1
|
Shahzad H, Ali S, Farooq MA, Summer M, Hassan A, Sulayman R, Kanwal L, Awan UA. UV-spectrophotometric and spectroscopic observed Vachellia nilotica and Nigella sativa formulations regularized the histopathological and biochemical parameters during wound contraction. Microsc Res Tech 2025; 88:4-16. [PMID: 39152992 DOI: 10.1002/jemt.24673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/15/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024]
Abstract
Diabetes mellitus causes impaired diabetic wounds which is linked to a number of pathological alterations that impede the healing of wounds. In the current research, Swiss albino mice were given alloxan monohydrate to induce diabetes and excision wounds of approximately 6 mm using biopsy punch. The diabetic wounds were treated with various biomaterials including Vachellia nilotica extract (VN), Nigella sativa extract (NS), V. nilotica nanoparticles (VNNPs) and N. sativa nanoparticles (NSNPs). Their effects were determined by evaluating the percent wound contraction, healing time, and histopathological analysis. The serum level of various biochemical parameters that is, pro-inflammatory cytokines, Matrix metalloproteinases (MMPs) and tissue inhibitor matrix metalloproteinases (TIMPs) were also determined. VNNPs group provided the best outcomes, with wound contraction 100% on 12th day. According to histopathological examination, VNNPs group reduced inflammation and encouraged the formation of blood vessels, fibroblasts, and keratinocytes. VNNPs group significantly alleviated the serum level of pro-inflammatory cytokines that are, TNF-α (19.4 ± 1.5 pg/mL), IL-6 (13.8 ± 0.6 pg/mL), and IL-8 (24.8 ± 1.2 pg/mL) as compared with the diabetic mice. The serum level of MMP2 (248.2 ± 7.9 pg/mL), MMP7 (316 ± 5.2 pg/mL), and MMP9 (167.8 ± 12.1 pg/mL) in the same group VNNPs were also observed much less than the diabetic mice. The serum level of TIMPs (176.8 ± 2.9 pg/mL) in the VNNPs group was increased maximally with respect to diabetic mice. It is concluded that nanoparticles and biomaterials possess healing properties and have the ability to repair the chronic/diabetic wound. RESEARCH HIGHLIGHTS: UV-spectrophotometric and Fourier transform infrared spectroscopy observation for functional group analysis and possible linkage between conjugates Optimization of the histopathological and biochemical markers after application of the formulations Microscopic analysis of epithelial tissues for evaluation of healing mechanisms Speedy contraction of wounds as the alleviation of the inflammatory and necrotic factors.
Collapse
Affiliation(s)
- Hafsa Shahzad
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Adeel Farooq
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Ali Hassan
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Rida Sulayman
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Lubna Kanwal
- Department of Zoology, University of Okara, Okara, Pakistan
| | - Uzma Azeem Awan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
2
|
Ghareeb A, Fouda A, Kishk RM, El Kazzaz WM. Unlocking the potential of titanium dioxide nanoparticles: an insight into green synthesis, optimizations, characterizations, and multifunctional applications. Microb Cell Fact 2024; 23:341. [PMID: 39710687 DOI: 10.1186/s12934-024-02609-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
This comprehensive review explores the emergence of titanium dioxide nanoparticles (TiO2-NPs) as versatile nanomaterials, particularly exploring their biogenic synthesis methods through different biological entities such as plants, bacteria, fungi, viruses, and algae. These biological entities provide eco-friendly, cost-effective, biocompatible, and rapid methods for TiO2-NP synthesis to overcome the disadvantages of traditional approaches. TiO2-NPs have distinctive properties, including high surface area, stability, UV protection, and photocatalytic activity, which enable diverse applications. Through detailed analysis, this review demonstrates significant applications of green fabricated TiO2-NPs in biomedicine, explicitly highlighting their antimicrobial, anticancer, and antioxidant activities, along with applications in targeted drug delivery, photodynamic therapy, and theragnostic cancer treatment. Additionally, the review underscores their pivotal significance in biosensors, bioimaging, and agricultural applications such as nanopesticides and nanofertilizers. Also, this review proves valuable incorporation of TiO2-NPs in the treatment of contaminated soil and water with various environmental contaminants such as dyes, heavy metals, radionuclides, agricultural effluents, and pathogens. These comprehensive findings establish the foundation for future innovations in nanotechnology, underscoring the importance of further investigating bio-based synthetic approaches and bioactivity mechanisms to enhance their efficacy and safety across healthcare, agricultural, and environmental applications.
Collapse
Affiliation(s)
- Ahmed Ghareeb
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Rania M Kishk
- Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Waleed M El Kazzaz
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
3
|
Alkhair S, Zouari N, Ibrahim Ahmad Ibrahim M, Al-Ghouti MA. Efficacy of adsorption processes employing green nanoparticles for bisphenol A decontamination in water: A review. ENVIRONMENTAL NANOTECHNOLOGY, MONITORING & MANAGEMENT 2024; 22:100963. [DOI: 10.1016/j.enmm.2024.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Samal S, Meher RK, Das PK, Swain SK, Dubey D, Khan MS, Jali BR. Exploring the anticancer and antioxidant potential of gold nanoparticles synthesized from Pterocarpus marsupium bark extract against oral squamous cell carcinoma. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:512-528. [PMID: 39449641 DOI: 10.1080/21691401.2024.2416951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is a disease of significant concern with higher mortality rates. Conventional treatment approaches have several drawbacks, leading to the opening of new research avenues in the field of nanoparticle-based cancer therapeutics. The study aimed at the synthesis of gold nanoparticles (Pm-AuNPs) from the aqueous bark extract of Pterocarpus marsupium, followed by its characterization and in vitro anticancer evaluation against OSCC. The synthesized Pm-AuNPs were characterized using UV-visible spectroscopy, particle size analyser, zeta potential, FTIR and SEM techniques. The anticancer potential of the Pm-AuNPs was evaluated against OSCC cell lines (SCC29b, SSC154 and OECM-1) through in vitro assays. The IC50 value was found to be 25 ± 1.2, 45 ± 1.5 and 75 ± 2.1 µg/mL for the three OSCC cell lines, elucidating Pm-AuNPs cytotoxic effects and mechanism of action. Intracellular ROS and SOX detection, mitochondrial transmembrane potential analysis and apoptosis detection were used to confirm the activity of Pm-AuNPs against OSCC. Acute toxicity studies on Wistar rats confirmed the non-toxic nature of the Pm-AuNPs at a higher dose concentration up to 2000 mg/kg body weight. The findings underscore Pm-AuNPs as promising candidates for future anticancer therapeutics, providing insights into their mechanism of action and therapeutic efficacy against OSCC.
Collapse
Affiliation(s)
- Smrutipragnya Samal
- Department of Otorhinolaryngology and Head and Neck Surgery, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Rajesh Kumar Meher
- Department of Biotechnology and Bioinformatics, Sambalpur University, Burla, India
| | - Pratyush Kumar Das
- Department of Phytopharmaceuticals, School of Agricultural and Bio-Engineering (SoABE), Centurion University of Technology and Management, Paralakhemundi, India
| | - Santosh Kumar Swain
- Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Debasmita Dubey
- Medical Research Laboratory, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bigyan Ranjan Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, India
| |
Collapse
|
5
|
Shabani MH, Jafari A, Manteghian M, Mousavi SM. Green synthesis of zinc oxide nanoparticles using Enterobacter cloacae microorganism and their application in enhanced oil recovery. Sci Rep 2024; 14:29409. [PMID: 39592818 PMCID: PMC11599391 DOI: 10.1038/s41598-024-80819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024] Open
Abstract
Employing safe and inexpensive methods for the synthesis of biocompatible nanoparticles (NPs) can be very challenging. Green synthesis refers to the process of synthesizing nanoparticles without using toxic and dangerous chemicals. One of the applications of nanoparticles is increasing production from oil reservoirs, known as enhanced oil recovery (EOR). The main aim of the current study is the biosynthesis of zinc oxide (ZnO) nanoparticles (NPs) using Enterobacter cloacae (Persian Type Culture Collection (PTCC): 1798) microorganism, extracted from the formation water of one of the southwestern Iranian reservoirs, as a novel approach in EOR applications. Several analytical methods, including Fourier transform infrared (FTIR), field emission scanning electron microscope (FSEM), X-ray diffraction (XRD), dynamic light scattering (DLS), energy dispersive X-ray spectroscopy (EDS), and zeta potential were used to analyze the produced NPs. The FESEM analysis confirmed the amorphous form of the nanoparticles and estimated their size in the range of 32 to 58 nm. In investigating the effect of synthesized nanoparticles on interfacial tension (IFT) and stability tests, three levels of base fluids (distilled water, seawater, and diluted sea water) and five levels of nanoparticle concentrations (0, 100, 500, 1000, and 2000 ppm) were considered. The IFT analysis showed that an increase in nanoparticle concentration causes a decrease in the IFT. Also, ZnO nanoparticles were chosen at concentrations of 500 and 1000 ppm for wettability alteration and the EOR test through injection into porous media. The results for the EOR test demonstrated a maximum oil recovery factor of 56% for nanofluid injection with a concentration of 1000 ppm with diluted seawater as the base fluid. Furthermore, oil recovery factors of 43% and 49% were achieved by injection of distilled water and seawater with a concentration of 1000 ppm, respectively.
Collapse
Affiliation(s)
- Mohammad Hossein Shabani
- Petroleum Engineering Department, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Arezou Jafari
- Petroleum Engineering Department, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran.
| | - Mehrdad Manteghian
- Petroleum Engineering Department, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran.
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran
- Environmental Research Institute, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Nkosi NC, Basson AK, Ntombela ZG, Dlamini NG, Pullabhotla RVSR. A Review on Bioflocculant-Synthesized Copper Nanoparticles: Characterization and Application in Wastewater Treatment. Bioengineering (Basel) 2024; 11:1007. [PMID: 39451384 PMCID: PMC11504074 DOI: 10.3390/bioengineering11101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Copper nanoparticles (CuNPs) are tiny materials with special features such as high electric conductivity, catalytic activity, antimicrobial activity, and optical activity. Published reports demonstrate their utilization in various fields, including biomedical, agricultural, environmental, wastewater treatment, and sensor fields. CuNPs can be produced utilizing traditional procedures; nevertheless, such procedures have restrictions like excessive consumption of energy, low production yields, and the utilization of detrimental substances. Thus, the adoption of environmentally approachable "green" approaches for copper nanoparticle synthesis is gaining popularity. These approaches involve employing plants, bacteria, and fungi. Nonetheless, there is a scarcity of data regarding the application of microbial bioflocculants in the synthesis of copper NPs. Therefore, this review emphasizes copper NP production using microbial flocculants, which offer economic benefits and are sustainable and harmless. The review also provides a characterization of the synthesized copper nanoparticles, employing numerous analytical tools to determine their compositional, morphological, and topographical features. It focuses on scientific advances from January 2015 to December 2023 and emphasizes the use of synthesized copper NPs in wastewater treatment.
Collapse
Affiliation(s)
- Nkanyiso C. Nkosi
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa
| | - Albertus K. Basson
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa
| | - Zuzingcebo G. Ntombela
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa
| | - Nkosinathi G. Dlamini
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa
| | - Rajasekhar V. S. R. Pullabhotla
- Chemistry Department, Faculty of Science, Agriculture, and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa
| |
Collapse
|
7
|
Gautam A, Dabral H, Singh A, Tyagi S, Tyagi N, Srivastava D, Kushwaha HR, Singh A. Graphene-based metal/metal oxide nanocomposites as potential antibacterial agents: a mini-review. Biomater Sci 2024; 12:4630-4649. [PMID: 39140167 DOI: 10.1039/d4bm00796d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Antimicrobial resistance (AMR) is a rising issue worldwide, which is increasing prolonged illness and mortality rates in the population. Similarly, bacteria have generated multidrug resistance (MDR) by developing various mechanisms to cope with existing antibiotics and therefore, there is a need to develop new antibacterial and antimicrobial agents. Biocompatible nanomaterials like graphene and its derivatives, graphene oxide (GO), and reduced graphene oxide (rGO) loaded with metal/metal oxide nanoparticles have been explored as potential antibacterial agents. It is observed that nanocomposites of GO/rGO and metal/metal oxide nanoparticles can result in the synthesis of less toxic, more stable, controlled size, uniformly distributed, and cost-effective nanomaterials compared to pure metal nanoparticles. Antibacterial studies of these nanocomposites show their considerable potential as antibacterial and antimicrobial agents, however, issues like the mechanism of antimicrobial action and their cytotoxicity need to be explored in detail. This review highlights a comparative analysis of graphene-based metal and metal oxide nanoparticles as potential antibacterial agents against AMR and MDR.
