1
|
Mirzaei F, Eslahi A, Karimi S, Alizadeh F, Salmaninejad A, Rezaei M, Mozaffari S, Hamzehloei T, Pasdar A, Mojarrad M. Generation of Zebrafish Models of Human Retinitis Pigmentosa Diseases Using CRISPR/Cas9-Mediated Gene Editing System. Mol Biotechnol 2024; 66:2909-2919. [PMID: 37980693 DOI: 10.1007/s12033-023-00907-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/14/2023] [Indexed: 11/21/2023]
Abstract
Generating animal models can explore the role of new candidate genes in causing diseases and the pathogenicity of a specific mutation in the underlying genes. These animals can be used to identify new pharmaceutical or genetic therapeutic methods. In the present experiment, we developed a rpe65a knock out (KO) zebrafish as a retinitis pigmentosa (RP) disease model. Using the CRISPR/Cas9 system, the rpe65a gene was KO in zebrafish. Two specific single-guide RNAs (sgRNAs) were designed for the zebrafish rpe65a gene. SgRNAs were cloned into the DR274 plasmid and synthesized using in vitro transcription method. The efficiency of Ribonucleoprotein (synthesized sgRNA and recombinant Cas9) was evaluated by in vitro digestion experiment. Ribonucleoprotein complexes were microinjected into one to four-celled eggs of the TU zebrafish strain. The effectiveness of sgRNAs in KO the target gene was determined using the Heteroduplex mobility assay (HMA) and Sanger sequencing. Online software was used to determine the percent of mosaicism in the sequenced samples. By examining the sequences of the larvae that showed a mobility shift in the HMA method, the presence of indels in the binding region of sgRNAs was confirmed, so the zebrafish model for RP disease established. Zebrafish is an ideal animal model for the functional study of various diseases involving different genes and mutations and used for evaluating different therapeutic approaches in human diseases. This study presents the production of rpe65a gene KO zebrafish models using CRISPR/Cas9 technology. This model can be used in RP pathophysiology studies and preclinical gene therapy experiments.
Collapse
Affiliation(s)
- Farzaneh Mirzaei
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atiyeh Eslahi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sareh Karimi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Alizadeh
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Salmaninejad
- Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Rezaei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sina Mozaffari
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tayebeh Hamzehloei
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Wang R, Wang B, Chen A. Application of machine learning in the study of development, behavior, nerve, and genotoxicity of zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124473. [PMID: 38945191 DOI: 10.1016/j.envpol.2024.124473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/26/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
Machine learning (ML) as a novel model-based approach has been used in studying aquatic toxicology in the environmental field. Zebrafish, as an ideal model organism in aquatic toxicology research, has been widely used to study the toxic effects of various pollutants. However, toxicity testing on organisms may cause significant harm, consume considerable time and resources, and raise ethical concerns. Therefore, ML is used in related research to reduce animal experiments and assist researchers in conducting toxicological research. Although ML techniques have matured in various fields, research on ML-based aquatic toxicology is still in its infancy due to the lack of comprehensive large-scale toxicity databases for environmental pollutants and model organisms. Therefore, to better understand the recent research progress of ML in studying the development, behavior, nerve, and genotoxicity of zebrafish, this review mainly focuses on using ML modeling to assess and predict the toxic effects of zebrafish exposure to different toxic chemicals. Meanwhile, the opportunities and challenges faced by ML in the field of toxicology were analyzed. Finally, suggestions and perspectives were proposed for the toxicity studies of ML on zebrafish in future applications.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, (Guizhou University), Guiyang, Guizhou, 550025, China
| | - Bing Wang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, (Guizhou University), Guiyang, Guizhou, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Anying Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
3
|
Moll T, Farber SA. Zebrafish ApoB-Containing Lipoprotein Metabolism: A Closer Look. Arterioscler Thromb Vasc Biol 2024; 44:1053-1064. [PMID: 38482694 PMCID: PMC11042983 DOI: 10.1161/atvbaha.123.318287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Zebrafish have become a powerful model of mammalian lipoprotein metabolism and lipid cell biology. Most key proteins involved in lipid metabolism, including cholesteryl ester transfer protein, are conserved in zebrafish. Consequently, zebrafish exhibit a human-like lipoprotein profile. Zebrafish with mutations in genes linked to human metabolic diseases often mimic the human phenotype. Zebrafish larvae develop rapidly and externally around the maternally deposited yolk. Recent work revealed that any disturbance of lipoprotein formation leads to the accumulation of cytoplasmic lipid droplets and an opaque yolk, providing a visible phenotype to investigate disturbances of the lipoprotein pathway, already leading to discoveries in MTTP (microsomal triglyceride transfer protein) and ApoB (apolipoprotein B). By 5 days of development, the digestive system is functional, making it possible to study fluorescently labeled lipid uptake in the transparent larvae. These and other approaches enabled the first in vivo description of the STAB (stabilin) receptors, showing lipoprotein uptake in endothelial cells. Various zebrafish models have been developed to mimic human diseases by mutating genes known to influence lipoproteins (eg, ldlra, apoC2). This review aims to discuss the most recent research in the zebrafish ApoB-containing lipoprotein and lipid metabolism field. We also summarize new insights into lipid processing within the yolk cell and how changes in lipid flux alter yolk opacity. This curious new finding, coupled with the development of several techniques, can be deployed to identify new players in lipoprotein research directly relevant to human disease.
