1
|
Tian H, Liu Q, Yu X, Cao Y, Huang X. Damage-associated molecular patterns in viral infection: potential therapeutic targets. Crit Rev Microbiol 2024:1-18. [PMID: 39091137 DOI: 10.1080/1040841x.2024.2384885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/25/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Frequent viral infections leading to infectious disease outbreaks have become a significant global health concern. Fully elucidating the molecular mechanisms of the immune response against viral infections is crucial for epidemic prevention and control. The innate immune response, the host's primary defense against viral infection, plays a pivotal role and has become a breakthrough in research mechanisms. A component of the innate immune system, damage-associated molecular patterns (DAMPs) are involved in inducing inflammatory responses to viral infections. Numerous DAMPs are released from virally infected cells, activating downstream signaling pathways via internal and external receptors on immune cells. This activation triggers immune responses and helps regulate viral host invasion. This review examines the immune regulatory mechanisms of various DAMPs, such as the S100 protein family, high mobility group box 1 (HMGB1), and heat shock proteins, in various viral infections to provide a theoretical basis for designing novel antiviral drugs.
Collapse
Affiliation(s)
- Huizhen Tian
- School of Basic Medical Sciences, Jiangxi medical College, Nanchang University, Nanchang, China
| | - Qiong Liu
- School of Basic Medical Sciences, Jiangxi medical College, Nanchang University, Nanchang, China
| | - Xiaomin Yu
- School of Basic Medical Sciences, Jiangxi medical College, Nanchang University, Nanchang, China
- Medical Experimental Teaching Center, School of Basic Medical Sciences, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanli Cao
- School of Basic Medical Sciences, Jiangxi medical College, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- School of Basic Medical Sciences, Jiangxi medical College, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Gómez-Moyano E, Pavón-Morón J, Rodríguez-Capitán J, Bardán-Rebollar D, Ramos-Carrera T, Villalobos-Sánchez A, Pérez de Pedro I, Ruiz-García FJ, Mora-Robles J, López-Sampalo A, Pérez-Velasco MA, Bernal-López MR, Gómez-Huelgas R, Jiménez-Navarro M, Romero-Cuevas M, Costa F, Trenas A, Pérez-Belmonte LM. The Role of Heparin in Postural Orthostatic Tachycardia Syndrome and Other Post-Acute Sequelae of COVID-19. J Clin Med 2024; 13:2405. [PMID: 38673677 PMCID: PMC11050777 DOI: 10.3390/jcm13082405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The therapeutic management and short-term consequences of the coronavirus disease 2019 (COVID-19) are well known. However, COVID-19 post-acute sequelae are less known and represent a public health problem worldwide. Patients with COVID-19 who present post-acute sequelae may display immune dysregulation, a procoagulant state, and persistent microvascular endotheliopathy that could trigger microvascular thrombosis. These elements have also been implicated in the physiopathology of postural orthostatic tachycardia syndrome, a frequent sequela in post-COVID-19 patients. These mechanisms, directly associated with post-acute sequelae, might determine the thrombotic consequences of COVID-19 and the need for early anticoagulation therapy. In this context, heparin has several potential benefits, including immunomodulatory, anticoagulant, antiviral, pro-endothelial, and vascular effects, that could be helpful in the treatment of COVID-19 post-acute sequelae. In this article, we review the evidence surrounding the post-acute sequelae of COVID-19 and the potential benefits of the use of heparin, with a special focus on the treatment of postural orthostatic tachycardia syndrome.
Collapse
Affiliation(s)
- Elisabeth Gómez-Moyano
- Servicio de Dermatología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Javier Pavón-Morón
- Servicio de Cardiología, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (J.P.-M.); (M.J.-N.); (M.R.-C.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), IBIMA-Plataforma BIONAND, Universidad de Málaga (UMA), 29010 Málaga, Spain;
| | - Jorge Rodríguez-Capitán
- Servicio de Cardiología, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (J.P.-M.); (M.J.-N.); (M.R.-C.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), IBIMA-Plataforma BIONAND, Universidad de Málaga (UMA), 29010 Málaga, Spain;
| | | | | | - Aurora Villalobos-Sánchez
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain (I.P.d.P.); (A.L.-S.); (M.-R.B.-L.); (R.G.-H.)
| | - Iván Pérez de Pedro
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain (I.P.d.P.); (A.L.-S.); (M.-R.B.-L.); (R.G.-H.)
| | | | - Javier Mora-Robles
- Servicio de Cardiología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Almudena López-Sampalo
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain (I.P.d.P.); (A.L.-S.); (M.-R.B.-L.); (R.G.-H.)
| | - Miguel A. Pérez-Velasco
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain (I.P.d.P.); (A.L.-S.); (M.-R.B.-L.); (R.G.-H.)
| | - Maria-Rosa Bernal-López
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain (I.P.d.P.); (A.L.-S.); (M.-R.B.-L.); (R.G.-H.)