Collapse
Affiliation(s)
- Akanksha Gautam
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Himanki Dabral
- School of Agriculture Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand-248001, India
| | - Awantika Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Sourabh Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Nipanshi Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Diksha Srivastava
- School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Hemant R Kushwaha
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi-110067, India.
- School of Agriculture Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand-248001, India
| | - Anu Singh
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
8
|
Rakshit S, Roy T, Jana PC, Gupta K. A Comprehensive Review on the Importance of Sustainable Synthesized Coinage Metal Nanomaterials and Their Diverse Biomedical Applications. Biol Trace Elem Res 2024:10.1007/s12011-024-04361-8. [PMID: 39222235 DOI: 10.1007/s12011-024-04361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
From a historical perspective, coinage metals (CMNMs) are most renowned for their monetary, ornamental, and metallurgical merits; nevertheless, as nanotechnology's potential has only just come to light, their metal nanostructures and uses may be viewed as products of modern science. Notable characteristics of CMNMs include visual, electrical, chemical, and catalytic qualities that depend on shape and size. Due diligence on the creation and synthesis of CMNMs and their possible uses has been greatly promoted by these characteristics. This review focuses on solution-based methods and provides an overview of the latest developments in CMNMs and their bimetallic nanostructures. It discusses a range of synthetic techniques, including conventional procedures and more modern approaches used to enhance functionality by successfully manipulating the CMNMs nanostructure's size, shape, and composition. To help with the design of new nanostructures with improved capabilities in the future, this study offers a brief assessment of the difficulties and potential future directions of these intriguing metal nanostructures. This review focuses on mechanisms and factors influencing the synthesis process, green synthesis, and sustainable synthesis methods. It also discusses the wide range of biological domains in which CMNMs are applied, including antibacterial, antifungal, and anticancer. Researchers will therefore find the appropriateness of both synthesizing and using CMNMS keeping in mind the different levels of environmental effects.
Collapse
Affiliation(s)
- Soumen Rakshit
- Department of Physics, Vidyasagar University, Paschim Medinipur, 721102, West Bengal, India
| | - Tamanna Roy
- Department of Microbiology, Bankura Sammilani Medical College and Hospital, Bankura, 722102, West Bengal, India
| | - Paresh Chandra Jana
- Department of Physics, Vidyasagar University, Paschim Medinipur, 721102, West Bengal, India
| | - Kajal Gupta
- Department of Chemistry, Nistarini College, Purulia, 723101, West Bengal, India.
| |
Collapse
|
9
|
Losetty V, Devanesan S, AlSalhi MS, Velu PP, Muthupillai D, Kumar KA, Lakkaboyana SK. Green synthesis of silver nanoparticles using Malachra alceifolia (wild okra) for wastewater treatment and biomedical applications with molecular docking approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55562-55576. [PMID: 39235759 DOI: 10.1007/s11356-024-34872-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
The current investigation focused on the green synthesis of silver nanoparticles (Ag NPs) using Malachra alceifolia (Ma) (the common name is wild okra) leaf extract. The morphological, structural, and optical properties of the synthesized Ma-Ag NPs were characterized by various techniques. The absorption spectral studies (UV-vis and FTIR) confirm the formation of Ma-Ag NPs and their band gap was calculated as 2.1 eV with the help of Tauc's equation. The XRD study gives information about the crystalline nature and FCC structure. The SEM analysis estimates the particle size as 10-55 nm and the average size as 28 nm with a spherical shape. Furthermore, biological studies such as antibacterial activity was performed by the broth dilution method whereas antioxidant was studied through the DPPH radical scavenging technique. To compare the antibacterial activity between Gram-positive and Gram-negative pathogens, the highest bacterial growth of inhibition was observed for Pseudomonas aeruginosa than Staphylococcus aureus when increasing the concentration of the plant extract and Ma-Ag NPs. The scavenging activity of DPPH for both leaf extract and synthesized Ma-Ag NPs was represented in a dose-dependent manner (0.1-1.0 mg/mL), Ma-Ag NPs have shown a significant scavenging activity ranging from 39 to 54% with an average IC50 value of 0.87 ± 0.08. Furthermore, a molecular docking study was performed to confirm the binding interaction outline between the bioactive molecule methyl commate A, Ma-Ag NPs, and proteins such as Aminotransferase and Tyrosyl-tRNA synthetase active sites. The highest interaction tendency was observed between the Aminotransferase and methyl commate A with a binding energy of - 7.79 kcal/mol-1. The high electronegative oxygen of the ligand interacts with H-N- of Lys98 (-O--H-N-) through the formation of hydrogen bond by 3.53A° distance. In addition, the photocatalytic efficiency of Ma-Ag NPs was studied with methylene blue dye degradation under sunlight irradiation at different time intervals. The attained photocatalytic degradation efficiency was 98.3% after 120 min.
Collapse
Affiliation(s)
- Venkatramana Losetty
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, 600062, India.
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Prabu Panneer Velu
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, 600062, India
| | - Dhanalakshmi Muthupillai
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, 600062, India
| | - Kerena Amar Kumar
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, 600062, India
| | - Sivarama Krishna Lakkaboyana
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, 600062, India
| |
Collapse
|
10
|
Muhaymin A, Mohamed HEA, Hkiri K, Safdar A, Azizi S, Maaza M. Green synthesis of magnesium oxide nanoparticles using Hyphaene thebaica extract and their photocatalytic activities. Sci Rep 2024; 14:20135. [PMID: 39210024 PMCID: PMC11362519 DOI: 10.1038/s41598-024-71149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Magnesium oxide nanoparticles (MgO NPs) represent an interesting inorganic material widely utilized across various fields including sensing, antimicrobial applications, optical coatings, water purification, fuel additives, absorbents, and catalysis, owing to their exceptional broad energy band gap, surface affinity, and strong chemical and thermal durability. In this investigation, MgO NPs were successfully synthesized through a green approach employing fruit extract from the gingerbread tree (Hyphaene thebaica). Analysis via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed their agglomerated quasi-spherical shape with a size range of 20-60 nm. The X-ray diffraction (XRD) pattern exhibited prominent peaks at planes (200) and (220), indicating the high crystallinity of MgO NPs with a crystallite size of 32.6 ± 5 nm while Energy-dispersive X-ray spectroscopy (EDS) analysis highlighted the composition comprises 40.47% Magnesium and 48.64% Oxygen by weight. Fourier transform infrared spectroscopy (FT-IR) revealed characteristic Mg-O bonds through peaks at 560 cm-1 and 866 cm-1, while Raman spectroscopy affirmed the cubic structure of MgO. Subsequently, the photocatalytic performance of MgO NPs under visible light irradiation was evaluated. Remarkably, the addition of 1 g/L of MgO nano-catalyst resulted in a degradation efficiency of 98% after 110 min on methylene blue dye, showcasing the high catalytic activity of MgO NPs. This remarkable photocatalytic efficiency emphasizes the potential of MgO NPs in environmental remediation.
Collapse
Affiliation(s)
- Abdul Muhaymin
- College of Graduate Studies, UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa
- Material Research Department (MRD), Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, PO Box 722, Somerset West, 7129, Western Cape, South Africa
- Preston Institute of Nanoscience and Technology, Preston University Kohat, Islamabad Campus, Islamabad, Pakistan
| | - Hamza Elsayed Ahmed Mohamed
- College of Graduate Studies, UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa.
- Material Research Department (MRD), Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, PO Box 722, Somerset West, 7129, Western Cape, South Africa.
| | - Khaoula Hkiri
- College of Graduate Studies, UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa
- Material Research Department (MRD), Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, PO Box 722, Somerset West, 7129, Western Cape, South Africa
| | - Ammara Safdar
- College of Graduate Studies, UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa
- Material Research Department (MRD), Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, PO Box 722, Somerset West, 7129, Western Cape, South Africa
- Preston Institute of Nanoscience and Technology, Preston University Kohat, Islamabad Campus, Islamabad, Pakistan
| | - Shohreh Azizi
- College of Graduate Studies, UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa
- Material Research Department (MRD), Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, PO Box 722, Somerset West, 7129, Western Cape, South Africa
| | - Malik Maaza
- College of Graduate Studies, UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa
- Material Research Department (MRD), Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, PO Box 722, Somerset West, 7129, Western Cape, South Africa
| |
Collapse
|
11
|
Mukherjee S, Verma A, Kong L, Rengan AK, Cahill DM. Advancements in Green Nanoparticle Technology: Focusing on the Treatment of Clinical Phytopathogens. Biomolecules 2024; 14:1082. [PMID: 39334849 PMCID: PMC11430415 DOI: 10.3390/biom14091082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Opportunistic pathogenic microbial infections pose a significant danger to human health, which forces people to use riskier, more expensive, and less effective drugs compared to traditional treatments. These may be attributed to several factors, such as overusing antibiotics in medicine and lack of sanitization in hospital settings. In this context, researchers are looking for new options to combat this worrying condition and find a solution. Nanoparticles are currently being utilized in the pharmaceutical sector; however, there is a persistent worry regarding their potential danger to human health due to the usage of toxic chemicals, which makes the utilization of nanoparticles highly hazardous to eukaryotic cells. Multiple nanoparticle-based techniques are now being developed, offering essential understanding regarding the synthesis of components that play a crucial role in producing anti-microbial nanotherapeutic pharmaceuticals. In this regard, green nanoparticles are considered less hazardous than other forms, providing potential options for avoiding the extensive harm to the human microbiome that is prevalent with existing procedures. This review article aims to comprehensively assess the current state of knowledge on green nanoparticles related to antibiotic activity as well as their potential to assist antibiotics in treating opportunistic clinical phytopathogenic illnesses.
