hyperintensities. We also rated the 90-day functional outcome after discharge. Results Of the 157 enrolled patients, 124 (78.98%) coronavirus pandemic 2019 patients were classified as having asymptomatic or mild illness, and 33 (21.02%) were classified as having moderate illness. The results showed that the Fazekas scale scores at baseline (periventricular white matter hyperintensities, 1.31±1.16 vs 2.06±1.20; Deep white matter hyperintensities, 1.04±0.97 vs 1.73±1.13 P <0.01) and at follow-up (periventricular white matter hyperintensities, 1.38±1.21 vs 2.09±1.21; Deep white matter hyperintensities, 1.13±1.04 vs 1.79±1.14 P <0.01) were lower in patients with symptomatic or mild illness than in those with moderate illness. Moreover, no significant difference (7.26% vs 3.03%; P =0.377) was observed between the two divided groups in terms of white matter hyperintensities progression. Conclusion Our findings suggest that moderate COVID-19 is related to severe white matter hyperintensities compared with asymptomatic/mild illness but not to the progression of white matter hyperintensities.
Collapse
Affiliation(s)
- Cunsheng Wei
- Department of Neurology, Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People’s Republic of China
| | - Xiaorong Yu
- Department of Neurology, Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People’s Republic of China
| | - Yuan Chen
- Department of Neurology, Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People’s Republic of China
| | - Tingting Yang
- Department of Neurology, Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People’s Republic of China
| | - Shenghua Li
- Department of Neurology, Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People’s Republic of China
| | - Junrong Li
- Department of Neurology, Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People’s Republic of China
| | - Xuemei Chen
- Department of Neurology, Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People’s Republic of China
| |
Collapse
|
15
|
Li T, Ye M, Yang G, Diao S, Zhou Y, Qin Y, Ding D, Zhu M, Fang Q. Regional white matter hyperintensity volume predicts persistent cognitive impairment in acute lacunar infarct patients. Front Neurol 2023; 14:1265743. [PMID: 37881309 PMCID: PMC10595143 DOI: 10.3389/fneur.2023.1265743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/15/2023] [Indexed: 10/27/2023] Open
Abstract
Background White matter hyperintensity (WMH) is often described in acute lacunar stroke (ALS) patients. However, the specific relationship between regional WMH volume and persistent cognitive impairment remains unclear. Methods We enrolled patients with ALS who were hospitalized at the First Affiliated Hospital of Soochow University between January 2020 and November 2022. All patients were assessed for global cognitive function using the Montreal Cognitive Assessment (MoCA) scale at 14 ± 2 days and 6 months after the onset of ALS. Manifestations of chronic cerebral small vessel disease (CSVD) were assessed via MRI scan. The distributions of regional WMH were segmented, and their relationship with cognitive impairment was evaluated. Results A total of 129 patients were enrolled. Baseline frontal WMH volume (OR = 1.18, P = 0.04) was an independent risk factor for long-term cognitive impairment after ALS. Furthermore, the presence of WMH at the genu of the corpus callosum (GCC) at baseline (OR = 3.1, P = 0.033) was strongly associated with persistent cognitive decline. Multivariable logistic regression analysis showed that depression (OR = 6.252, P = 0.029), NIHSS score (OR = 1.24, P = 0.011), and albumin at admission (OR = 0.841, P = 0.032) were also important determinants of long-term cognitive impairment after ALS. Conclusions Our study found that WMH, especially frontal WMH volume and the presence of WMH at the GCC at baseline, independently contributed to long-term cognitive decline in ALS patients. This study provides new evidence of the clinical relationship between regional WMH volume and cognitive impairment in ALS patients.
Collapse
Affiliation(s)
- Tan Li
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mengfan Ye
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Guopeng Yang
- Suzhou Jiasheng Medical Instrument Co., Ltd., Suzhou, Jiangsu, China
| | - Shanshan Diao
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yun Zhou
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yiren Qin
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dongxue Ding
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mo Zhu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
16
|
Lin K, Wen W, Lipnicki DM, Mewton L, Chen R, Du J, Wang D, Skoog I, Sterner TR, Najar J, Kim KW, Han JW, Kim JS, Ng TP, Ho R, Chua DQL, Anstey KJ, Cherbuin N, Mortby ME, Brodaty H, Kochan N, Sachdev PS, Jiang J. Risk factors and cognitive correlates of white matter hyperintensities in ethnically diverse populations without dementia: the COSMIC consortium. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.30.23294876. [PMID: 37693599 PMCID: PMC10491386 DOI: 10.1101/2023.08.30.23294876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
INTRODUCTION White matter hyperintensities (WMH) are an important imaging marker for cerebral small vessel diseases, but their risk factors and cognitive associations have not been well-documented in populations of different ethnicities and/or from different geographical regions. METHOD Magnetic resonance imaging data of five population-based cohorts of non-demented older individuals from Australia, Singapore, South Korea, and Sweden (N = 1,946) were examined for WMH and their associations with vascular risk factors and cognition. RESULT Factors associated with larger whole brain WMH volumes included diabetes, hypertension, stroke, current smoking, body mass index, higher alcohol intake and insufficient physical activity. Participants with moderate or higher physical activity had less WMH than those who never exercised, but the former two groups did not differ. Hypertension and stroke had stronger associations with WMH volumes in the White, compared to Asian subsample. DISCUSSION The current study highlighted the ethnic differences in the contributions of vascular risk factors to WMH.