- Centro de Investigación en Red Fisiopatología de la Obesidad y la Nutrtición (CIBERObn), IBIMA-Plataforma BIONAND, Universidad de Málaga (UMA), 29010 Málaga, Spain
| | - Ricardo Gómez-Huelgas
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain (I.P.d.P.); (A.L.-S.); (M.-R.B.-L.); (R.G.-H.)
- Centro de Investigación en Red Fisiopatología de la Obesidad y la Nutrtición (CIBERObn), IBIMA-Plataforma BIONAND, Universidad de Málaga (UMA), 29010 Málaga, Spain
| | - Manuel Jiménez-Navarro
- Servicio de Cardiología, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (J.P.-M.); (M.J.-N.); (M.R.-C.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), IBIMA-Plataforma BIONAND, Universidad de Málaga (UMA), 29010 Málaga, Spain;
| | - Miguel Romero-Cuevas
- Servicio de Cardiología, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (J.P.-M.); (M.J.-N.); (M.R.-C.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), IBIMA-Plataforma BIONAND, Universidad de Málaga (UMA), 29010 Málaga, Spain;
| | - Francesco Costa
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, A.O.U. Policlinic ‘G. Martino’, Via C. Valeria 1, 98165 Messina, Italy;
| | - Alicia Trenas
- Servicio de Medicina Interna, Área Sanitaria Norte de Málaga, Hospital de Antequera, 29200 Antequera, Spain;
| | - Luis M. Pérez-Belmonte
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), IBIMA-Plataforma BIONAND, Universidad de Málaga (UMA), 29010 Málaga, Spain;
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain (I.P.d.P.); (A.L.-S.); (M.-R.B.-L.); (R.G.-H.)
- Servicio de Medicina Interna, Hospital Helicópteros Sanitarios, 29660 Marbella, Spain
| |
Collapse
|
3
|
Ueland T, Michelsen AE, Tveita AA, Kåsine T, Dahl TB, Finbråten AK, Holten AR, Skjønsberg OH, Mathiessen A, Henriksen KN, Trøseid M, Aaløkken TM, Halvorsen B, Dyrhol-Riise AM, Barratt-Due A, Aukrust P. Coagulopathy and adverse outcomes in hospitalized patients with COVID-19: results from the NOR-Solidarity trial. Res Pract Thromb Haemost 2024; 8:102289. [PMID: 38292350 PMCID: PMC10825546 DOI: 10.1016/j.rpth.2023.102289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 02/01/2024] Open
Abstract
Background Several studies have examined parameters of increased thrombogenicity in COVID-19, but studies examining their association with long-term outcome and potential effects of antiviral agents in hospitalized patients with COVID-19 are scarce. Objectives To evaluate plasma levels of hemostatic proteins during hospitalization in relation to disease severity, treatment modalities, and persistent pulmonary pathology after 3 months. Methods In 165 patients with COVID-19 recruited into the NOR-Solidarity trial (NCT04321616) and randomized to treatment with hydroxychloroquine, remdesivir, or standard of care, we analyzed plasma levels of hemostatic proteins during the first 10 days of hospitalization (n = 160) and at 3 months of follow-up (n = 100) by enzyme immunoassay. Results Our main findings were as follows: (i) tissue plasminogen activator (tPA) and tissue factor pathway inhibitor (TFPI) were increased in patients with severe disease (ie, the combined endpoint of respiratory failure [Po2-to-FiO2 ratio, <26.6 kPa] or need for treatment at an intensive care unit) during hospitalization. Compared to patients without severe disease, tPA levels were a median of 42% (P < .001), 29% (P = .002), and 36% (P = .015) higher at baseline, 3 to 5 days, and 7 to 10 days, respectively. For TFPI, median levels were 37% (P = .003), 25% (P < .001), and 10% (P = .13) higher in patients with severe disease at these time points, respectively. No changes in thrombin-antithrombin complex; alpha 2-antiplasmin; a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13; or antithrombin were observed in relation to severe disease. (ii) Patients treated with remdesivir had lower levels of TFPI than those in patients treated with standard of care alone. (iii) TFPI levels during hospitalization, but not at 3 months of follow-up, were higher in those with persistent pathology on chest computed tomography imaging 3 months after hospital admission than in those without such pathology. No consistent changes in thrombin-antithrombin complex, alpha 2-antiplasmin, ADAMTS-13, tPA, or antithrombin were observed in relation to pulmonary pathology at 3 months of follow-up. Conclusion TFPI and tPA are associated with severe disease in hospitalized patients with COVID-19. For TFPI, high levels measured during the first 10 days of hospitalization were also associated with persistent pulmonary pathology even 3 months after hospital admittance.