Collapse
|
4
|
Aksoy YA, Cole AJ, Deng W, Hesselson D. Zebrafish CCNF and FUS Mediate Stress-Specific Motor Responses. Cells 2024; 13:372. [PMID: 38474336 DOI: 10.3390/cells13050372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 03/14/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the degeneration of motor neurons. Mutations in the cyclin F (CCNF) and fused in sarcoma (FUS) genes have been associated with ALS pathology. In this study, we aimed to investigate the functional role of CCNF and FUS in ALS by using genome editing techniques to generate zebrafish models with genetic disruptions in these genes. Sequence comparisons showed significant homology between human and zebrafish CCNF and FUS proteins. We used CRISPR/Cas9 and TALEN-mediated genome editing to generate targeted disruptions in the zebrafish ccnf and fus genes. Ccnf-deficient zebrafish exhibited abnormal motor neuron development and axonal outgrowth, whereas Fus-deficient zebrafish did not exhibit developmental abnormalities or axonopathies in primary motor neurons. However, Fus-deficient zebrafish displayed motor impairments in response to oxidative and endoplasmic reticulum stress. The Ccnf-deficient zebrafish were only sensitized to endoplasmic reticulum stress, indicating that ALS genes have overlapping as well as unique cellular functions. These zebrafish models provide valuable platforms for studying the functional consequences of CCNF and FUS mutations in ALS pathogenesis. Furthermore, these zebrafish models expand the drug screening toolkit used to evaluate possible ALS treatments.
Collapse
Affiliation(s)
- Yagiz Alp Aksoy
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Alexander J Cole
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Wei Deng
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Daniel Hesselson
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Guo J, Lin K, Wang S, He X, Huang Z, Zheng M. Effects and mechanisms of Porphyromonas gingivalis outer membrane vesicles induced cardiovascular injury. BMC Oral Health 2024; 24:112. [PMID: 38243239 PMCID: PMC10799447 DOI: 10.1186/s12903-024-03886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The outer membrane vesicles (OMVs) derived from Porphyromonas gingivalis (P. gingivalis) have long been acknowledged for their crucial role in the initiation of periodontitis. However, the implications of P. gingivalis OMVs in the context of cardiovascular disease (CVD) remain incompletely understood. This study aimed to clarify both the impact and the underlying mechanisms through which P. gingivalis OMVs contribute to the propagation of distal cardiovascular inflammation and trauma. METHODS In this study, various concentrations (0, 1.25, 2.5, and 4.5 µg/µL) of P. gingivalis OMVs were microinjected into the common cardinal vein of zebrafish larvae at 48 h post-fertilization (hpf) to assess changes in cardiovascular injury and inflammatory response. Zebrafish larvae from both the PBS and the 2.5 µg/µL injection cohorts were harvested at 30 h post-injection (hpi) for transcriptional analysis. Real-time quantitative PCR (RT-qPCR) was employed to evaluate relative gene expression. RESULTS These findings demonstrated that P. gingivalis OMVs induced pericardial enlargement in zebrafish larvae, caused vascular damage, increased neutrophil counts, and activated inflammatory pathways. Transcriptomic analysis further revealed the involvement of the immune response and the extracellular matrix (ECM)-receptor interaction signaling pathway in this process. CONCLUSION This study illuminated potential mechanisms through which P. gingivalis OMVs contribute to CVD. It accentuated their involvement in distal cardiovascular inflammation and emphasizes the need for further research to comprehensively grasp the connection between periodontitis and CVD.