Collapse
Affiliation(s)
- Keshuo Lin
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Darren M. Lipnicki
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Louise Mewton
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Rory Chen
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jing Du
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dadong Wang
- CSIRO Informatics and Statistics, Locked Bag 17, North Ryde, NSW 1670, Australia
| | - Ingmar Skoog
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Box 100, 405 30, at the University of Gothenburg, Sweden
- Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Box 100, 405 30, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, Gothenburg, Box 100, Goeteborg, Vaestra Goetaland 405 30, Sweden
| | - Therese Rydberg Sterner
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Box 100, 405 30, at the University of Gothenburg, Sweden
- Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Box 100, 405 30, Sweden
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Nobels väg 6, 171 77 Stockholm, Sweden
| | - Jenna Najar
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Box 100, 405 30, at the University of Gothenburg, Sweden
- Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Box 100, 405 30, Sweden
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Amsterdam Universitair Medische Centra, PO Box 7057, 1007 MB, Amsterdam, the Netherlands
| | - Ki Woong Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggi-do 13620, Seongnam, Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul 03080, Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggi-do 13620, Seongnam, Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jun Sung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggi-do 13620, Seongnam, Korea
| | - Tze Pin Ng
- Khoo Teck Puat Hospital, 768828, Singapore
- Geriatric Education and Research Institute, Ministry of Health, 768024, Singapore
| | - Roger Ho
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, 119077, Singapore
| | - Denise Qian Ling Chua
- Department of Psychological Medicine, National University of Singapore, 119077, Singapore
| | - Kaarin J. Anstey
- School of Psychology, University of New South Wales, NSW 2052,Australia
- Neuroscience Research Australia, NSW 2031, Australia
- Ageing Futures Institute, University of New South Wales, NSW 2052,Australia
| | - Nicolas Cherbuin
- National Centre for Epidemiology and Population Health, College of Health and Medicine, Australian National University, ACT 2600, Canberra, Australia
| | - Moyra E. Mortby
- School of Psychology, University of New South Wales, NSW 2052,Australia
- Neuroscience Research Australia, NSW 2031, Australia
- Ageing Futures Institute, University of New South Wales, NSW 2052,Australia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nicole Kochan
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Neuropsychiatric Institute, The Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
17
|
Heterogeneity of White Matter Hyperintensity and Cognitive Impairment in Patients with Acute Lacunar Stroke. Brain Sci 2022; 12:brainsci12121674. [PMID: 36552134 PMCID: PMC9776102 DOI: 10.3390/brainsci12121674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Background: The severity of white matter hyperintensity (WMH) in patients with acute lacunar stroke (ALS) may be not completely parallel to cognitive impairment. Controversies persist about the effects of WMH on cognitive dysfunction. It is vital to explore whether the association may be affected by certain factors and whether a subsequent subgroup analysis is necessary. The aim of this study was to evaluate the relationship between WMH and cognitive impairment in acute lacunar stroke patients and the possible causal factors. Methods: We continuously enrolled patients with ALS who were hospitalized at the First Affiliated Hospital of Soochow University between October 2017 and June 2022. The cognitive function of all patients was assessed by using the Montreal Cognitive Assessment (MoCA) scale 14 ± 2 days after the onset of AIS, and the results were adjusted to the education level. The MoCA scale was reevaluated at the 6-month (day 182 ± 7) follow-up by outpatient visit or video. Demographic and clinical data were collected. The manifestations of chronic cerebral small-vessel disease (CSVD), including the total Fazekas score and total CSVD burden score, were assessed with an MRI scan. A mismatch refers to an inconsistency between the severity of WMH and cognitive dysfunction. A Type 1 mismatch refers to cognitive impairment with mild WMH (total Fazekas score = 0−1), and a Type 2 mismatch refers to severe WMH (total Fazekas score = 5−6) in patients with normal cognitive function. Results: Among 213 enrolled ALS patients, 66 patients (31.0%) had cognitive dysfunction, and 40 patients (18.8%) had