Collapse
Affiliation(s)
- Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Medicine, Thrombosis Research and Expertise Center, University of Tromsø—the Arctic University of Norway, Tromsø, Norway
| | - Annika E. Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders Aune Tveita
- Department of Internal Medicine, Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
- Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Trine Kåsine
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Critical Care and Emergencies, Oslo University Hospital, Oslo, Norway
| | - Tuva B. Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | - Aleksander R. Holten
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Acute Medicine, Oslo University Hospital, Oslo, Norway
| | - Ole Henning Skjønsberg
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Pulmonary Medicine, Oslo University Hospital Ullevål, Oslo, Norway
| | | | - Katerina N. Henriksen
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Hospital Pharmacies, South-Eastern Norway Enterprise, Oslo, Norway
| | - Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Trond Mogens Aaløkken
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital Ullevål, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne Ma Dyrhol-Riise
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital Ullevål, Oslo, Norway
| | - Andreas Barratt-Due
- Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, Oslo, Norway
- Division of Critical Care and Emergencies, Oslo University Hospital, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
4
|
Carvajal-Barriga EJ, Fields RD. Sulfated polysaccharides as multi target molecules to fight COVID 19 and comorbidities. Heliyon 2023; 9:e13797. [PMID: 36811015 PMCID: PMC9936785 DOI: 10.1016/j.heliyon.2023.e13797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
The majority of research to combat SARS-CoV-2 infection exploits the adaptive immune system, but innate immunity, the first line of defense against pathogenic microbes, is equally important in understanding and controlling infectious diseases. Various cellular mechanisms provide physiochemical barriers to microbe infection in mucosal membranes and epithelia, with extracellular polysaccharides, particularly sulfated polysaccharides, being among the most widespread and potent extracellular and secreted molecules blocking and deactivating bacteria, fungi, and viruses. New research reveals that a range of polysaccharides effectively inhibits COV-2 infection of mammalian cells in culture. This review provides an overview of sulfated polysaccharides nomenclature, its significance as immunomodulators, antioxidants, antitumors, anticoagulants, antibacterial, and as potent antivirals. It summarizes current research on various interactions of sulfated polysaccharide with a range of viruses, including SARS-CoV-2, and their application for potential treatments for COVID-19. These molecules interact with biochemical signaling in immune cell responses, by actions in oxidative reactions, cytokine signaling, receptor binding, and through antiviral and antibacterial toxicity. These properties provide the potential for the development of novel therapeutic treatments for SARS-CoV-2 and other infectious diseases from modified polysaccharides.