Collapse
Affiliation(s)
- Sunny Mukherjee
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Anamika Verma
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - David Miles Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
12
|
Sugitha SKJ, Latha RG, Venkatesan R, Vetcher AA, Ali N, Kim SC. Biological Effects of Green Synthesized Al-ZnO Nanoparticles Using Leaf Extract from Anisomeles indica (L.) Kuntze on Living Organisms. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1407. [PMID: 39269068 PMCID: PMC11396933 DOI: 10.3390/nano14171407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
The synthesis of Al-ZnO nanoparticles (NPs) was achieved using a green synthesis approach, utilizing leaf extract from Anisomeles indica (L.) in a straightforward co-precipitation method. The goal of this study was to investigate the production of Al-ZnO nanoparticles through the reduction and capping method utilizing Anisomeles indica (L.) leaf extract. The powder X-ray diffraction, UV spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy with EDAX analysis were used to analyze the nanoparticles. X-ray diffraction analysis confirmed the presence of spherical structures with an average grain size of 40 nm in diameter, while UV-visible spectroscopy revealed a prominent absorption peak at 360 nm. FTIR spectra demonstrated the presence of stretching vibrations associated with O-H, N-H, C=C, C-N, and C=O as well as C-Cl groups indicating their involvement in the reduction and stabilization of nanoparticles. SEM image revealed the presence of spongy, spherical, porous agglomerated nanoparticles, confirming the chemical composition of Al-ZnO nanoparticles through the use of the EDAX technique. Al-ZnO nanoparticles showed increased bactericidal activity against both Gram-positive and Gram-negative bacteria. The antioxidant property of the green synthesized Al-ZnO nanoparticles was confirmed by DPPH radical scavenging with an IC50 value of 23.52 indicating excellent antioxidant capability. Green synthesized Al-ZnO nanoparticles were shown in in vivo studies on HeLa cell lines to be effective for cancer treatment. Additionally, α-amylase inhibition assay and α-glucosidase inhibition assay demonstrated their potent anti-diabetic activities. Moving forward, the current methodology suggests that the presence of phenolic groups, flavonoids, and amines in Al-ZnO nanoparticles synthesized with Anisomeles indica (L.) extract exhibit significant promise for eliciting biological responses, including antioxidant and anti-diabetic effects, in the realms of biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- S K Johnsy Sugitha
- Department of Chemistry, Holy Cross College, Nagercoil, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627012, Tamil Nadu, India
| | - R Gladis Latha
- Department of Chemistry and Research Centre, Holy Cross College, Nagercoil 629002, Tamil Nadu, India
| | - Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Alexandre A Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples' Friendship University of Russia n.a. P. Lumumba (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
13
|
Dell'Annunziata F, Mosidze E, Folliero V, Lamparelli EP, Lopardo V, Pagliano P, Porta GD, Galdiero M, Bakuridze AD, Franci G. Eco-friendly synthesis of silver nanoparticles from peel and juice C. limon and their antiviral efficacy against HSV-1 and SARS-CoV-2. Virus Res 2024; 349:199455. [PMID: 39181453 PMCID: PMC11387364 DOI: 10.1016/j.virusres.2024.199455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
The growing threat of viral infections requires innovative therapeutic approaches to safeguard human health. Nanomaterials emerge as a promising solution to overcome the limitations associated with conventional therapies. The eco-friendly synthesis of silver nanoparticles (AgNPs) currently represents a method that guarantees antimicrobial efficacy, safety, and cost-effectiveness. This study explores the use of AgNPs derived from the peel (Lp-AgNPs) and juice (Lj-AgNPs) Citrus limon "Ovale di Sorrento", cultivars of the Campania region. The antiviral potential was tested against viruses belonging to the Coronaviridae and Herpesviridae. AgNPs were synthesized by reduction method using silver nitrate solution mixed with aqueous extract of C. limon peel and juice. The formation of Lp-AgNPs and Lj-AgNPs was assessed using a UV-Vis spectrophotometer. The size, ζ-potential, concentration, and morphology of AgNPs were evaluated by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), and field emission-scanning electron microscopy (FE-SEM). Cytotoxicity was evaluated in a concentration range between 500 and 7.8 µg/mL on VERO-76 and HaCaT cells, with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium test bromide (MTT). Antiviral activity consisted of virus pre-treatment, co-treatment, cellular pre-treatment, and post-infection tests versus HSV-1 and SARS-CoV-2 at a multiplicity of infections (MOI) of 0.01. Plaque reduction assays and real-time PCR provided data on the antiviral potential of tested compounds. Lp-AgNPs and Lj-AgNPs exhibited spherical morphology with respective diameters of 60 and 92 nm with concentrations of 4.22 and 4.84 × 1010 particles/mL, respectively. The MTT data demonstrated minimal cytotoxicity, with 50 % cytotoxic concentrations (CC50) of Lp-AgNPs and Lj-AgNPs against VERO cells of 754.6 and 486.7 µg/mL. Similarly, CC50 values against HaCaT were 457.3 µg/mL for Lp-AgNPs and 339.6 µg/mL for Lj-AgNPs, respectively. In the virus pre-treatment assay, 90 % inhibitory concentrations of HSV-1 and SARS-CoV-2 were 8.54-135.04 µg/mL for Lp-AgNPs and 6.13-186.77 µg/mL for Lj-AgNPs, respectively. The molecular investigation confirmed the antiviral data, recording a reduction in the UL54 and UL27 genes for HSV-1 and in the Spike (S) gene for SARS-CoV-2, following AgNP exposure. The results of this study suggest that Lp-AgNPs and Lj-AgNPs derived from C. Limon could offer a valid ecological, natural, local and safe strategy against viral infections.
Collapse
Affiliation(s)
- Federica Dell'Annunziata
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy; Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Ekaterine Mosidze
- Department of Pharmaceutical Technology, Tbilisi State Medical University, 33 Vazha-Pshavela Ave, Tbilisi, 0178, Georgia
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Erwin P Lamparelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Valentina Lopardo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Aliosha Dzh Bakuridze
- Department of Pharmaceutical Technology, Tbilisi State Medical University, 33 Vazha-Pshavela Ave, Tbilisi, 0178, Georgia.
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy; UOC Patologia e Microbiologia, San Giovanni di Dio e Ruggi D'Aragona University Hospital, 84126 Salerno, Italy.
| |
Collapse
|
14
|
Vasvani S, Vasukutty A, Bardhan R, Park IK, Uthaman S. Reactive oxygen species driven prodrug-based nanoscale carriers for transformative therapies. Biomater Sci 2024; 12:4335-4353. [PMID: 39041781 DOI: 10.1039/d4bm00647j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Reactive oxygen species (ROS) drive processes in various pathological conditions serving as an attractive target for therapeutic strategies. This review highlights the development and use of ROS-dependent prodrug-based nanoscale carriers that has transformed many biomedical applications. Incorporating prodrugs into nanoscale carriers not only improves their stability and solubility but also enables site-specific drug delivery ultimately enhancing the therapeutic effectiveness of the nanoscale carriers. We critically examine recent advances in ROS-responsive nanoparticulate platforms, encompassing liposomes, polymeric nanoparticles, and inorganic nanocarriers. These platforms facilitate precise control over drug release upon encountering elevated ROS levels at disease sites, thereby minimizing off-target effects and maximizing therapeutic efficiency. Furthermore, we investigate the potential of combination therapies in which ROS-activated prodrugs are combined with other therapeutic agents and underscore their synergistic potential for treating multifaceted diseases. This comprehensive review highlights the immense potential of ROS-dependent prodrug-based nanoparticulate systems in revolutionizing biomedical applications; such nanoparticulate systems can facilitate selective and controlled drug delivery, reduce toxicity, and improve therapeutic outcomes for ROS-associated diseases.
Collapse
Affiliation(s)
- Shyam Vasvani
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
- DR Cure Inc., Hwasun 58128, Republic of Korea
| | - Arathy Vasukutty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, USA
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
- DR Cure Inc., Hwasun 58128, Republic of Korea
- Center for Global Future Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Saji Uthaman
- Smart Materials and Devices (SMAD) Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
15
|
Chebaro Z, Mesmar JE, Badran A, Al-Sawalmih A, Maresca M, Baydoun E. Halophila stipulacea: A Comprehensive Review of Its Phytochemical Composition and Pharmacological Activities. Biomolecules 2024; 14:991. [PMID: 39199379 PMCID: PMC11353240 DOI: 10.3390/biom14080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
Halophila stipulacea (Forsskål and Niebuhr) Ascherson is a small marine seagrass that belongs to the Hydrocharitaceae family. It is native to the Red Sea, Persian Gulf, and Indian Ocean and has successfully invaded the Mediterranean and Caribbean Seas. This article summarizes the pharmacological activities and phytochemical content of H. stipulacea, along with its botanical and ecological characteristics. Studies have shown that H. stipulacea is rich in polyphenols and terpenoids. Additionally, it is rich in proteins, lipids, and carbohydrates, contributing to its nutritional value. Several biological activities are reported by this plant, including antimicrobial, antioxidant, anticancer, anti-inflammatory, anti-metabolic disorders, and anti-osteoclastogenic activities. Further research is needed to validate the efficacy and safety of this plant and to investigate the mechanisms of action underlying the observed effects.
Collapse
Affiliation(s)
- Ziad Chebaro
- Department of Biology, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon; (Z.C.); (J.E.M.)
| | - Joelle Edward Mesmar
- Department of Biology, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon; (Z.C.); (J.E.M.)
| | - Adnan Badran
- Department of Nutrition, University of Petra, Amman 11196, Jordan;
| | - Ali Al-Sawalmih
- Marine Science Station, University of Jordan, Aqaba 11942, Jordan;
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, 13013 Marseille, France
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon; (Z.C.); (J.E.M.)
| |
Collapse
|
16
|
Ahmad E, Athar A, Nimisha, Zia Q, Sharma AK, Sajid M, Bharadwaj M, Ansari MA, Saluja SS. Harnessing nature's potential: Alpinia galanga methanolic extract mediated green synthesis of silver nanoparticle, characterization and evaluation of anti-neoplastic activity. Bioprocess Biosyst Eng 2024; 47:1183-1196. [PMID: 38509420 DOI: 10.1007/s00449-024-02993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
With the advent of nanotechnology, the treatment of cancer is changing from a conventional to a nanoparticle-based approach. Thus, developing nanoparticles to treat cancer is an area of immense importance. We prepared silver nanoparticles (AgNPs) from methanolic extract of Alpinia galanga rhizome and characterized them by UV-Vis spectrophotometry, Fourier transform Infrared (FTIR) spectroscopy, Zetasizer, and Transmission electron Microscopy (TEM). UV-Vis spectrophotometry absorption spectrum showed surface plasmon between 400 and 480 nm. FTIR spectrum analysis implies that various phytochemicals/secondary metabolites are involved in the reduction, caping, and stabilization of AgNPs. The Zetasier result suggests that the particles formed are small in size with a low polydispersity index (PDI), suggesting a narrow range of particle distribution. The TEM image suggests that the particles formed are mostly of spherical morphology with nearly 20-25 nm. Further, the selected area electron diffraction (SAED) image showed five electron diffraction rings, suggesting the polycrystalline nature of the particles. The nanoparticles showed high anticancer efficacy against cervical cancer (SiHa) cell lines. The nanostructures showed dose-dependent inhibition with 40% killing observed at 6.25 µg/mL dose. The study showed an eco-friendly and cost-effective approach to the synthesis of AgNPs and provided insight into the development of antioxidant and anticancer agents.
Collapse
Affiliation(s)
- Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Alina Athar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Qamar Zia
- Department of Medical Laboratory Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Mohammed Sajid
- Division of Molecular Genetics & Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention & Research, Noida, Uttar Pradesh, India
| | - Mausumi Bharadwaj
- Division of Molecular Genetics & Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention & Research, Noida, Uttar Pradesh, India
| | | | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India.
- Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, 110002, India.
| |
Collapse
|
17
|
Ardakani FP, Kalantari S, Shirmardi M, Tazeh M. Investigation of Eucalyptus camaldulensis and Tamarix aphylla species' capacities for methylene blue removal in wastewater and heavy metal remediation in soil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:754. [PMID: 39031225 DOI: 10.1007/s10661-024-12903-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 07/06/2024] [Indexed: 07/22/2024]
Abstract
In the contemporary landscape, the reuse of wastewater holds paramount significance. Concurrently, wastewater carries an array of pollutants encompassing chemical dyes and heavy metals. This study delves into the potential of Tamarix aphylla (TA) and Eucalyptus camaldulensis (EC) species for mitigating heavy metals in soil and eliminating methylene blue dye (MB) from wastewater. The research begins with assessing the dye adsorption process, considering pivotal factors such as initial pH, adsorbent dosage, initial dye concentration, and contact time. Outcomes reveal EC's superiority in dye removal compared to TA. As a bioremediation agent, EC exhibits a 90.46% removal efficacy for MB within 15 min, with pH 7.0 as the operative condition. Equilibrium analysis employs Temkin (T), Freundlich (F), and Langmuir (L) isotherms, revealing an excellent fit with the L isotherm model. The study delves further by probing surface adsorption kinetics through pseudo-first-order (PFO) and pseudo-second-order (PSO) models. Furthermore, to discern the divergent impacts of EC and TA on soil heavy metal reduction, soil samples were collected from three distinct zones: an untouched control area, alongside areas where EC and TA were cultivated at the Yazd wastewater site in Iran. Heavy metal levels in the soil were meticulously assessed through rigorous measurement and statistical scrutiny. The findings spotlight TA-cultivated soil as having the highest levels across all examined factors. Ultimately, EC emerges as the superior contender, proficiently excelling in both MB eliminations from wastewater and heavy metal amelioration in the soil, positioning it as the preferred phytoremediation agent.