Collapse
Affiliation(s)
- Jianbin Guo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
| | - Kaijin Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
| | - Siyi Wang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
| | - Xiaozhen He
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zhen Huang
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
- College of Life Sciences, Fujian Normal University, Fuzhou, 350108, China
| | - Minqian Zheng
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China.
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China.
| |
Collapse
|
6
|
Wong ZC, Amirah Mohamad Alwie N, Seng Lim L, Sano M, Tamrin Mohamad Lal M. Potential biocontrol for bacterial and viral disease treatment in aquaculture: a minireview. JOURNAL OF MICROORGANISM CONTROL 2024; 29:99-103. [PMID: 39343583 DOI: 10.4265/jmc.29.3_99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Aquaculture is part of the crucial industry that supplies food, especially for the global human population that is gradually increasing annually. Innovations of culture techniques have been improved throughout the years but aquaculture is regularly susceptible to bacterial and viral diseases. Numerous factors could contribute to occurrence of disease and usually they are from environmental or human stressors on the cultured animals. Synthetic chemicals in commercial treatments may yield fast results however, the side effects are usually unknown until it has taken effect. Therefore, biological control methods to treat diseases in aquaculture are preferred. This mini review provides an overview of different potential biocontrol practices for treatment of bacterial and viral diseases. Bacteriophage causes death of pathogenic bacteria by killing the cell and continue to multiply until all targeted pathogenic bacteria are eliminated. Probiotic, prebiotic, synbiotic, biofloc, and immunostimulants are beneficial products from the respective organisms that are effective in inhibiting pathogens. Vaccines introduce inactivated pathogen into the body to stimulate the immune system, while genetic modifications involve alteration and selection of disease resistant genetics.
Collapse
Affiliation(s)
- Zy Chee Wong
- Higher Institution Centre of Excellence(HICoE), Borneo Marine Research Institute, Universiti Malaysia Sabah
| | - Nur Amirah Mohamad Alwie
- Higher Institution Centre of Excellence(HICoE), Borneo Marine Research Institute, Universiti Malaysia Sabah
| | - Leong Seng Lim
- Higher Institution Centre of Excellence(HICoE), Borneo Marine Research Institute, Universiti Malaysia Sabah
| | - Motohiko Sano
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology
| | | |
Collapse
|
7
|
Gonzalez-Ramos S, Wang J, Cho JM, Zhu E, Park SK, In JG, Reddy ST, Castillo EF, Campen MJ, Hsiai TK. Integrating 4-D light-sheet fluorescence microscopy and genetic zebrafish system to investigate ambient pollutants-mediated toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165947. [PMID: 37543337 PMCID: PMC10659062 DOI: 10.1016/j.scitotenv.2023.165947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Ambient air pollutants, including PM2.5 (aerodynamic diameter d ~2.5 μm), PM10 (d ~10 μm), and ultrafine particles (UFP: d < 0.1 μm) impart both short- and long-term toxicity to various organs, including cardiopulmonary, central nervous, and gastrointestinal systems. While rodents have been the principal animal model to elucidate air pollution-mediated organ dysfunction, zebrafish (Danio rerio) is genetically tractable for its short husbandry and life cycle to study ambient pollutants. Its electrocardiogram (ECG) resembles that of humans, and the fluorescent reporter-labeled tissues in the zebrafish system allow for screening a host of ambient pollutants that impair cardiovascular development, organ regeneration, and gut-vascular barriers. In parallel, the high spatiotemporal resolution of light-sheet fluorescence microscopy (LSFM) enables investigators to take advantage of the transparent zebrafish embryos and genetically labeled fluorescent reporters for imaging the dynamic cardiac structure and function at a single-cell resolution. In this context, our review highlights the integrated strengths of the genetic zebrafish system and LSFM for high-resolution and high-throughput investigation of ambient pollutants-mediated cardiac and intestinal toxicity.