mismatches. Twenty-seven cases (12.7%) were Type 1 mismatched, and seventeen cases (8.0%) were Type 2 mismatched. Age, gender, fibrinogen and cerebral infarction history were independent risk factors for cognitive impairment in ALS patients. Imaging features, including moderate to severe WMH, deep WMH and the total CSVD burden score, were also independently associated with cognitive impairment. The patients in the mismatched group were older, had more severe deep WMH and had a higher occurrence of depression (p < 0.05). The NIHSS score, depression and microbleeds were significantly different between the Type 1 mismatched group and the matched group (p = 0.018, p = 0.012 and p = 0.047). Patients in the Type 2 mismatched group were male (p = 0.04), had a lower level of fibrinogen (p = 0.005), a lower incidence of CMBs (p = 0.003), a lower total CSVD burden score (p = 0.017), more severe paraventricular WMH (p = 0.035) and milder deep WMH (p = 0.026). Conclusions: Our study examined a homogeneous study cohort of recruited patients with symptomatic ALS. We found heterogeneity between WMH and cognitive function in ALS patients. Despite a similar WMH severity, some baseline clinical features and other conventional CSVD imaging characteristics may account for this heterogeneity phenomenon. Our findings provide data for the early diagnosis and prevention of cognitive impairment in ALS patients and suggest that the severity of WMH is not completely parallel to cognitive impairment. The white matter microstructural injury and remote WMH effects may account for the mismatch phenomenon. More attention should be paid to understanding the underlying mechanisms and finding new imaging markers.
Collapse
|
18
|
Li B, Du B, Gu Z, Wu C, Tan Y, Song C, Xu Y, Yin G, Gao X, Wang W, Sun X, Bi X. Correlations among peripheral blood markers, white matter hyperintensity, and cognitive function in patients with non-disabling ischemic cerebrovascular events. Front Aging Neurosci 2022; 14:1023195. [PMID: 36533171 PMCID: PMC9755852 DOI: 10.3389/fnagi.2022.1023195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/18/2022] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Both inflammation and cerebral white matter injury are closely associated with vascular cognitive impairment (VCI). The aim of this study was to analyze the correlation between peripheral serological markers, white matter injury, and cognitive function in patients with non-disabling ischemic cerebrovascular events (NICE); to identify potential biological markers for the diagnosis and prediction of VCI; and to provide a basis for the early diagnosis and intervention of VCI. METHODS We collected clinical data, along with demographic and medical history data, from 151 NICE patients. Fasting venous blood samples were collected. Based on the Montreal Cognitive Assessment (MoCA) after admission, we divided the patients into normal cognitive function (NCF) and VCI groups, and then classified them into mild white matter hyperintensity (mWMH) and severe white matter hyperintensity (sWMH) based on Fazekas scores. The differences in serological marker levels were compared between the cognitive function groups and the white matter hyperintensity groups. Binary logistic regression models and receiver operating characteristic curves were used to analyze the diagnostic predictive value of serological markers for VCI in patients with NICE and in the white matter hyperintensity subgroups. RESULTS Among 151 patients with NICE, 95 were male and 56 were female. Lymphocyte count (OR = 0.405, p = 0.010, 95% CI [0.201, 0.806]), red blood cell count (OR = 0.433, p = 0.010, 95% CI [0.228, 0.821]), and hemoglobin level (OR = 0.979, p = 0.046, 95% CI [0.958, 0.999]) were protective factors for cognitive function in patients with NICE. The sWMH group had a higher age, granulocyte/lymphoid ratio (NLR), and neutrophil percentage but a lower MoCA score, hemoglobin level, and lymphocyte count than the mWMH group. In the mWMH group, lymphocyte count (AUC = 0.713, p = 0.003, 95% CI [0.593, 0.833]) had an acceptable predictive value for the diagnosis of VCI, whereas white blood cell count (AUC = 0.672, p = 0.011, 95% CI [0.545, 0.799]), red blood cell count (AUC = 0.665, p = 0.014, 95% CI [0.545, 0.784]), and hemoglobin level (AUC = 0.634, p = 0.047, 95% CI [0.502, 0.765]) had marginal predictive value for the diagnosis of VCI. In the sWMH group, no significant differences were found in serological markers between the NCF and VCI groups. CONCLUSION Lymphocyte count, red blood cell count, and hemoglobin level were independent protective factors for cognitive function in patients with NICE; they can be used as potential biological markers to distinguish VCI in patients with NICE and are applicable to subgroups of patients with mWMH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xu Sun