Collapse
Affiliation(s)
| | - Saeideh Kalantari
- Department of Nature Engineering, Faculty of Agriculture & Natural Resources, Ardakan University, P.O. Box 184, Ardakan, Iran.
| | - Mostafa Shirmardi
- Department of Horticulture Sciences, Faculty of Agriculture and Natural Resources, Ardakan University, Ardakan, Iran
| | - Mahdi Tazeh
- Department of Nature Engineering, Faculty of Agriculture & Natural Resources, Ardakan University, P.O. Box 184, Ardakan, Iran
| |
Collapse
|
18
|
Malik MA, Wani AH, Bhat MY, Siddiqui S, Alamri SAM, Alrumman SA. Fungal-mediated synthesis of silver nanoparticles: a novel strategy for plant disease management. Front Microbiol 2024; 15:1399331. [PMID: 39006753 PMCID: PMC11239364 DOI: 10.3389/fmicb.2024.1399331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Various traditional management techniques are employed to control plant diseases caused by bacteria and fungi. However, due to their drawbacks and adverse environmental effects, there is a shift toward employing more eco-friendly methods that are less harmful to the environment and human health. The main aim of the study was to biosynthesize silver Nanoparticles (AgNPs) from Rhizoctonia solani and Cladosporium cladosporioides using a green approach and to test the antimycotic activity of these biosynthesized AgNPs against a variety of pathogenic fungi. The characterization of samples was done by using UV-visible spectroscopy, SEM (scanning electron microscopy), FTIR (fourier transmission infrared spectroscopy), and XRD (X-ray diffractometry). During the study, the presence of strong plasmon absorbance bands at 420 and 450 nm confirmed the AgNPs biosynthesis by the fungi Rhizoctonia solani and Cladosporium cladosporioides. The biosynthesized AgNPs were 80-100 nm in size, asymmetrical in shape and became spherical to sub-spherical when aggregated. Assessment of the antifungal activity of the silver nanoparticles against various plant pathogenic fungi was carried out by agar well diffusion assay. Different concentration of AgNPs, 5 mg/mL 10 mg/mL and 15 mg/mL were tested to know the inhibitory effect of fungal plant pathogens viz. Aspergillus flavus, Penicillium citrinum, Fusarium oxysporum, Fusarium metavorans, and Aspergillus aflatoxiformans. However, 15 mg/mL concentration of the AgNPs showed excellent inhibitory activity against all tested fungal pathogens. Thus, the obtained results clearly suggest that silver nanoparticles may have important applications in controlling various plant diseases caused by fungi.
Collapse
Affiliation(s)
- Mansoor Ahmad Malik
- Section of Plant Pathology and Mycology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Abdul Hamid Wani
- Section of Plant Pathology and Mycology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Mohd Yaqub Bhat
- Section of Plant Pathology and Mycology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Sazada Siddiqui
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Saad A M Alamri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Sulaiman A Alrumman
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
19
|
Yiblet Y, Abdu I, Belew B. Comprehensive Literature Review on Metal Nanoparticle for Enhanced Shelf Life of Mango Fruit. ScientificWorldJournal 2024; 2024:4782328. [PMID: 38957455 PMCID: PMC11217571 DOI: 10.1155/2024/4782328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/29/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024] Open
Abstract
The purpose of this review was to investigate the application of metal nanoparticles in fruit shelf life extension. Despite growing interest in nanoparticles and their potential applications, there are currently few effective methods for prolonging the shelf life of fruits. The study concentrated on the principles underlying the shelf life extension of metallic nanoparticles, including copper oxide, zinc oxide, silver, and titanium oxide. The biological properties of nanoparticles, especially those with antibacterial qualities, have drawn interest as possible fruit preservation solutions. Many conventional preservation methods have drawbacks, including expensive production costs, short shelf lives, undesirable residues, and the incapacity to properly keep perishable fruits in their natural environments. Techniques for extending shelf life based on nanotechnology have the potential to get around these problems. The review focused on the effective use of environmentally benign, green synthesis-produced nanoparticles to extend the fruit shelf life. The ability of these nanoparticles to successfully preserve fresh fruits was established. The results imply that fruit preservation by the use of nanoparticle synthesis techniques may be a viable strategy, offering a more effective and sustainable substitute for traditional procedures.
Collapse
Affiliation(s)
- Yalew Yiblet
- Department of BiologyMekdela Amba University, P.O. Box 32, Tulu Awlia, Ethiopia
| | - Indiris Abdu
- Department of BiologyMekdela Amba University, P.O. Box 32, Tulu Awlia, Ethiopia
| | - Basaznew Belew
- Department of MathematicsMekdela Amba University, P.O. Box 32, Tulu Awlia, Ethiopia
| |
Collapse
|
20
|
Ullah I, Rauf A, Khalil AA, Luqman M, Islam MR, Hemeg HA, Ahmad Z, Al‐Awthan YS, Bahattab O, Quradha MM. Peganum harmala L. extract-based Gold (Au) and Silver (Ag) nanoparticles (NPs): Green synthesis, characterization, and assessment of antibacterial and antifungal properties. Food Sci Nutr 2024; 12:4459-4472. [PMID: 38873463 PMCID: PMC11167161 DOI: 10.1002/fsn3.4112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 06/15/2024] Open
Abstract
During the last decade, nanotechnology has attained a significant place among the scientific community for the biosynthesis of plant-based nanoparticles owing to its effective, safe, and eco-friendly nature. Hence, keeping in view the significance of nanotechnology, the current study was conducted to develop, characterize (UV-visible spectroscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy), and assess the antimicrobial (antibacterial and antifungal) properties of Peganum harmala L. Extract-based Gold (Au) and Silver (Ag) nanoparticles (NPs). Characteristic absorption peaks at 420 and 540 nm revealed the formation of AgNPs and AuNPs, respectively. SEM images revealed that both silver and gold nanoparticles were oval and spherical with average size ranging from 42 to 72 and 12.6 to 35.7 nm, respectively. Similarly, FT-IR spectra revealed that the functional groups such as hydroxyl, carboxyl, and polyphenolic groups of biomolecules present in the extract are possibly responsible for reducing metallic ions and the formation of nanoparticles. Likewise, the EDX analysis confirmed the presence of silver and gold in synthesized NPs. Furthermore, the AgNPs and AuNPs showed good antibacterial and antifungal activities. The maximum antibacterial and antifungal activity was noticed for P. harmala extract against Pseudomonas aeroginosa (21 mm) and Candida albicon (18 mm), respectively. Whereas, the maximum antibacterial and antifungal activities of synthesized AgNPs were observed against Salmonella typhi (25 mm) and Penicillium notatum (36 mm), respectively. Moreover, in the case of AuNPs, the highest antibacterial and antifungal activity of synthesized AuNPs was noticed against Escherichia coli (25 mm) and C. albicon (31 mm), respectively. Findings of this study revealed that P. harmala extract and biosynthesized NPs (silver and gold) possessed significant antibacterial and antifungal properties against different bacterial (Bacillus subtilis, Staphylococcus aureus, E. coli, P. aeroginosa, and S. typhi) and fungal (C. albicans, Aspergillus Niger, and P. notatum) strains. Further studies must be carried out to assess the probable mechanism of action associated with these antimicrobial properties.
Collapse
Affiliation(s)
- Izaz Ullah
- Department of ChemistryUniversity of SwabiAnbarKhyber PakhtunkhwaPakistan
| | - Abdur Rauf
- Department of ChemistryUniversity of SwabiAnbarKhyber PakhtunkhwaPakistan
| | - Anees Ahmed Khalil
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Muhammad Luqman
- Department of Agricultural Extension and Rural StudiesUniversity of SargodhaSargodhaPakistan
| | - Md. Rezaul Islam
- Department of PharmacyFaculty of Allied Health Sciences, Daffodil International University, BiruliaSavarBangladesh
| | - Hassan A. Hemeg
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesTaibah UniversityAl‐Madinah Al‐MonawaraSaudi Arabia
| | - Zubair Ahmad
- Department of ChemistryUniversity of SwabiAnbarKhyber PakhtunkhwaPakistan
| | - Yahya S. Al‐Awthan
- Department of Biology, Faculty of ScienceUniversity of TabukTabukSaudi Arabia
| | - Omar Bahattab
- Department of Biology, Faculty of ScienceUniversity of TabukTabukSaudi Arabia
| | - Mohammed Mansour Quradha
- College of Education, Seiyun UniversitySeiyunHadhramawtYemen
- Pharmacy Department, Medical SciencesAljanad University for Science and TechnologyTaizYemen
| |
Collapse
|
21
|
Góral-Kowalczyk M, Grządka E, Orzeł J, Góral D, Skrzypek T, Kobus Z, Nawrocka A. Green Synthesis of Iron Nanoparticles Using an Aqueous Extract of Strawberry ( Fragaria × ananassa Duchesne) Leaf Waste. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2515. [PMID: 38893778 PMCID: PMC11174040 DOI: 10.3390/ma17112515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
In this study, we analysed the potential use of dried strawberry leaves and calyces for the production of nanoparticles using inorganic iron compounds. We used the following iron precursors FeCl3 × 6H2O, FeCl2 × 4H2O, Fe(NO3)3 × 9H2O, Fe2(SO4)3 × H2O, FeSO4 × 7H2O, FeCl3 anhydrous. It was discovered that the content of polyphenols and flavonoids in dried strawberries and their antioxidant activity in DPPH and FRAP were 346.81 µM TE/1 g and 331.71 µM TE/1 g, respectively, and were similar to these of green tea extracts. Microimages made using TEM techniques allowed for the isolation of a few nanoparticles with dimensions ranging from tens of nanometres to several micrometres. The value of the electrokinetic potential in all samples was negative and ranged from -21,300 mV to -11,183 mV. XRF analyses confirmed the presence of iron ranging from 0.13% to 0.92% in the samples with a concentration of 0.01 mol/dm3. FT-IR spectra analyses showed bands characteristic of nanoparticles. In calorimetric measurements, no increase in temperature was observed in any of the tests during exposure to the electromagnetic field. In summary, using the extract from dried strawberry leaves and calyxes as a reagent, we can obtain iron nanoparticles with sizes dependent on the concentration of the precursor.
Collapse
Affiliation(s)
- Małgorzata Góral-Kowalczyk
- Department of Agricultural Forestry and Transport Machines, Faculty of Production Engineering, University of Life Sciences in Lublin, 28 Głęboka Street, 20-612 Lublin, Poland;
| | - Elżbieta Grządka
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Skłodowskiej-Curie 3 Sq., 20-031 Lublin, Poland; (E.G.); (J.O.)
| | - Jolanta Orzeł
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Skłodowskiej-Curie 3 Sq., 20-031 Lublin, Poland; (E.G.); (J.O.)
| | - Dariusz Góral
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 28 Głęboka Street, 20-612 Lublin, Poland
| | - Tomasz Skrzypek
- Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, Al. Racławickie 14, 20-950 Lublin, Poland;
| | - Zbigniew Kobus
- Department of Technology Fundamentals, Faculty of Production Engineering, University of Life Sciences in Lublin, 28 Głęboka Street, 20-612 Lublin, Poland;
| | - Agnieszka Nawrocka
- Department of Physical Properties of Plant Materials, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland;
| |
Collapse
|
22
|
Alex AM, Subburaman S, Chauhan S, Ahuja V, Abdi G, Tarighat MA. Green synthesis of silver nanoparticle prepared with Ocimum species and assessment of anticancer potential. Sci Rep 2024; 14:11707. [PMID: 38777818 PMCID: PMC11111742 DOI: 10.1038/s41598-024-61946-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Silver nanoparticles (AgNPs) have gained much attention due to their unique physical, and chemical properties. Integration of phytochemicals in nanoformulation might have higher applicability in healthcare. Current work demonstrates the synthesis of green AgNPs with O. gratissimum (gr-AgNPs) O. tenuiflorum (te-AgNPs) and O. americanum (am-AgNPs) followed by an evaluation of their antimicrobial and anticancer properties. SEM analysis revealed spherical-shaped particles with average particle sizes of 69.0 ± 5 nm for te-AgNPs, 46.9 ± 9 nm for gr-AgNPs, and 58.5 ± 18.7 nm for am-AgNPs with a polydispersity index below 0.4. The synthesized am-AgNPs effectively inhibited Klebsiella pneumonia, Escherichia coli, Staphylococcus aureus, Aspergillus niger, and Candida albicans with 23 ± 1.58 mm, 20 ± 1.68 mm, 22 ± 1.80 mm, 26 ± 1.85 mm, and 22 ± 1.40 nm of zone of inhibition respectively. Synthesized AgNPs also induced apoptotic cell death in MCF-7 in concentration-dependent manner. IC50 values for am-AgNPs, te-AgNPs, and gr-AgNPs were 14.78 ± 0.89 µg, 18.04 ± 0.63 and 15.41 ± 0.37 µg respectively which suggested that am-AgNPs were the most effective against cancer. At higher dose size (20 µg) AgNPs were equally effective to commercial standard Doxorubicin (DOX). In comparison to te-AgNPs and gr-AgNPs, am-AgNPs have higher in vitro anticancer and antimicrobial effects. The work reported Ocimum americanum for its anticancer properties with chemical profile (GCMS) and compared it with earlier reported species. The activity against microbial pathogens and selected cancer cells clearly depicted that these species have distinct variations in activity. The results have also emphasized on higher potential of biogenic silver nanoparticles in healthcare but before formulation of commercial products, detailed analysis is required with human and animal models.