Collapse
Affiliation(s)
- Sheila Gonzalez-Ramos
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA; Department of Bioengineering, School of Engineering & Applied Science, University of California, Los Angeles, CA, USA
| | - Jing Wang
- Department of Bioengineering, School of Engineering & Applied Science, University of California, Los Angeles, CA, USA
| | - Jae Min Cho
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Enbo Zhu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Seul-Ki Park
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Julie G In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Eliseo F Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Tzung K Hsiai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA; Department of Bioengineering, School of Engineering & Applied Science, University of California, Los Angeles, CA, USA; Greater Los Angeles VA Healthcare System, Department of Medicine, Los Angeles, California, USA.
| |
Collapse
|
8
|
Yuan M, Zeng C, Lu H, Yue Y, Sun T, Zhou X, Li G, Ai N, Ge W. Genetic and Epigenetic Evidence for Nonestrogenic Disruption of Otolith Development by Bisphenol A in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16190-16205. [PMID: 37752410 DOI: 10.1021/acs.est.3c04336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Bisphenol A (BPA) is a well-known endocrine-disrupting chemical (EDC) that has estrogenic activities. In addition to disrupting reproductive development and function via estrogenic signaling pathways, BPA can also interfere with nonreproductive functions through nonestrogenic pathways; however, the mechanisms underlying such nonestrogenic activities are not well understood. In this study, we demonstrated that BPA could disrupt otolith formation during the early development of zebrafish with long-lasting ethological effects. Using multiple mutants of estrogen receptors, we provided strong genetic evidence that the BPA-induced otolith malformation was independent of estrogen signaling. Transcriptome analysis revealed that two genes related to otolith development, otopetrin 1 (otop1) and starmaker (stm), decreased their expression significantly after BPA exposure. Knockout of both otop1 and stm genes could phenocopy the BPA-induced otolith malformation, while microinjection of their mRNAs could rescue the BPA-induced abnormalities of otolith formation. Further experiments showed that BPA inhibited the expression of otop1 and stm by activating the MEK/ERK-EZH2-H3K27me3 signaling pathway. Taken together, our study provided comprehensive genetic and molecular evidence that BPA induced the otolith malformation through nonestrogenic pathway during zebrafish early development and its activities involved epigenetic control of key genes (e.g., otop1 and stm) participating in otolith formation.
Collapse
Affiliation(s)
- Mingzhe Yuan
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Chu Zeng
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Huijie Lu
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Yiming Yue
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Ting Sun
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Gang Li
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Nana Ai
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Wei Ge
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| |
Collapse
|
9
|
Robea MA, Petrovici A, Ureche D, Nicoara M, Ciobica AS. Histopathological and Behavioral Impairments in Zebrafish ( Danio rerio) Chronically Exposed to a Cocktail of Fipronil and Pyriproxyfen. Life (Basel) 2023; 13:1874. [PMID: 37763278 PMCID: PMC10533071 DOI: 10.3390/life13091874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Lately, the high incidence of pesticide usage has attracted everyone's interest due to the serious effects produced. Fipronil (FIP) is a phenylpyrazole compound that acts on the insect's GABA neurotransmitter by inhibiting its activity. Moreover, the literature reports highlight its implication in neurodevelopmental abnormalities and oxidative stress production in different organisms. Similarly, pyriproxyfen (PYR) is known to affect insect activity by mimicking the natural hormones involved in the maturation of the young insects. The aim of the present study was to investigate the impact of the mixture of these pesticides on the tissues and behavior of zebrafish. METHODS To assess the influence of this cocktail on zebrafish, three groups of animals were randomly selected and exposed to 0, 0.05, and 0.1 mg L-1 FIP and PYR mixture for five days. The fish were evaluated daily by the T-maze tests for locomotor activity and the light-dark test and recordings lasted four min. The data were quantified using the EthoVision software. RESULTS Our results indicated significant changes in locomotor activity parameters that showed increased levels following exposure to the mixture of FIP and PYR. On the other hand, the mixture also triggered anxiety in the zebrafish, which spent more time in the light area than in the dark area. In addition, mixture-induced histological changes were observed in the form of numerous hemosiderin deposits found in various zebrafish tissues. CONCLUSIONS The current findings indicate that the mixture of FIP and PYR can have considerable consequences on adult zebrafish and may promote or cause functional neurological changes in addition to histological ones.