Collapse
Affiliation(s)
- Enrique Javier Carvajal-Barriga
- Pontificia Universidad Católica Del Ecuador, Neotropical Center for the Biomass Research, Quito, Ecuador.,The Eunice Kennedy Shriver National Institutes of Health, National Institute of Children and Human Development, Bethesda, MD, USA
| | - R Douglas Fields
- The Eunice Kennedy Shriver National Institutes of Health, National Institute of Children and Human Development, Bethesda, MD, USA
| |
Collapse
|
5
|
Abstract
Although thrombosis frequently occurs in infectious diseases, the coagulopathy associated with COVID-19 has unique characteristics. Compared with bacterial sepsis, COVID-19-associated coagulopathy presents with minimal changes in platelet counts, normal prothrombin times, and increased D-dimer and fibrinogen levels. These differences can be explained by the distinct pathophysiology of the thromboinflammatory responses. In sepsis-induced coagulopathy, leukocytes are primarily responsible for the coagulopathy by expressing tissue factor, releasing neutrophil extracellular traps, multiple procoagulant substances, and systemic endothelial injury that is often associated with vasoplegia and shock. In COVID-19-associated coagulopathy, platelet activation is a major driver of inflammation/thrombogenesis and von Willebrand factor and platelet factor 4 are deeply involved in the pathogenesis. Although the initial responses are localized to the lung, they can spread systemically if the disease is severe. Since the platelets play major roles, arterial thrombosis is not uncommon in COVID-19. Despite platelet activation, platelet count is usually normal at presentation, but sensitive biomarkers including von Willebrand factor activity, soluble P-selectin, and soluble C-type lectin-like receptor-2 are elevated, and they increase as the disease progresses. Although the role of antiplatelet therapy is still unproven, current studies are ongoing to determine its potential effects.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideo Wada
- Department of General Medicine, Mie Prefectural General Medical Center, Mie, Japan
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
6
|
Ligi D, Lo Sasso B, Henry BM, Ciaccio M, Lippi G, Plebani M, Mannello F. Deciphering the role of monocyte and monocyte distribution width (MDW) in COVID-19: an updated systematic review and meta-analysis. Clin Chem Lab Med 2023; 61:960-973. [PMID: 36626568 DOI: 10.1515/cclm-2022-0936] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023]
Abstract
The SARS-CoV-2 infection is characterized by both systemic and organ hyper-thromboinflammation, with a clinical course ranging from mild up-to critical systemic dysfunction and death. In patients with coronavirus disease 2019 (COVID-19) the monocyte/macrophage population is deeply involved as both trigger and target, assuming the value of useful diagnostic/prognostic marker of innate cellular immunity. Several studies correlated morphological and immunophenotypic alterations of circulating monocytes with clinical outcomes in COVID-19 patients, concluding that monocyte distribution width (MDW) may retain clinical value in stratifying the risk of disease worsening. Through an electronic search in Medline and Scopus we performed an updated literature review and meta-analysis aimed to explore the association between increased MDW levels and illness severity in COVID-19 patients, deciphering role(s) and function(s) of monocytes in the harmful network underlining SARS-CoV-2 infection. We found that significantly elevated MDW values were frequently present in COVID-19 patients who developed unfavorable clinical outcomes, compounded by a significant association between monocyte anisocytosis and SARS-CoV-2 outcomes. These findings suggest that blood MDW index and its scatter plot could represent useful routine laboratory tools for early identification of patients at higher risk of unfavorable COVID-19 and for monitoring the progression of viral infection, clinical outcomes, and therapeutic efficacy throughout hospitalization. According to this evidence, therapeutic decisions in patients with SARS-CoV-2 infection could benefit from monitoring MDW value, with administration of drugs limiting thrombo-inflammation due to monocyte hyper-activation in patients with severe/critical COVID-19 disease.
Collapse
Affiliation(s)
- Daniela Ligi
- Unit of Clinical Biochemistry, Section of Biochemistry and Biotechnology, Department of Biomolecular Sciences-DISB, University of Urbino Carlo Bo, Urbino, Italy
| | - Bruna Lo Sasso
- Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, BiND, University of Palermo, Palermo, Italy
| | - Brandon M Henry
- Clinical Laboratory, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Marcello Ciaccio
- Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, BiND, University of Palermo, Palermo, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry and School of Medicine, University Hospital of Verona, Verona, Italy
| | - Mario Plebani