Collapse
Affiliation(s)
- Asha Monica Alex
- Department of Biotechnology, St Joseph's College, (Autonomous) affiliated to Bharathidasan University, Trichy, Tamil Nadu, India
| | | | - Shikha Chauhan
- University Institute of Biotechnology, Chandigarh University Mohali (Punjab), Gharuan, India
| | - Vishal Ahuja
- University Institute of Biotechnology and University Centre for Research and Development Chandigarh University Mohali (Punjab), Gharuan, India.
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| | - Maryam Abbasi Tarighat
- Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75169, Iran.
| |
Collapse
|
23
|
Alomar TS, AlMasoud N, Awad MA, AlOmar RS, Merghani NM, El-Zaidy M, Bhattarai A. Designing Green Synthesis-Based Silver Nanoparticles for Antimicrobial Theranostics and Cancer Invasion Prevention. Int J Nanomedicine 2024; 19:4451-4464. [PMID: 38799694 PMCID: PMC11127651 DOI: 10.2147/ijn.s440847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/09/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Researchers are increasingly favouring the use of biological resources in the synthesis of metallic nanoparticles. This synthesis process is quick and affordable. The current study examined the antibacterial and anticancer effects of silver nanoparticles (AgNPs) derived from the Neurada procumbens plant. Biomolecules derived from natural sources can be used to coat AgNPs to make them biocompatible. Methods UV-Vis spectroscopy was used to verify the synthesis of AgNPs from Neurada procumbens plant extract, while transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy, dynamic light scattering (DLS), and Fourier transform infrared spectroscopy (FTIR) were used to characterize their morphology, crystalline structure, stability, and coating. Results UV-visible spectrum of AgNPs shows an absorption peak at 422 nm, indicating the isotropic nature of these nanoparticles. As a result of the emergence of a transmission peak at 804.53 and 615.95 cm-1 in the spectrum of the infrared light emitted by atoms in a sample, FTIR spectroscopy demonstrated that the Ag stretching vibration mode is metal-oxygen (M-O). Electron dispersive X-ray (EDX) spectral analysis shows that elementary silver has a peak at 3 keV. Irradiating the silver surface with electrons, photons, or laser beams triggers the illumination. The emission peak locations have been found between 300 and 550 nm. As a result of DLS analysis, suspended particles showed a bimodal size distribution, with their Z-average particle size being 93.38 nm. Conclusion The findings showed that the antibacterial action of AgNPs was substantially (p≤0.05) more evident against Gramme-positive strains (S. aureus and B. cereus) than E. coli. The biosynthesis of AgNPs is an environmentally friendly method for making nanostructures that have antimicrobial and anticancer properties.
Collapse
Affiliation(s)
- Taghrid S Alomar
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Manal A Awad
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Reem S AlOmar
- Department of Family and Community Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 32210, Saudi Arabia
| | - Nada M Merghani
- Central Research Laboratory, Vice Rectorate for Studies and Scientific Research, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed El-Zaidy
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11459, Saudi Arabia
| | - Ajaya Bhattarai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar, 56613, Nepal
| |
Collapse
|
24
|
Morgan RN, Aboshanab KM. Green biologically synthesized metal nanoparticles: biological applications, optimizations and future prospects. Future Sci OA 2024; 10:FSO935. [PMID: 38817383 PMCID: PMC11137799 DOI: 10.2144/fsoa-2023-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 06/01/2024] Open
Abstract
In green biological synthesis, metal nanoparticles are produced by plants or microorganisms. Since it is ecologically friendly, economically viable and sustainable, this method is preferable to other traditional ones. For their continuous groundbreaking advancements and myriad physiochemical and biological benefits, nanotechnologies have influenced various aspects of scientific fields. Metal nanoparticles (MNPs) are the field anchor for their outstanding optical, electrical and chemical capabilities that outperform their regular-sized counterparts. This review discusses the most current biosynthesized metal nanoparticles synthesized by various organisms and their biological applications along with the key elements involved in MNP green synthesis. The review is displayed in a manner that will impart assertiveness, help the researchers to open questions, and highlight many points for conducting future research.
Collapse
Affiliation(s)
- Radwa N Morgan
- National Centre for Radiation Research & Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| | - Khaled M Aboshanab
- Microbiology & Immunology Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
25
|
Ali MY, Mahmoud AS, Abdalla M, Hamouda HI, Aloufi AS, Almubaddil NS, Modafer Y, Hassan AMS, Eissa MAM, Zhu D. Green synthesis of bio-mediated silver nanoparticles from Persea americana peels extract and evaluation of their biological activities: In vitro and in silico insights. JOURNAL OF SAUDI CHEMICAL SOCIETY 2024; 28:101863. [DOI: 10.1016/j.jscs.2024.101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
26
|
Rahman S, Sadaf S, Hoque ME, Mishra A, Mubarak NM, Malafaia G, Singh J. Unleashing the promise of emerging nanomaterials as a sustainable platform to mitigate antimicrobial resistance. RSC Adv 2024; 14:13862-13899. [PMID: 38694553 PMCID: PMC11062400 DOI: 10.1039/d3ra05816f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
The emergence and spread of antibiotic-resistant (AR) bacterial strains and biofilm-associated diseases have heightened concerns about exploring alternative bactericidal methods. The WHO estimates that at least 700 000 deaths yearly are attributable to antimicrobial resistance, and that number could increase to 10 million annual deaths by 2050 if appropriate measures are not taken. Therefore, the increasing threat of AR bacteria and biofilm-related infections has created an urgent demand for scientific research to identify novel antimicrobial therapies. Nanomaterials (NMs) have emerged as a promising alternative due to their unique physicochemical properties, and ongoing research holds great promise for developing effective NMs-based treatments for bacterial and viral infections. This review aims to provide an in-depth analysis of NMs based mechanisms combat bacterial infections, particularly those caused by acquired antibiotic resistance. Furthermore, this review examines NMs design features and attributes that can be optimized to enhance their efficacy as antimicrobial agents. In addition, plant-based NMs have emerged as promising alternatives to traditional antibiotics for treating multidrug-resistant bacterial infections due to their reduced toxicity compared to other NMs. The potential of plant mediated NMs for preventing AR is also discussed. Overall, this review emphasizes the importance of understanding the properties and mechanisms of NMs for the development of effective strategies against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Sazedur Rahman
- Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology Dhaka Bangladesh
| | - Somya Sadaf
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology Dhaka Bangladesh
| | - Akash Mishra
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei Bandar Seri Begawan BE1410 Brunei Darussalam
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University Jalandhar Punjab India
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute Urutaí GO Brazil
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University Mohali-140413 India
| |
Collapse
|
27
|
Arteaga-Castrejón AA, Agarwal V, Khandual S. Microalgae as a potential natural source for the green synthesis of nanoparticles. Chem Commun (Camb) 2024; 60:3874-3890. [PMID: 38529840 DOI: 10.1039/d3cc05767d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The increasing global population is driving the development of alternative sources of food and energy, as well as better or new alternatives for health and environmental care, which represent key challenges in the field of biotechnology. Microalgae represent a very important source material to produce several high-value-added bioproducts. Due to the rapid changes in the modern world, there is a need to build new materials for use, including those in the nanometer size, although these developments may be chronological but often do not occur at a time. In the last few years, a new frontier has opened up at the interface of biotechnology and nanotechnology. This new frontier could help microalgae-based nanomaterials to possess new functions and abilities. Processes for the green synthesis of nanomaterials are being investigated, and the availability of biological resources such as microalgae is continuously being examined. The present review provides a concise overview of the recent advances in the synthesis, characterization, and applications of nanoparticles formed using a wide range of microalgae-based biosynthesis processes. Highlighting their innovative and sustainable potential in current research, our study contributes towards the in-depth understanding and provides latest updates on the alternatives offered by microalgae in the synthesis of nanomaterials.
Collapse
Affiliation(s)
- Ariana A Arteaga-Castrejón
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Unidad de Biotecnología Industrial, Camino al Arenero #1227, Col. El Bajío Arenal, 45019 Zapopan, Jalisco, Mexico.
| | - Vivechana Agarwal
- Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, 62209, Mexico.
| | - Sanghamitra Khandual
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Unidad de Biotecnología Industrial, Camino al Arenero #1227, Col. El Bajío Arenal, 45019 Zapopan, Jalisco, Mexico.
| |
Collapse
|
28
|
Masoudi M, Mashreghi M, Zenhari A, Mashreghi A. Combinational antimicrobial activity of biogenic TiO 2 NP/ZnO NPs nanoantibiotics and amoxicillin-clavulanic acid against MDR-pathogens. Int J Pharm 2024; 652:123821. [PMID: 38242259 DOI: 10.1016/j.ijpharm.2024.123821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
The development of effective strategies against multidrug-resistant (MDR) pathogens is an urgent need in modern medicine. Nanoantibiotics (nABs) offer a new hope in countering the surge of MDR-pathogens. The aim of the current study was to evaluate the antibacterial activity of two attractive nABs, TiO2 NPs and ZnO NPs, and their performance in improving the antimicrobial activity of defined antibiotics (amoxicillin-clavulanic acid, amox-clav) against MDR-pathogens. The nABs were synthesized using a green method. The physicochemical characteristics of the synthesized nanoparticles were determined using standard methods. The results showed the formation of pure anatase TiO2 NPs and hexagonal ZnO NPs with an average particle size of 38.65 nm and 57.87 nm, respectively. The values of zeta potential indicated the high stability of the samples. At 8 mg/mL, both nABs exhibited 100 % antioxidant activity, while ZnO showed significantly higher activity at lower concentrations. The antibiofilm assay showed that both nABs could inhibit the formation of biofilms of Acinetobacter baumannii 80 and Escherichia coli 27G (MDR-isolates). However, ZnO NPs showed superior antibiofilm activity (100 %) against E. coli 27G. The MIC values were determined to be 8 (1), 2 (2), and 4 (4) mg/mL for amox-clav, TiO2 NPs, and ZnO NPs against A. baumannii 80 (E. coli 27G), respectively. The results showed that both nABs had synergistically enhanced antibacterial performance in combination with amox-clav. Specifically, an 8-fold reduction in MIC values of antibiotics was observed when they were combined with nABs. These findings highlight the potential of TiO2 NPs and ZnO NPs as effective nanoantibiotics against MDR-pathogens. The synergistic effect observed when combining nABs with antibiotics suggests a promising approach for combating antibiotic resistance. Further research and development in this area could lead to the development of more effective treatment strategies against MDR infections.
Collapse
Affiliation(s)
- Mina Masoudi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mansour Mashreghi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Nano Research Center, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Alireza Zenhari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amirala Mashreghi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Rathod S, Preetam S, Pandey C, Bera SP. Exploring synthesis and applications of green nanoparticles and the role of nanotechnology in wastewater treatment. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 41:e00830. [PMID: 38332899 PMCID: PMC10850744 DOI: 10.1016/j.btre.2024.e00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Current research endeavours are progressively focussing towards discovering sustainable methods for synthesising eco-friendly materials. In this environment, nanotechnology has emerged as a key frontier, especially in bioremediation and biotechnology. A few areas of nanotechnology including membrane technology, sophisticated oxidation processes, and biosensors. It is possible to create nanoparticles (NPs) via physical, chemical, or biological pathways in a variety of sizes and forms. These days, the investigation of plants as substitutes for NP synthesis methods has drawn a lot of interest. Toxic water contaminants such as methyl blue have been shown to be removed upto 70% by nanoparticles. In our article, we aimed at focussing the environmental sustainability and cost-effectiveness towards the green synthesis of nanoparticles. Furthermore it offers a comprehensive thorough summary of green NP synthesis methods which can be distinguished by their ease of use, financial sustainability, and environmentally favourable utilization of plant extracts. This study highlights how green synthesis methods have the potential to transform manufacturing of NPs while adhering to environmental stewardship principles and resource efficiency.