Collapse
Affiliation(s)
- Madalina Andreea Robea
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania;
| | - Adriana Petrovici
- Department of Preclinics, University of Life Sciences, 700490 Iasi, Romania
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, 700490 Iasi, Romania
- Department of Molecular Biology, Histology and Embryology, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine “Ion Ionescu de la Brad”, 700489 Iasi, Romania
| | - Dorel Ureche
- Faculty of Sciences, Department of Biology, Ecology and Environmental Protection, University “Vasile Alecsandri”, 600115 Bacau, Romania
| | - Mircea Nicoara
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania
- Doctoral School of Geosciences, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania
| | - Alin Stelian Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania
- Academy of Romanian Scientists, 050094 Bucharest, Romania
- Center of Biomedical Research, Romanian Academy, 700506 Iasi, Romania
| |
Collapse
|
10
|
Dalla Barba F, Soardi M, Mouhib L, Risato G, Akyürek EE, Lucon-Xiccato T, Scano M, Benetollo A, Sacchetto R, Richard I, Argenton F, Bertolucci C, Carotti M, Sandonà D. Modeling Sarcoglycanopathy in Danio rerio. Int J Mol Sci 2023; 24:12707. [PMID: 37628888 PMCID: PMC10454440 DOI: 10.3390/ijms241612707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Sarcoglycanopathies, also known as limb girdle muscular dystrophy 3-6, are rare muscular dystrophies characterized, although heterogeneous, by high disability, with patients often wheelchair-bound by late adolescence and frequently developing respiratory and cardiac problems. These diseases are currently incurable, emphasizing the importance of effective treatment strategies and the necessity of animal models for drug screening and therapeutic verification. Using the CRISPR/Cas9 genome editing technique, we generated and characterized δ-sarcoglycan and β-sarcoglycan knockout zebrafish lines, which presented a progressive disease phenotype that worsened from a mild larval stage to distinct myopathic features in adulthood. By subjecting the knockout larvae to a viscous swimming medium, we were able to anticipate disease onset. The δ-SG knockout line was further exploited to demonstrate that a δ-SG missense mutant is a substrate for endoplasmic reticulum-associated degradation (ERAD), indicating premature degradation due to protein folding defects. In conclusion, our study underscores the utility of zebrafish in modeling sarcoglycanopathies through either gene knockout or future knock-in techniques. These novel zebrafish lines will not only enhance our understanding of the disease's pathogenic mechanisms, but will also serve as powerful tools for phenotype-based drug screening, ultimately contributing to the development of a cure for sarcoglycanopathies.
Collapse
Affiliation(s)
- Francesco Dalla Barba
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| | - Michela Soardi
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| | - Leila Mouhib
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
- Randall Center for Cell and Molecular Biophysics, King’s College London, London WC2R 2LS, UK
| | - Giovanni Risato
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Via Giustiniani, 2, 35128 Padova, Italy
| | - Eylem Emek Akyürek
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Legnaro, 35020 Padova, Italy
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Martina Scano
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| | - Alberto Benetollo
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Legnaro, 35020 Padova, Italy
| | - Isabelle Richard
- Genethon, F-91002 Evry, France
- INSERM, U951, INTEGRARE Research Unit, F-91002 Evry, France
| | - Francesco Argenton
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Marcello Carotti
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| | - Dorianna Sandonà
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| |
Collapse
|
11
|
Ansori ANM, Antonius Y, Susilo RJK, Hayaza S, Kharisma VD, Parikesit AA, Zainul R, Jakhmola V, Saklani T, Rebezov M, Ullah ME, Maksimiuk N, Derkho M, Burkov P. Application of CRISPR-Cas9 genome editing technology in various fields: A review. NARRA J 2023; 3:e184. [PMID: 38450259 PMCID: PMC10916045 DOI: 10.52225/narra.v3i2.184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/23/2023] [Indexed: 03/08/2024]
Abstract
CRISPR-Cas9 has emerged as a revolutionary tool that enables precise and efficient modifications of the genetic material. This review provides a comprehensive overview of CRISPR-Cas9 technology and its applications in genome editing. We begin by describing the fundamental principles of CRISPR-Cas9 technology, explaining how the system utilizes a single guide RNA (sgRNA) to direct the Cas9 nuclease to specific DNA sequences in the genome, resulting in targeted double-stranded breaks. In this review, we provide in-depth explorations of CRISPR-Cas9 technology and its applications in agriculture, medicine, environmental sciences, fisheries, nanotechnology, bioinformatics, and biotechnology. We also highlight its potential, ongoing research, and the ethical considerations and controversies surrounding its use. This review might contribute to the understanding of CRISPR-Cas9 technology and its implications in various fields, paving the way for future developments and responsible applications of this transformative technology.