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Xiaoying Bi
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
19
|
Gong T, Han H, Tan Z, Ning Z, Qiao H, Yu M, Zhao X, Tang X, Liu G, Shang F, Liu S. Segmentation and differentiation of periventricular and deep white matter hyperintensities in 2D T2-FLAIR MRI based on a cascade U-net. Front Neurol 2022; 13:1021477. [DOI: 10.3389/fneur.2022.1021477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
BackgroundWhite matter hyperintensities (WMHs) are a subtype of cerebral small vessel disease and can be divided into periventricular WMHs (pvWMHs) and deep WMHs (dWMHs). pvWMHs and dWMHs were proved to be determined by different etiologies. This study aimed to develop a 2D Cascade U-net (Cascade U) for the segmentation and differentiation of pvWMHs and dWMHs on 2D T2-FLAIR images.MethodsA total of 253 subjects were recruited in the present study. All subjects underwent 2D T2-FLAIR scan on a 3.0 Tesla MR scanner. Both contours of pvWMHs and dWMHs were manually delineated by the observers and considered as the gold standard. Fazekas scale was used to evaluate the burdens of pvWMHs and dWMHs, respectively. Cascade U consisted of a segmentation U-net and a differentiation U-net and was trained with a combined loss function. The performance of Cascade U was compared with two other U-net models (Pipeline U and Separate U). Dice similarity coefficient (DSC), Matthews correlation coefficient (MCC), precision, and recall were used to evaluate the performances of all models. The linear correlations between WMHs volume (WMHV) measured by all models and the gold standard were also conducted.ResultsCompared with other models, Cascade U exhibited a better performance on WMHs segmentation and pvWMHs identification. Cascade U achieved DSC values of 0.605 ± 0.135, 0.517 ± 0.263, and 0.510 ± 0.241 and MCC values of 0.617 ± 0.122, 0.526 ± 0.263, and 0.522 ± 0.243 on the segmentation of total WMHs, pvWMHs, and dWMHs, respectively. Cascade U exhibited strong correlations with the gold standard on measuring WMHV (R2 = 0.954, p < 0.001), pvWMHV (R2 = 0.933, p < 0.001), and dWMHV (R2 = 0.918, p < 0.001). A significant correlation was found on lesion volume between Cascade U and gold standard (r > 0.510, p < 0.001).ConclusionCascade U showed competitive results in segmentation and differentiation of pvWMHs and dWMHs on 2D T2-FLAIR images, indicating potential feasibility in precisely evaluating the burdens of WMHs.
Collapse
|
20
|
Adamo D, Canfora F, Calabria E, Coppola N, Leuci S, Pecoraro G, Cuocolo R, Ugga L, D’Aniello L, Aria M, Mignogna MD. White matter hyperintensities in Burning Mouth Syndrome assessed according to the Age-Related White Matter Changes scale. Front Aging Neurosci 2022; 14:923720. [PMID: 36118686 PMCID: PMC9475000 DOI: 10.3389/fnagi.2022.923720] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/01/2022] [Indexed: 12/13/2022] Open
Abstract
Background White matter hyperintensities (WMHs) of the brain are observed in normal aging, in various subtypes of dementia and in chronic pain, playing a crucial role in pain processing. The aim of the study has been to assess the WMHs in Burning Mouth Syndrome (BMS) patients by means of the Age-Related White Matter Changes scale (ARWMCs) and to analyze their predictors. Methods One hundred BMS patients were prospectively recruited and underwent magnetic resonance imaging (MRI) of the brain. Their ARWMCs scores were compared with those of an equal number of healthy subjects matched for age and sex. Intensity and quality of pain, psychological profile, and blood biomarkers of BMS patients were further investigated to find potential predictors of WMHs. Specifically, the Numeric Rating Scale (NRS), Short-Form McGill Pain Questionnaire (SF-MPQ), Hamilton rating scale for Depression and Anxiety (HAM-D and HAM-A), Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale (ESS) were administered. Results The BMS patients presented statistically significant higher scores on the ARWMCs compared to the controls, especially in the right frontal, left frontal, right parietal-occipital, left parietal-occipital, right temporal and left temporal lobes (p-values: <0.001, <0.001, 0.005, 0.002, 0.009, 0.002, and <0.001, respectively). Age, a lower educational level, unemployment, essential hypertension, and hypercholesterolemia were correlated to a higher total score on the ARWMCs (p-values: <0.001, 0.016, 0.014, 0.001, and 0.039, respectively). No correlation was found with the blood biomarkers, NRS, SF-MPQ, HAM-A, HAM-D, PSQI, and ESS. Conclusion Patients with BMS showed a higher frequency of WMHs of the brain as suggested by the higher ARWCs scores compared with the normal aging of the healthy subjects. These findings could have a role in the pathophysiology of the disease and potentially affect and enhance pain perception.