Collapse
Affiliation(s)
- Shreya Rathod
- School of Sciences, P P Savani University, Surat, Gujarat, 391425, India
| | - Subham Preetam
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika, 59053, Sweden
- Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu, 42988, Republic of Korea
| | - Chetan Pandey
- Department of Botany, Hindu College, University of Delhi, New Delhi, 110007, India
| | | |
Collapse
|
30
|
Anyaegbunam NJ, Mba IE, Ige AO, Ogunrinola TE, Emenike OK, Uwazie CK, Ujah PN, Oni AJ, Anyaegbunam ZKG, Olawade DB. Revisiting the smart metallic nanomaterials: advances in nanotechnology-based antimicrobials. World J Microbiol Biotechnol 2024; 40:102. [PMID: 38366174 DOI: 10.1007/s11274-024-03925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Despite significant advancements in diagnostics and treatments over the years, the problem of antimicrobial drug resistance remains a pressing issue in public health. The reduced effectiveness of existing antimicrobial drugs has prompted efforts to seek alternative treatments for microbial pathogens or develop new drug candidates. Interestingly, nanomaterials are currently gaining global attention as a possible next-generation antibiotics. Nanotechnology holds significant importance, particularly when addressing infections caused by multi-drug-resistant organisms. Alternatively, these biomaterials can also be combined with antibiotics and other potent biomaterials, providing excellent synergistic effects. Over the past two decades, nanoparticles have gained significant attention among research communities. Despite the complexity of some of their synthesis strategies and chemistry, unrelenting efforts have been recorded in synthesizing potent and highly effective nanomaterials using different approaches. With the ongoing advancements in nanotechnology, integrating it into medical procedures presents novel approaches for improving the standard of patient healthcare. Although the field of nanotechnology offers promises, much remains to be learned to overcome the several inherent issues limiting their full translation to clinics. Here, we comprehensively discussed nanotechnology-based materials, focusing exclusively on metallic nanomaterials and highlighting the advances in their synthesis, chemistry, and mechanisms of action against bacterial pathogens. Importantly, we delve into the current challenges and prospects associated with the technology.
Collapse
Affiliation(s)
- Ngozi J Anyaegbunam
- Measurement and Evaluation unit, Science Education Department, University of Nigeria, Nsukka, Nigeria
| | - Ifeanyi Elibe Mba
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka, Nsukka, Nigeria.
| | - Abimbola Olufunke Ige
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | | | | | | | - Patrick Ndum Ujah
- 7Department of Education Foundations, University of Nigeria Nsukka, Nsukka, Nigeria
| | - Ayodele John Oni
- Department of Industrial chemistry, Federal University of Technology, Akure, Nigeria
| | | | - David B Olawade
- Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, UK
| |
Collapse
|
31
|
Alotaibi BS, El-Masry TA, Selim H, El-Bouseary MM, El-Sheekh MM, Makhlof MEM, El-Nagar MMF. New insights into the anticancer effects of Polycladia crinita aqueous extract and its selenium nanoformulation against the solid Ehrlich carcinoma model in mice via VEGF, notch 1, NF-кB, cyclin D1, and caspase 3 signaling pathway. Front Pharmacol 2024; 15:1345516. [PMID: 38469406 PMCID: PMC10926956 DOI: 10.3389/fphar.2024.1345516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Background: Phaeophyceae species are enticing interest among researchers working in the nanotechnology discipline, because of their diverse biological activities such as anti-inflammatory, antioxidant, anti-microbial, and anti-tumor. In the present study, the anti-cancer properties of Polycladia crinita extract and green synthesized Polycladia crinita selenium nanoparticles (PCSeNPs) against breast cancer cell line (MDA-MB-231) and solid Ehrlich carcinoma (SEC) were investigated. Methods: Gas chromatography-mass spectroscopy examinations of Polycladia crinita were determined and various analytical procedures, such as SEM, TEM, EDX, and XRD, were employed to characterize the biosynthesized PCSeNPs. In vitro, the anticancer activity of free Polycladia crinita and PCSeNPs was evaluated using the viability assay against MDA-MB-231, and also cell cycle analysis by flow cytometry was determined. Furthermore, to study the possible mechanisms behind the in vivo anti-tumor action, mice bearing SEC were randomly allocated into six equal groups (n = 6). Group 1: Tumor control group, group 2: free SeNPs, group 3: 25 mg/kg Polycladia crinita, group 4: 50 mg/kg Polycladia crinita, group 5: 25 mg/kg PCSeNPs, group 6: 50 mg/kg PCSeNPs. Results: Gas chromatography-mass spectroscopy examinations of Polycladia crinita extract exposed the presence of many bioactive compounds, such as 4-Octadecenoic acid-methyl ester, Tetradecanoic acid, and n-Hexadecenoic acid. These compounds together with other compounds found, might work in concert to encourage the development of anti-tumor activities. Polycladia crinita extract and PCSeNPs were shown to inhibit cancer cell viability and early cell cycle arrest. Concentrations of 50 mg/kg of PCSeNPs showed suppression of COX-2, NF-кB, VEGF, ki-67, Notch 1, and Bcl-2 protein levels. Otherwise, showed amplification of the caspase 3, BAX, and P53 protein levels. Moreover, gene expression of caspase 3, caspase 9, Notch 1, cyclin D1, NF-кB, IL-6, and VEGF was significantly more effective with PCSeNPs than similar doses of free extract. Conclusion: The PCSeNPs mediated their promising anti-cancerous action by enhancing apoptosis and mitigating inflammation, which manifested in promoting the total survival rate and the tumor volume decrease.
Collapse
Affiliation(s)
- Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hend Selim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Maisra M. El-Bouseary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Mofida E. M. Makhlof
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
32
|
Grancharova T, Simeonova S, Pilicheva B, Zagorchev P. Gold Nanoparticles in Parkinson's Disease Therapy: A Focus on Plant-Based Green Synthesis. Cureus 2024; 16:e54671. [PMID: 38524031 PMCID: PMC10960252 DOI: 10.7759/cureus.54671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease that affects approximately 1% of people over the age of 60 and 5% of those over the age of 85. Current drugs for Parkinson's disease mainly affect the symptoms and cannot stop its progression. Nanotechnology provides a solution to address some challenges in therapy, such as overcoming the blood-brain barrier (BBB), adverse pharmacokinetics, and the limited bioavailability of therapeutics. The reformulation of drugs into nanoparticles (NPs) can improve their biodistribution, protect them from degradation, reduce the required dose, and ensure target accumulation. Furthermore, appropriately designed nanoparticles enable the combination of diagnosis and therapy with a single nanoagent. In recent years, gold nanoparticles (AuNPs) have been studied with increasing interest due to their intrinsic nanozyme activity. They can mimic the action of superoxide dismutase, catalase, and peroxidase. The use of 13-nm gold nanoparticles (CNM-Au8®) in bicarbonate solution is being studied as a potential treatment for Parkinson's disease and other neurological illnesses. CNM-Au8® improves remyelination and motor functions in experimental animals. Among the many techniques for nanoparticle synthesis, green synthesis is increasingly used due to its simplicity and therapeutic potential. Green synthesis relies on natural and environmentally friendly materials, such as plant extracts, to reduce metal ions and form nanoparticles. Moreover, the presence of bioactive plant compounds on their surface increases the therapeutic potential of these nanoparticles. The present article reviews the possibilities of nanoparticles obtained by green synthesis to combine the therapeutic effects of plant components with gold.
Collapse
Affiliation(s)
- Tsenka Grancharova
- Department of Medical Physics and Biophysics, Medical University of Plovdiv, Plovdiv, BGR
- Research Institute, Medical University of Plovdiv, Plovdiv, BGR
| | - Stanislava Simeonova
- Department of Pharmaceutical Sciences, Medical University of Plovdiv, Plovdiv, BGR
- Research Institute, Medical University of Plovdiv, Plovdiv, BGR
| | - Bissera Pilicheva
- Department of Pharmaceutical Sciences, Medical University of Plovdiv, Plovdiv, BGR
- Research Institute, Medical University of Plovdiv, Plovdiv, BGR
| | - Plamen Zagorchev
- Department of Medical Physics and Biophysics, Medical University of Plovdiv, Plovdiv, BGR
- Research Institute, Medical University of Plovdiv, Plovdiv, BGR
| |
Collapse
|
33
|
Gayathiri E, Prakash P, Pandiaraj S, Ramasubburayan R, Gaur A, Sekar M, Viswanathan D, Govindasamy R. Investigating the ecological implications of nanomaterials: Unveiling plants' notable responses to nano-pollution. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108261. [PMID: 38096734 DOI: 10.1016/j.plaphy.2023.108261] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 02/15/2024]
Abstract
The rapid advancement of nanotechnology has led to unprecedented innovations; however, it is crucial to analyze its environmental impacts carefully. This review thoroughly examines the complex relationship between plants and nanomaterials, highlighting their significant impact on ecological sustainability and ecosystem well-being. This study investigated the response of plants to nano-pollution stress, revealing the complex regulation of defense-related genes and proteins, and highlighting the sophisticated defense mechanisms in nature. Phytohormones play a crucial role in the complex molecular communication network that regulates plant responses to exposure to nanomaterials. The interaction between plants and nano-pollution influences plants' complex defense strategies. This reveals the interconnectedness of systems of nature. Nevertheless, these findings have implications beyond the plant domain. The incorporation of hyperaccumulator plants into pollution mitigation strategies has the potential to create more environmentally sustainable urban landscapes and improve overall environmental resilience. By utilizing these exceptional plants, we can create a future in which cities serve as centers of both innovation and ecological balance. Further investigation is necessary to explore the long-term presence of nanoparticles in the environment, their ability to induce genetic changes in plants over multiple generations, and their overall impact on ecosystems. In conclusion, this review summarizes significant scientific discoveries with broad implications beyond the confines of laboratories. This highlights the importance of understanding the interactions between plants and nanomaterials within the wider scope of environmental health. By considering these insights, we initiated a path towards the responsible utilization of nanomaterials, environmentally friendly management of pollution, and interdisciplinary exploration. We have the responsibility to balance scientific advancement and environmental preservation to create a sustainable future that combines nature's wisdom with human innovation.