- Department of Laboratory Medicine, University-Hospital of Padova, Padova, Italy
| | - Ferdinando Mannello
- Unit of Clinical Biochemistry, Section of Biochemistry and Biotechnology, Department of Biomolecular Sciences-DISB, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
7
|
Kim IS, Lee SG, Shin SG, Jeong H, Sohn KM, Park KS, Silwal P, Cheon S, Kim J, Kym S, Kim YS, Jo EK, Park C. Dysregulated thrombospondin 1 and miRNA-29a-3p in severe COVID-19. Sci Rep 2022; 12:21227. [PMID: 36481664 PMCID: PMC9732043 DOI: 10.1038/s41598-022-23533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022] Open
Abstract
Although nearly a fifth of symptomatic COVID-19 patients suffers from severe pulmonary inflammation, the mechanism of developing severe illness is not yet fully understood. To identify significantly altered genes in severe COVID-19, we generated messenger RNA and micro-RNA profiling data of peripheral blood mononuclear cells (PBMCs) from five COVID-19 patients (2 severe and 3 mild patients) and three healthy controls (HC). For further evaluation, two publicly available RNA-Seq datasets (GSE157103 and GSE152418) and one single-cell RNA-Seq dataset (GSE174072) were employed. Based on RNA-Seq datasets, thrombospondin 1 (THBS1) and interleukin-17 receptor A (IL17RA) were significantly upregulated in severe COVID-19 patients' blood. From single-cell RNA-sequencing data, IL17RA level is increased in monocytes and neutrophils, whereas THBS1 level is mainly increased in the platelets. Moreover, we identified three differentially expressed microRNAs in severe COVID-19 using micro-RNA sequencings. Intriguingly, hsa-miR-29a-3p significantly downregulated in severe COVID-19 was predicted to bind the 3'-untranslated regions of both IL17RA and THBS1 mRNAs. Further validation analysis of our cohort (8 HC, 7 severe and 8 mild patients) showed that THBS1, but not IL17RA, was significantly upregulated, whereas hsa-miR-29a-3p was downregulated, in PBMCs from severe patients. These findings strongly suggest that dysregulated expression of THBS1, IL17RA, and hsa-miR-29a-3p involves severe COVID-19.
Collapse
Affiliation(s)
- In Soo Kim
- grid.254230.20000 0001 0722 6377Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Sung-Gwon Lee
- grid.14005.300000 0001 0356 9399School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea
| | - Seul Gi Shin
- grid.254230.20000 0001 0722 6377Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyeongseok Jeong
- grid.254230.20000 0001 0722 6377Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Kyung Mok Sohn
- grid.254230.20000 0001 0722 6377Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Ki-Sun Park
- grid.418980.c0000 0000 8749 5149KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Prashanta Silwal
- grid.254230.20000 0001 0722 6377Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Shinhye Cheon
- grid.254230.20000 0001 0722 6377Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jungok Kim
- grid.254230.20000 0001 0722 6377Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Sungmin Kym
- grid.254230.20000 0001 0722 6377Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Yeon-Sook Kim
- grid.254230.20000 0001 0722 6377Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Eun-Kyeong Jo
- grid.254230.20000 0001 0722 6377Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea ,grid.254230.20000 0001 0722 6377Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Chungoo Park
- grid.14005.300000 0001 0356 9399School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea
| |
Collapse
|
8
|
Askenase PW. Recommendation: Treatment of clinical long COVID encephalopathies with nasal administered mesenchymal stromal cell extracellular vesicles. FRONTIERS IN NANOTECHNOLOGY 2022; 4. [DOI: 10.3389/fnano.2022.987117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
We propose therapy with extracellular vesicles (EVs) for dominant central nervous system aspects of chronic Long COVID Syndromes (LCS). These clinical conditions have a delayed onset of 1–3 months following the cessation of active SARS-CoV-2 virus infections that cause an acute disease called COVID-19. The therapy of LCS will be achieved by direct access to the central nervous system (CNS) by nasal administration of small EVs derived from Mesenchymal Stromal Cells (MSC). When administered nasally, they target CNS microglia and endothelia involved in LCS encephalopathy, as indicated by experimental animal models and human autopsy and spinal fluid studies. Underlying this approach is the discovery that MSC-sEV treatment for healing neuro injury targets, microglia, and macrophages that then likely release secondary trophic EVs that affect the local capillary endothelial cells to restore vascular integrity. It is postulated that the pathways of endothelial and neural pathologies in acute SARS-CoV-2 virus infections may carry over to produce underlying vascular and neurological defects mediating LCS that are susceptible to this proposed nasal therapy with MSC-sEVs.