Collapse
Affiliation(s)
- Arif NM. Ansori
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
- European Virus Bioinformatics Center, Jena, Germany
| | - Yulanda Antonius
- Faculty of Biotechnology, Universitas Surabaya, Surabaya, Indonesia
| | - Raden JK. Susilo
- Nanotechology Engineering Study Program, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Suhailah Hayaza
- Nanotechology Engineering Study Program, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Viol D. Kharisma
- Doctoral Program of Mathematics and Natural Sciences, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
- Generasi Biologi Indonesia Foundation, Gresik, Indonesia
| | - Arli A. Parikesit
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences (i3L), Jakarta,Indonesia
| | - Rahadian Zainul
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, Indonesia
| | - Vikash Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Taru Saklani
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russian Federation
- Faculty of Biotechnology and Food Engineering, Ural State Agrarian University, Yekaterinburg, Russian Federation
| | - Md. Emdad Ullah
- Department of Chemistry, Mississippi State University, Mississippi, United States
| | - Nikolai Maksimiuk
- Institute of Medical Education, Yaroslav-the-Wise Novgorod State University, Velikiy Novgorod, Russian Federation
| | - Marina Derkho
- Institute of Veterinary Medicine, South Ural State Agrarian University, Troitsk, Russian Federation
| | - Pavel Burkov
- Institute of Veterinary Medicine, South Ural State Agrarian University, Troitsk, Russian Federation
| |
Collapse
|
12
|
Research Progress on the Construction and Application of a Diabetic Zebrafish Model. Int J Mol Sci 2023; 24:ijms24065195. [PMID: 36982274 PMCID: PMC10048833 DOI: 10.3390/ijms24065195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Diabetes is a metabolic disease characterized by high blood glucose levels. With economic development and lifestyle changes, the prevalence of diabetes is increasing yearly. Thus, it has become an increasingly serious public health problem in countries around the world. The etiology of diabetes is complex, and its pathogenic mechanisms are not completely clear. The use of diabetic animal models is helpful in the study of the pathogenesis of diabetes and the development of drugs. The emerging vertebrate model of zebrafish has many advantages, such as its small size, large number of eggs, short growth cycle, simple cultivation of adult fish, and effective improvement of experimental efficiency. Thus, this model is highly suitable for research as an animal model of diabetes. This review not only summarizes the advantages of zebrafish as a diabetes model, but also summarizes the construction methods and challenges of zebrafish models of type 1 diabetes, type 2 diabetes, and diabetes complications. This study provides valuable reference information for further study of the pathological mechanisms of diabetes and the research and development of new related therapeutic drugs.