Collapse
Affiliation(s)
- Ekambaram Gayathiri
- Department of Plant Biology and Plant Biotechnology, Guru Nanak College (Autonomous), Chennai 600042, Tamil Nadu India
| | - Palanisamy Prakash
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem 636011, Tamil Nadu, India
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ramasamy Ramasubburayan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Arti Gaur
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara-390025, Gujarat, India
| | - Malathy Sekar
- Department of Botany, PG and Research Department of Botany Government Arts College for Men, (autonomous), Nandanam, Chennai 35, Tamilnadu, India
| | - Dhivya Viswanathan
- Centre for Nanobioscience, Department of Orthodontics, Saveetha Dental College, and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077, Tamilnadu, India
| | - Rajakumar Govindasamy
- Centre for Nanobioscience, Department of Orthodontics, Saveetha Dental College, and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077, Tamilnadu, India.
| |
Collapse
|
34
|
de Oliveira LS, Furtado LL, Diniz FDADS, Mendes BL, de Araújo TR, Silva LP, Santiago TR. Eco-Friendly Silver Nanoparticles Synthesized from a Soybean By-Product with Nematicidal Efficacy against Pratylenchus brachyurus. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:101. [PMID: 38202556 PMCID: PMC10780907 DOI: 10.3390/nano14010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024]
Abstract
This study explores an eco-friendly approach to synthesizing silver nanoparticles (AgNPs) using soybean leaf extracts, employing a reaction with silver nitrate at 65 °C for 2.5 h. Optimal results were achieved at extract concentrations of 3.12 and 6.25 mg of the leaf mL-1, termed 3.12AgNP and 6.25AgNP, respectively. UV-Vis spectrophotometric analysis between 350 and 550 nm exhibited a peak at 410-430 nm, along with a color transition in the suspensions from pale yellow to brown, indicating successful synthesis. Dynamic light scattering (DLS) further delineated the favorable properties of these AgNPs, including nanometric dimensions (73-104 nm), negative charge, and moderate polydispersity, portraying stable and reproducible synthesis reactions. The bioreduction mechanism, possibly expedited by leaf extract constituents such as amino acids, phenolic acids, and polysaccharides, remains to be fully elucidated. Notably, this study underscored the potent nematicidal effectiveness of biosynthesized AgNPs, especially 6.25AgNP, against Pratylenchus brachyurus, which is a common plant-parasitic nematode in tropical soybean cultivation regions. In vitro tests illustrated significant nematicidal activity at concentrations above 25 µmol L-1, while in vivo experiments displayed a pronounced nematode population diminishment in plant roots, particularly with a 6.25AgNP rhizosphere application at concentrations of 500 µmol L-1 or twice at 250 µmol L-1, attaining a reproduction factor below 1 without any morphological nematode alterations. This research highlights the potential of 6.25AgNPs derived from soybean leaf extracts in forging sustainable nematicidal solutions, marking a significant stride toward eco-friendly phytonematode management in soybean cultivation. This novel methodology signals a promising avenue in harnessing botanical resources for nematode control and propelling a greener agricultural horizon.
Collapse
Grants
- 421810/2021-1, 311825/2021-4, 307853/2018-7, 408857/2016-1, 306413/2014-0, and 563802/2010-3 National Council for Scientific and Technological Development
- 23038.019088/2009-58 Coordenação de Aperfeicoamento de Pessoal de Nível Superior
- 10.20.03.009.00.00, 23.17.00.069.00.02, 13.17.00.037.00.00, 21.14.03.001.03.05, 13.14.03.010.00.02, 12.16.04.010.00.06, 22.16.05.016.00.04, and 11.13.06.001.06.03 Brazilian Agricultural Research Corporation
- 00193-00000783/2021-16 and 00193-001392/2016 Fundação de Amparo à Pesquisa do Distrito Federal
Collapse
Affiliation(s)
- Letícia Santana de Oliveira
- Departamento de Fitopatologia, Universidade de Brasília, Brasília 70910-900, DF, Brazil; (L.S.d.O.); (L.L.F.); (F.d.A.d.S.D.); (B.L.M.); (T.R.d.A.)
| | - Leila Lourenço Furtado
- Departamento de Fitopatologia, Universidade de Brasília, Brasília 70910-900, DF, Brazil; (L.S.d.O.); (L.L.F.); (F.d.A.d.S.D.); (B.L.M.); (T.R.d.A.)
| | - Francisco de Assis dos Santos Diniz
- Departamento de Fitopatologia, Universidade de Brasília, Brasília 70910-900, DF, Brazil; (L.S.d.O.); (L.L.F.); (F.d.A.d.S.D.); (B.L.M.); (T.R.d.A.)
| | - Bruno Leonardo Mendes
- Departamento de Fitopatologia, Universidade de Brasília, Brasília 70910-900, DF, Brazil; (L.S.d.O.); (L.L.F.); (F.d.A.d.S.D.); (B.L.M.); (T.R.d.A.)
| | - Thalisson Rosa de Araújo
- Departamento de Fitopatologia, Universidade de Brasília, Brasília 70910-900, DF, Brazil; (L.S.d.O.); (L.L.F.); (F.d.A.d.S.D.); (B.L.M.); (T.R.d.A.)
| | - Luciano Paulino Silva
- Laboratório de Nanobiotecnologia (LNANO), Embrapa Recursos Genéticos e Biotecnologia, PBI, Brasília 70770-917, DF, Brazil;
| | - Thaís Ribeiro Santiago
- Departamento de Fitopatologia, Universidade de Brasília, Brasília 70910-900, DF, Brazil; (L.S.d.O.); (L.L.F.); (F.d.A.d.S.D.); (B.L.M.); (T.R.d.A.)
| |
Collapse
|
35
|
Hashemi SS, Pakdin A, Mohammadi A, Keshavarzi A, Mortazavi M, Sanati P. Study the Effect of Calendula officinalis Extract Loaded on Zinc Oxide Nanoparticle Cream in Burn Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59269-59279. [PMID: 38085997 DOI: 10.1021/acsami.3c17350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The skin, the body's largest organ, acts as a protective barrier against pathogens and environmental damage. Skin burns can result from heat, chemicals, friction, or electricity. Nanoscience has recently been utilized to create ointments and creams for burns. Zinc oxide nanoparticles are crucial due to their antimicrobial and antioxidant properties. In this study, a cream containing nanoparticles was loaded with calendula extract, and its ability to promote tissue healing was investigated in Wistar rats with skin burns. The zinc oxide nanoparticles were chemically synthesized and loaded with calendula extract. The morphology and physicochemical properties of the nanoparticles were confirmed by SEM, ZETA size, XRD, and FTIR assays. The MTT technique was employed to assess the cream's impact on fibroblast growth. The antimicrobial activity of the nanoparticles was investigated against Pseudomonas using the MIC method. Real-time PCR was used to determine the expression of the Bax and Bcl-2 genes in aeruginosa. The results showed that zinc oxide nanoparticles at high concentrations increased the proliferation of the fibroblast cells. Histopathological studies showed granulation and epithelialization of the tissue without any hemorrhage or tissue infection during the first days of treatment with this cream. The animal models treated with the cream showed an increase in Bcl-2 gene expression and a decrease in Bax expression. We concluded that zinc oxide nanoparticles loaded with calendula extract have a practical effect in healing burn wounds due to their unique antibacterial properties of zinc oxide nanoparticles and their anti-inflammatory and wound-healing effects. The synergistic effect of these two substances significantly improved the healing process. This newly developed cream can be introduced as a successful and viable treatment option in burn wounds.
Collapse
Affiliation(s)
- Seyedeh-Sara Hashemi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Amir Pakdin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Aliakbar Mohammadi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Abdolkhalegh Keshavarzi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 76318-85356, Iran
| | - Parisa Sanati
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| |
Collapse
|
36
|
Mohamad Hanafiah R, Abd Ghafar SA, Lim V, Musa SNA, Yakop F, Hairil Anuar AH. Green synthesis, characterisation and antibacterial activities of Strobilanthes crispus-mediated silver nanoparticles (SC-AGNPS) against selected bacteria. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:549-559. [PMID: 37847252 DOI: 10.1080/21691401.2023.2268167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
This study aims to characterize and determine the antibacterial activities of synthesized Strobilanthes crispus-mediated AgNPs (SC-AgNPs) against Streptococcus mutans, Escherichia coli and Pseudomonas aeruginosa. S. crispus water extract acts as a reducing and capping agent in the synthesis of AgNPs. The synthesized AgNPs were characterized by using UV-Vis spectrophotometer, dynamic light scattering (DLS), field emission scanning electron microscope (FESEM), X-ray diffractometer (XRD) and Fourier transform infra-red (FTIR). FESEM images showed a rough surface with a spherical shape. The average size distribution of 75.25 nm with a polydispersity index (PDI) of 0.373. XRD analysis matched the face-centred cubic structure of silver. FTIR analysis revealed a shifted peak from 1404.99 to 1345.00 cm-1. MIC and MBC values of SC-AgNPs were 1.25 mg/mL and 2.5 mg/mL against E. coli, P. aeruginosa and S. mutans, respectively. Time-kill assay showed that SC-AgNPs significantly reduced bacterial growth as compared to non-treated bacteria. Morphologies of bacteria treated with SC-AgNPs were shrunk, lysed, irregular and smaller as compared to control. SC-AgNPs significantly disrupted the gene expression of eae A, gtf B and Pel A (p < 0.05). This study indicated that the synthesized SC-AgNPs were stable with enhanced antibacterial activities.
Collapse
Affiliation(s)
- Rohazila Mohamad Hanafiah
- Department of Basic Science, Faculty of Dentistry, Universiti Sains Islam Malaysia, Ampang Kuala Lumpur, Malaysia
| | - Siti Aisyah Abd Ghafar
- Department of Basic Science, Faculty of Dentistry, Universiti Sains Islam Malaysia, Ampang Kuala Lumpur, Malaysia
| | - Vuanghao Lim
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang, Malaysia
| | - Siti Nor Asma Musa
- Department of Basic Science, Faculty of Dentistry, Universiti Sains Islam Malaysia, Ampang Kuala Lumpur, Malaysia
- Faculty of Science and Engineering, School of Pharmacy, University Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Fahmi Yakop
- Department of Basic Science, Faculty of Dentistry, Universiti Sains Islam Malaysia, Ampang Kuala Lumpur, Malaysia
| | - Arif Haikal Hairil Anuar
- Department of Basic Science, Faculty of Dentistry, Universiti Sains Islam Malaysia, Ampang Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Hanif M, Munir N, Abideen Z, Dias DA, Hessini K, El-Keblawy A. Enhancing tomato plant growth in a saline environment through the eco-friendly synthesis and optimization of nanoparticles derived from halophytic sources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118830-118854. [PMID: 37922085 DOI: 10.1007/s11356-023-30626-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2023]
Abstract
Using green synthesis methods to produce halophytic nanoparticles presents a promising and cost-effective approach for enhancing plant growth in saline environments, offering agricultural resilience as an alternative to traditional chemical methods. This study focuses on synthesizing zinc oxide (ZnO) nanoparticles derived from the halophyte Withania somnifera, showcasing their potential in ameliorating tomato growth under salinity stress. The biosynthesis of ZnO nanoparticles was initially optimized (i.e., salt concentration, the amount of plant extract, pH, and temperature) using a central composite design (CCD) of response surface methodology (RSM) together with UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and dynamic light scattering (DLS) to comprehensively characterize the biosynthesized ZnO NPs. The central composite design (CCD) based response surface methodology (RSM) was used to optimize the biosynthesis of ZnO nanoparticles (NPs) by adjusting salt concentration, plant extract, pH, and temperature. The ZnO NPs were characterized using UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and dynamic light scattering (DLS). FT-IR showed an absorption peak of ZnO between 400 and 600 cm-1, while SEM showed irregular shapes ranging between 1.3 and 6 nm. The data of EDX showed the presence of Zn (77.52%) and O (22.48%) levels, which exhibited the high purity synthesized ZnO under saline conditions. Introducing ZnO nanoparticles to tomato plants resulted in a remarkable 2.3-fold increase in shoot length in T23 (100 mg/L ZnO nanoparticles + 50 mM NaCl). There was an observable increase in foliage at T2 (20 mg L-1 ZnO) and T23 (100 mg L-1 ZnO-NPs + 50 mM NaCl). Tomato plants treated with T2 (20 mg L-1 ZnO) and T23 (100 mg L-1 ZnO-NPs + 50 mM NaCl) improved root elongation compared to the control plant group. Both fresh and dry leaf masses were significantly improved in T1 (10 mg L-1 ZnO) by 7.1-fold and T12 (10 mg L-1 ZnO-NPs + 100 mM NaCl) by 0.8-fold. The concentration of Zn was higher in T12 (10 mg L-1 ZnO NPs + 100 mM NaCl) among all treatments. Our findings prove that utilizing ZnO nanoparticles under saline conditions effectively promotes tomato plants' growth, thereby mitigating the negative impacts of salt stress.