Collapse
|
9
|
Ligi D, Giglio RV, Henry BM, Lippi G, Ciaccio M, Plebani M, Mannello F. What is the impact of circulating histones in COVID-19: a systematic review. Clin Chem Lab Med 2022; 60:1506-1517. [PMID: 35852070 DOI: 10.1515/cclm-2022-0574] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/08/2022] [Indexed: 08/16/2024]
Abstract
The infectious respiratory condition COVID-19 manifests a clinical course ranging from mild/moderate up-to critical systemic dysfunction and death linked to thromboinflammation. During COVID-19 infection, neutrophil extracellular traps participating in cytokine storm and coagulation dysfunction have emerged as diagnostic/prognostic markers. The characterization of NET identified that mainly histones, have the potential to initiate and propagate inflammatory storm and thrombosis, leading to increased disease severity and decreased patient survival. Baseline assessment and serial monitoring of blood histone concentration may be conceivably useful in COVID-19. We performed a literature review to explore the association among increased circulating levels of histones, disease severity/mortality in COVID-19 patients, and comparison of histone values between COVID-19 and non-COVID-19 patients. We carried out an electronic search in Medline and Scopus, using the keywords "COVID-19" OR "SARS-CoV-2" AND "histone" OR "citrullinated histones" OR "hyperhistonemia", between 2019 and present time (i.e., June 07th, 2022), which allowed to select 17 studies, totaling 1,846 subjects. We found that substantially elevated histone values were consistently present in all COVID-19 patients who developed unfavorable clinical outcomes. These findings suggest that blood histone monitoring upon admission and throughout hospitalization may be useful for early identification of higher risk of unfavorable COVID-19 progression. Therapeutic decisions in patients with SARS-CoV-2 based on the use of histone cut-off values may be driven by drugs engaging histones, finally leading to the limitation of cytotoxic, inflammatory, and thrombotic effects of circulating histones in viral sepsis.
Collapse
Affiliation(s)
- Daniela Ligi
- Department of Biomolecular Sciences-DISB, Section of Biochemistry and Biotechnology, University of Urbino Carlo Bo, Urbino, Italy
| | - Rosaria Vincenza Giglio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics - BiND, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Brandon M Henry
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Ohio, OH, USA
- IFCC Working Group on SARS-CoV-2 Variants, Milan, Italy
| | - Giuseppe Lippi
- Department of Neuroscience, Biomedicine and Movement, Section of Clinical Biochemistry, University Hospital of Verona, Verona, Italy
- IFCC Task Force on COVID-19, Verona, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics - BiND, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Mario Plebani
- IFCC Working Group on SARS-CoV-2 Variants, Milan, Italy
- Department of Laboratory Medicine, University Hospital of Padova, Padova, Italy
| | - Ferdinando Mannello
- Department of Biomolecular Sciences-DISB, Section of Biochemistry and Biotechnology, Unit of Clinical Biochemistry, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
10
|
Boilard E, Bellio M. Platelet extracellular vesicles and the secretory interactome join forces in health and disease. Immunol Rev 2022; 312:38-51. [PMID: 35899405 DOI: 10.1111/imr.13119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs) are small membrane-bound vesicles released by cells under various conditions. They are found in the extracellular milieu in all biological fluids. As the concentrations, contents, and origin of EVs can change during inflammation, the assessment of EVs can be used as a proxy of cellular activation. Here, we review the literature regarding EVs, more particularly those released by platelets and their mother cells, the megakaryocytes. Their cargo includes cytokines, growth factors, organelles (mitochondria and proteasomes), nucleic acids (messenger and non-coding RNA), transcription factors, and autoantigens. EVs may thus contribute to intercellular communication by facilitating exchange of material between cells. EVs also interact with other molecules secreted by cells. In autoimmune diseases, EVs are associated with antibodies secreted by B cells. By definition, EVs necessarily comprise a phospholipid moiety, which is thus the target of secreted phospholipases also abundantly expressed in the extracellular milieu. We discuss how platelet-derived EVs, which represent the majority of the circulating EVs, may contribute to immunity through the activity of their cargo or in combination with the secretory interactome.