Collapse
|
13
|
Bergen DJM, Maurizi A, Formosa MM, McDonald GLK, El-Gazzar A, Hassan N, Brandi ML, Riancho JA, Rivadeneira F, Ntzani E, Duncan EL, Gregson CL, Kiel DP, Zillikens MC, Sangiorgi L, Högler W, Duran I, Mäkitie O, Van Hul W, Hendrickx G. High Bone Mass Disorders: New Insights From Connecting the Clinic and the Bench. J Bone Miner Res 2023; 38:229-247. [PMID: 36161343 PMCID: PMC10092806 DOI: 10.1002/jbmr.4715] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/05/2022] [Accepted: 09/22/2022] [Indexed: 02/04/2023]
Abstract
Monogenic high bone mass (HBM) disorders are characterized by an increased amount of bone in general, or at specific sites in the skeleton. Here, we describe 59 HBM disorders with 50 known disease-causing genes from the literature, and we provide an overview of the signaling pathways and mechanisms involved in the pathogenesis of these disorders. Based on this, we classify the known HBM genes into HBM (sub)groups according to uniform Gene Ontology (GO) terminology. This classification system may aid in hypothesis generation, for both wet lab experimental design and clinical genetic screening strategies. We discuss how functional genomics can shape discovery of novel HBM genes and/or mechanisms in the future, through implementation of omics assessments in existing and future model systems. Finally, we address strategies to improve gene identification in unsolved HBM cases and highlight the importance for cross-laboratory collaborations encompassing multidisciplinary efforts to transfer knowledge generated at the bench to the clinic. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Dylan J M Bergen
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK.,Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Antonio Maurizi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Melissa M Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta.,Center for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Georgina L K McDonald
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Ahmed El-Gazzar
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Neelam Hassan
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | | | - José A Riancho
- Department of Internal Medicine, Hospital U M Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Evangelia Ntzani
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, Ioannina, Greece.,Center for Evidence Synthesis in Health, Policy and Practice, Center for Research Synthesis in Health, School of Public Health, Brown University, Providence, RI, USA.,Institute of Biosciences, University Research Center of loannina, University of Ioannina, Ioannina, Greece
| | - Emma L Duncan
- Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Department of Endocrinology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Celia L Gregson
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Douglas P Kiel
- Marcus Institute for Aging Research, Hebrew SeniorLife and Department of Medicine Beth Israel Deaconess Medical Center and Harvard Medical School, Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Luca Sangiorgi
- Department of Rare Skeletal Diseases, IRCCS Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | | | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Centre, Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
14
|
Hanot M, Raby L, Völkel P, Le Bourhis X, Angrand PO. The Contribution of the Zebrafish Model to the Understanding of Polycomb Repression in Vertebrates. Int J Mol Sci 2023; 24:ijms24032322. [PMID: 36768643 PMCID: PMC9916924 DOI: 10.3390/ijms24032322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Polycomb group (PcG) proteins are highly conserved proteins assembled into two major types of complexes, PRC1 and PRC2, involved in the epigenetic silencing of a wide range of gene expression programs regulating cell fate and tissue development. The crucial role of PRC1 and PRC2 in the fundamental cellular processes and their involvement in human pathologies such as cancer attracted intense attention over the last few decades. Here, we review recent advancements regarding PRC1 and PRC2 function using the zebrafish model. We point out that the unique characteristics of the zebrafish model provide an exceptional opportunity to increase our knowledge of the role of the PRC1 and PRC2 complexes in tissue development, in the maintenance of organ integrity and in pathology.
Collapse
Affiliation(s)
- Mariette Hanot
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Ludivine Raby
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Pamela Völkel
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Xuefen Le Bourhis
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Pierre-Olivier Angrand
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| |
Collapse
|
15
|
Yan Q, Li W, Gong X, Hu R, Chen L. Transcriptomic and Phenotypic Analysis of CRISPR/Cas9-Mediated gluk2 Knockout in Zebrafish. Genes (Basel) 2022; 13:genes13081441. [PMID: 36011351 PMCID: PMC9408333 DOI: 10.3390/genes13081441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
As a subtype of kainite receptors (KARs), GluK2 plays a role in the perception of cold in the periphery sensory neuron. However, the molecular mechanism for gluk2 on the cold stress in fish has not been reported. In this article, real-time PCR assays showed that gluk2 was highly expressed in the brain and eyes of adult zebrafish. To study the functions of gluk2, gene knockout was carried out using the CRISPR/Cas9 system. According to RNA-seq analysis, we selected the differentially expressed genes (DEGs) that had significant differences in at least three tissues of the liver, gill, intestine, skin, brain, and eyes. Gene Ontology (GO) enrichment analysis revealed that cry1ba, cry2, per1b, per2, hsp70.1, hsp70.2, hsp70l, hsp90aa1.1, hsp90aa1.2, hspb1, trpv1, slc27a1b, park2, ucp3, and METRNL were significantly enriched in the ‘Response to temperature stimulus’ pathway. Through behavioral phenotyping assay, the gluk2−/− larval mutant displayed obvious deficiency in cold stress. Furthermore, TUNEL (TdT-mediated dUTP Nick-End Labeling) staining proved that the gill apoptosis of gluk2−/− mutant was increased approximately 60 times compared with the wild-type after gradient cooling to 8 °C for 15 h. Overall, our data suggested that gluk2 was necessary for cold tolerance in zebrafish.
Collapse
|