Collapse
Affiliation(s)
- Daniela Adamo
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Federica Canfora
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Elena Calabria
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
- *Correspondence: Elena Calabria,
| | - Noemi Coppola
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Stefania Leuci
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Giuseppe Pecoraro
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Renato Cuocolo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Luca D’Aniello
- Department of Social Sciences, University of Naples Federico II, Naples, Italy
| | - Massimo Aria
- Department of Economics and Statistics, University of Naples Federico II, Naples, Italy
| | - Michele D. Mignogna
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| |
Collapse
|
21
|
Meng F, Yang Y, Jin G. Research Progress on MRI for White Matter Hyperintensity of Presumed Vascular Origin and Cognitive Impairment. Front Neurol 2022; 13:865920. [PMID: 35873763 PMCID: PMC9301233 DOI: 10.3389/fneur.2022.865920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
White matter hyperintensity of presumed vascular origin (WMH) is a common medical imaging manifestation in the brains of middle-aged and elderly individuals. WMH can lead to cognitive decline and an increased risk of cognitive impairment and dementia. However, the pathogenesis of cognitive impairment in patients with WMH remains unclear. WMH increases the risk of cognitive impairment, the nature and severity of which depend on lesion volume and location and the patient's cognitive reserve. Abnormal changes in microstructure, cerebral blood flow, metabolites, and resting brain function are observed in patients with WMH with cognitive impairment. Magnetic resonance imaging (MRI) is an indispensable tool for detecting WMH, and novel MRI techniques have emerged as the key approaches for exploring WMH and cognitive impairment. This article provides an overview of the association between WMH and cognitive impairment and the application of dynamic contrast-enhanced MRI, structural MRI, diffusion tensor imaging, 3D-arterial spin labeling, intravoxel incoherent motion, magnetic resonance spectroscopy, and resting-state functional MRI for examining WMH and cognitive impairment.
Collapse
Affiliation(s)
- Fanhua Meng
- North China University of Science and Technology, Tangshan, China
| | - Ying Yang
- Department of Radiology, China Emergency General Hospital, Beijing, China
| | - Guangwei Jin
- Department of Radiology, China Emergency General Hospital, Beijing, China
- *Correspondence: Guangwei Jin
| |
Collapse
|
22
|
Bonberg N, Wulms N, Dehghan-Nayyeri M, Berger K, Minnerup H. Sex-Specific Causes and Consequences of White Matter Damage in a Middle-Aged Cohort. Front Aging Neurosci 2022; 14:810296. [PMID: 35645786 PMCID: PMC9131069 DOI: 10.3389/fnagi.2022.810296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To evaluate potential sex-specific effects of multiple cardiovascular risk factors on white matter pathology in normal aging men and women, as well as potential sex-differences in the association of white matter pathology and cognitive functions. Methods We analyzed cross-sectional data of 581 participants (median age: 53 years, 54% women) of the population-based cohort of the BiDirect Study who completed clinical examinations, five neuropsychological tests, and an 3T MRI examination. White matter pathology was determined by the extent of white matter hyperintensities (WMH) on FLAIR images as well as the magnitude of global fractional anisotropy (FA) based on diffusion tensor imaging. Main effects, interaction as well as sex-stratified generalized linear regression models were used to evaluate the moderating effect of sex on the association of hypertension, diabetes mellitus, smoking, and obesity with WMH and FA, respectively. Associations of imaging markers with cognitive test results were determined with linear regression models. Results Hypertension showed stronger associations with more extensive WMH and less FA in women compared to men. Current smoking was associated with more severe WMH in women only. Adjusted for age and education, WMH were not significantly associated with cognitive tests, but higher FA was associated with better performance in motor function in both sexes and with executive functions in men, even after adjustment for cardiovascular risk factors. Conclusion We observed a stronger association of hypertension and smoking with white matter damage in women, suggesting a higher susceptibility for vascular pathology in women. However, there was no association of WMH with cognition, and FA was associated with executive function tests only in men, suggesting a higher cognitive reserve in women.
Collapse
Affiliation(s)
- Nadine Bonberg
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Niklas Wulms
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Mahboobeh Dehghan-Nayyeri
- Clinic of Radiology, Medical Faculty, University Hospital Münster, University of Münster, Münster, Germany
- Department of Psychosomatic Medicine and Psychotherapy, LVR Clinic, Medical Faculty of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Heike Minnerup
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| |
Collapse
|