Collapse
Affiliation(s)
- Eric Boilard
- Département de microbiologie-immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada.,Axe maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada.,Centre de recherche ARThrite, Université Laval, Québec, QC, Canada
| | - Marie Bellio
- Département de microbiologie-immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada.,Axe maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada.,Centre de recherche ARThrite, Université Laval, Québec, QC, Canada
| |
Collapse
|
11
|
Wu D, Hacking S, Lee L. A Series of COVID-19 Cases With Findings in the Gastrointestinal and Hepatobiliary System. Cureus 2022; 14:e22602. [PMID: 35355548 PMCID: PMC8957856 DOI: 10.7759/cureus.22602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 11/30/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread worldwide. Most of the infected patients present with respiratory symptoms and acute lung damage. Here, we present three cases of patients with COVID-19 disease whose main clinical manifestations are gastrointestinal symptoms. In our first case, we present a COVID-19 patient with histologic findings associated with ischemic necrosis of the small bowel. In the second and third cases, we demonstrate acute cholecystitis and histology showing microvascular thrombosis. These three cases highlight the ischemic and thrombotic changes seen in the setting of COVID-19 infection without classic respiratory symptoms, with resulting severe gastrointestinal and hepatobiliary disease requiring surgical management. Although the bile or stool viral load was not tested in these patients, the small intestine and gallbladder were infected with SARS-CoV-2, most likely via the epithelial angiotensin-converting enzyme 2 (ACE2) receptor.
Collapse
|
12
|
Ibrahim WH, Ata F, Choudry H, Javed H, Shunnar KM, Shams A, Arshad A, Bosom A, Elkahlout MH, Sawaf B, Ahmed SM, Olajide T. Prevalence, Outcome, and Optimal Management of Free-Floating Right Heart Thrombi in the Context of Pulmonary Embolism, a Systematic Review and Meta-Analysis. Clin Appl Thromb Hemost 2022; 28:10760296221140114. [PMID: 36384306 PMCID: PMC9677292 DOI: 10.1177/10760296221140114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Free-floating right-heart thrombus (FFRHT) in the context of a pulmonary embolism (PE) is a rare but serious encounter with no guidelines addressing its management. We performed a systematic review and meta-analysis addressing prevalence, clinical behavior, and outcomes of FFRHT associated with PE. Among the included 397 patients with FFRHT and PE, dyspnea was the main presenting symptom (73.3%). Obstructive shock was documented in 48.9% of cases. Treatment with thrombolytic therapy, surgical thrombectomy, and percutaneous thrombectomy was documented in 43.8%, 32.7%, and 6.5% of patients, respectively. The overall mortality rate was 20.4%. Syncope ( p: 0.027), chest pain ( p: 0.006), and obstructive shock ( p: 0.037) were significantly associated with mortality. Use of thrombolytic therapy was significantly associated with survival ( p: 0.008). A multivariate logistic regression model to determine mortality predictors revealed that syncope (OR: 1.97, 95% CI: 1.06–3.65, p: 0.03), and obstructive shock (OR: 2.23, 95% CI: 1.20–4.14, p: 0.01) were associated with increased death odds. Treatment with thrombolytic therapy (OR: 0.22, 95% CI: 0.086–0.57, p: 0.002) or surgical thrombectomy (OR: 0.35, 95% CI: 0.137–0.9, p: 0.03) were associated with reduced death odds. Meta-analysis of observational studies revealed a pooled prevalence of FFRHT among all PE cases of 8.1%, and overall mortality of 23%. Although uncommon, the presence of FFRHT in the context of PE is associated with high obstructive shock and mortality rates. Favorable survival odds are observed with thrombolytic therapy and surgical thrombectomy. Data are derived from case reports and observational studies. Clinical trials elucidating these findings are needed.
Collapse
Affiliation(s)
- Wanis H. Ibrahim
- Department of Pulmonology and Internal Medicine, Weill-Cornell Medicine & Hamad General Hospital, Doha, Qatar
| | - Fateen Ata
- Department of Internal Medicine, Hamad General Hospital, Doha, Qatar
| | - Hassan Choudry
- Department of Respiratory Medicine, University Hospital of Leicester, Leicester, UK
| | - Huzaifa Javed
- Department of Medicine, Cavan General Hospital, Cavan, Ireland
| | - Khaled M Shunnar
- Department of Cardiology, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Abdullah Shams
- Department of Internal Medicine, Hamad General Hospital, Doha, Qatar
| | - Abdullah Arshad
- Department of Internal Medicine, Hamad General Hospital, Doha, Qatar
| | - Adel Bosom
- Department of Internal Medicine, Hamad General Hospital, Doha, Qatar
| | | | - Bisher Sawaf
- Department of Internal Medicine, Hamad General Hospital, Doha, Qatar
| | - Shahda M.A. Ahmed
- Department of Internal Medicine, Hamad General Hospital, Doha, Qatar
| | - Tinuola Olajide
- Department of Internal Medicine, Hamad General Hospital, Doha, Qatar
| |
Collapse
|