Collapse
Affiliation(s)
- Maria Hanif
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Neelma Munir
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.
| | - Daniel Anthony Dias
- School of Exercise and Nutritional Sciences, Faculty of Health, CASS Food Research Centre, Deakin University, Burwood, VIC, 3125, Australia
| | - Kamel Hessini
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Ali El-Keblawy
- Department of Applied Biology, College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| |
Collapse
|
38
|
Nosratabadi M, Ebrahimzadeh MA, Alizadeh SR, Haghani I, Faeli L, Ebrahimi Barogh R, Al Hatmi AM, Abastabar M. In vitro antifungal activity of biosynthesized selenium nanoparticles using plant extracts and six comparators against clinical Fusarium strains. Curr Med Mycol 2023; 9:17-23. [PMID: 38983615 PMCID: PMC11230142 DOI: 10.22034/cmm.2024.345189.1504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 07/11/2024] Open
Abstract
Background and Purpose Fusarium species are commonly resistant to many antifungal drugs. The limited therapeutic options available have led to a surge of research efforts aimed at discovering novel antifungal compounds in recent decades. This study aimed to assess the in vitro antifungal activity of plant-based biosynthesized selenium nanoparticles (Se NPs) and six comparators against a set of clinical Fusarium strains. Materials and Methods In vitro antifungal activity of Se NPs synthesized using plant extracts of Allium paradoxum, Crocus caspius, Pistacia vera L. hull, Vicia faba L. hull and Heracleum persicum, as well as six common antifungal drugs, namely voriconazole, itraconazole, amphotericin B, posaconazole, natamycin, and caspofungin were evaluated against 94 clinical Fusarium strains using broth microdilution according to Clinical and Laboratory Standards Institute guideline. Results The obtained results were intriguing since all five types of biosynthesized Se NPs demonstrated significantly higher antifungal activity, compared to antifungal drugs. It was found that Se NPs synthesized by V. faba L. hull extract (0.03 μg/ml) had the lowest geometric mean minimum inhibitory concentration value followed by Se NPs synthesized by P. vera L. hull extract (0.25 μg/ml), A. paradoxum extract (0.39 μg/ml), C. caspius extract (0.55 μg/ml), and H. persicum extract (0.9 μg/ml). Conclusion Plant-based Se NPs demonstrated supreme antifungal activity and could be considered promising antifungal agents for Fusarium infections. However, tests, such as toxicity and in vivo tests are needed before the product can be used in clinical settings.
Collapse
Affiliation(s)
- Mohsen Nosratabadi
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyedeh Roya Alizadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Iman Haghani
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Leila Faeli
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Robab Ebrahimi Barogh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Mahdi Abastabar
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
39
|
Hussein NN, Al-Azawi K, Sulaiman GM, Albukhaty S, Al-Majeed RM, Jabir M, Al-Dulimi AG, Mohammed HA, Akhtar N, Alawaji R, A Alshammari AA, Khan RA. Silver-cored Ziziphus spina-christi extract-loaded antimicrobial nanosuspension: overcoming multidrug resistance. Nanomedicine (Lond) 2023; 18:1839-1854. [PMID: 37982771 DOI: 10.2217/nnm-2023-0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
Aims: To synthesize a silver-cored nanosuspension utilizing Ziziphus spina-christi fresh-leaf extract and evaluate their antimicrobial activity against multidrug-resistant pathogenic microbes. Materials and Methods: The prepared nanosuspension was analyzed by spectro-analytical techniques and tested for antimicrobial activity and resistance to biofilm formation. The leaf extract and nanosuspension were tested separately and together as a mixture. Results: Constituent nanoparticles were average-sized (∼34 nm) and were active against both Gram-positive and Gram-negative microbes and yeast. Candida albicans showed a 24.50 ± 1.50 mm inhibition zone, followed by Escherichia coli and Staphylococcus aureus. Increased bioactivity with the highest multifold increments, 150%, for erythromycin against all tested microbes was observed. Carbenicillin and trimethoprim showed 166%- and 300%-fold increments for antimicrobial activity against Pseudomonas aeruginosa, respectively. Conclusion: The nanosuspension exhibited strong potential as an antimicrobial agent and overcame multidrug resistance.
Collapse
Affiliation(s)
- Nehia N Hussein
- Department of Applied Sciences, University of Technology, Baghdad, Baghdad 10066, Iraq
| | - Khalida Al-Azawi
- Department of Applied Sciences, University of Technology, Baghdad, Baghdad 10066, Iraq
| | - Ghassan M Sulaiman
- Department of Applied Sciences, University of Technology, Baghdad, Baghdad 10066, Iraq
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan, 62001, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, 56001, Karbala, Iraq
| | - Reem Ma Al-Majeed
- Department of Applied Sciences, University of Technology, Baghdad, Baghdad 10066, Iraq
| | - Majid Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Baghdad 10066, Iraq
| | - Ali G Al-Dulimi
- Department of Dentistry, Bilad Alrafidain University College, Diyala, 32001, Iraq
| | - Hamdoon A Mohammed
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Naseem Akhtar
- Department of Pharmaceutics, College of Dentistry and Pharmacy, Buraydah Private Colleges, P.O. Box 31717, Buraydah 51418, Qassim, Saudi Arabia
| | - Razan Alawaji
- Pharmaceutical Care Services, King Salman Medical City, Maternity and Children Hospital, Al Madinah Al Munawwarah 11176, Saudi Arabia
| | - Abdulaziz Arif A Alshammari
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
- Graduate Student
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| |
Collapse
|
40
|
Ambati T, Nizampuram V, Selvaganesh S, S R, Nesappan T. Efficacy of copper oxide nanoparticles using Piper longum and Piper betle. Bioinformation 2023; 19:964-970. [PMID: 37928485 PMCID: PMC10625361 DOI: 10.6026/97320630019964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
It is of interest to evaluate the antibacterial, anti-inflammatory, and antioxidant effects of copper nanoparticles synthesized using Piper longum and Piper betle. The copper nanoparticles were characterized using various techniques and found to have a diameter between 30 and 90 nm. The nanoparticles exhibited significant antibacterial activity against E. faecalis, S. aureus, C. albicans, and S. Mutans, comparable to gold standards. They also demonstrated anti-inflammatory effects similar to the gold standard values. Furthermore, the copper nanoparticles displayed antioxidant capabilities, with maximum inhibition of 85.16% at 50 g/ml and a minimum inhibition of 50.62% at 10 g/ml. Overall, the study suggests that Piper longum and Piper betle mediated copper nanoparticles possess promising antibacterial, anti-inflammatory, and antioxidant properties, indicating their potential use in various applications.
Collapse
Affiliation(s)
- Tejitha Ambati
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, Tamilnadu, India
| | - Vamshi Nizampuram
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, Tamilnadu, India
| | - Sahana Selvaganesh
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, Tamilnadu, India
| | - Rajeshkumar S
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, Tamilnadu, India
| | - Thiyaneswaran Nesappan
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, Tamilnadu, India
| |
Collapse
|
41
|
Tesnim D, Hedi BA, Simal-Gandara J. Sustainable and Green Synthesis of Iron Nanoparticles Supported on Natural Clays via Palm Waste Extract for Catalytic Oxidation of Crocein Orange G Mono Azoic Dye. ACS OMEGA 2023; 8:34364-34376. [PMID: 37780026 PMCID: PMC10534912 DOI: 10.1021/acsomega.3c01333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/05/2023] [Indexed: 10/03/2023]
Abstract
In this study, the removal of Crocein Orange G dye (COG) from aqueous solution was investigated using an innovative green catalyst to overcome problems with chemical techniques. Clay bentonite El Hamma (HB)-supported nanoscale zero-valent iron (NZVI) was used as a heterogeneous Fenton-like catalyst for the oxidation of harmful COG. Palm waste extract was herein used as a reducing and capping agent to synthesize NZVI, and HB clay was employed, which was obtained from the El Hamma bentonite deposit in the Gabes province of Tunisia. HB and HB-NZVI were characterized by various techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer, Emmett, and Teller (BET), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), X-ray diffraction (XRD), and zeta potential. Under optimal conditions, total degradation of COG was attained within 180 min. Kinetic studies showed that the dye degradation rate followed well the pseudo-second-order model. The apparent activation energy was 33.11 kJ/mol, which is typical of a physically controlled reaction. The degradation pathways and mineralization study revealed that the adsorption-Fenton-like reaction was the principal mechanism that demonstrated 100% degradation efficiency of COG even after three successive runs. Obtained results suggest that HB-NZVI is an affective heterogeneous catalyst for the degradation of COG by H2O2 and may constitute a sustainable green catalyst for azoic dye removal from industrial wastewaters.
Collapse
Affiliation(s)
- Dhiss Tesnim
- National
School of Engineers of Gabes, Laboratory of Research: Processes, Energy,
Environment & Electrical Systems PEESE (LR18ES34), University of Gabes, Rue Omar Ibn Alkhattab, 6029 Gabes, Tunisia
| | - Ben Amor Hedi
- National
School of Engineers of Gabes, Laboratory of Research: Processes, Energy,
Environment & Electrical Systems PEESE (LR18ES34), University of Gabes, Rue Omar Ibn Alkhattab, 6029 Gabes, Tunisia
| | - Jesus Simal-Gandara
- Nutrition
and Bromatology Group, Analytical Chemistry and Food Science Department,
Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| |
Collapse
|
42
|
Puri A, Mohite P, Patil S, Chidrawar VR, Ushir YV, Dodiya R, Singh S. Facile green synthesis and characterization of Terminalia arjuna bark phenolic-selenium nanogel: a biocompatible and green nano-biomaterial for multifaceted biological applications. Front Chem 2023; 11:1273360. [PMID: 37810585 PMCID: PMC10556707 DOI: 10.3389/fchem.2023.1273360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Biogenic nanoparticle production is in demand as it is secure, has great promise, and is environmental friendly. This study aimed at green synthesis, characterization, and evaluation of Terminalia arjuna selenium nanoparticles (TA-SeNPs) for their antioxidant, antibacterial, anticancer activities, and their incorporation in gel for biomedical applications. The bio-reduction attributes of the T. arjuna (TA) bark extract were utilized to fabricate selenium nanoparticles. The TA bark extract is abundant in phenolics (193.63 ± 1.61 mg gallic acid equivalents/g), flavonoids (88.23 ± 0.39 mg quercetin equivalents/g), and tannins (109.46 ± 1.16 mg catechin equivalents/g), which perform as effective capping and stabilizing agents, thus enabling the fabrication of stable SeNPs. The fabrication of TA-SeNPs was corroborated by UV-visible spectra, which exhibited surface plasmon resonance at 291 nm. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) demonstrated nano-sized spherical TA-SeNPs with an average diameter ranging from 100 to 150 nm. Zeta potential analysis revealed that TA-SeNPs were negatively charged (-26.1 mV). X-ray diffraction presented amorphous TA-SeNPs with a quantification of 82.36 ± 10.2 μg/mL resulting from ICP-AES. The IC50 45.18 ± 0.11 μg/mL for the DPPH assay and 66.51% reducing power capacity values indicated that the TA-SeNPs possessed excellent radical scavenging efficacy. Moreover, the TA-SeNPs exhibited a broad spectrum of antimicrobial activity against potential pathogens. Additionally, the TA-SeNPs exhibited a dose-dependent cytotoxic effect on the MCF-7 breast cancer cell line, with an IC50 of 23.41 μg/mL. Furthermore, the TA-SeNP-incorporated gel showed excellent spreadability, extrudability, and consistency with retention of antimicrobial properties and hydrophilic contact angle. As an outcome, TA-SeNPs offer the possibility of the formulation and growth of sustainably designed green SeNPs that can be produced, conserved, and marketed securely across the globe.
Collapse
Affiliation(s)
- Abhijeet Puri
- St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Popat Mohite
- St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Swati Patil
- Department of Pharmacognosy, Principal K. M. Kundnani College of Pharmacy, Mumbai, Maharashtra, India
| | - Vijay R. Chidrawar
- SVKM’s NMIMS School of Pharmacy and Technology Management, Jadcharia Telangana, India
| | - Yogesh V. Ushir
- SMBT College of Pharmacy and Institute of Diploma Pharmacy, Nashik, Maharashtra, India
| | - Rajesh Dodiya
- School of Pharmacy, Faculty of Pharmacy, Parul University, Waghodia, Gujarat, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
43
|
Okeke ES, Nweze EJ, Anaduaka EG, Okoye CO, Anosike CA, Joshua PE, Ezeorba TPC. Plant-derived nanomaterials (PDNM): a review on pharmacological potentials against pathogenic microbes, antimicrobial resistance (AMR) and some metabolic diseases. 3 Biotech 2023; 13:291. [PMID: 37547919 PMCID: PMC10403488 DOI: 10.1007/s13205-023-03713-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/22/2023] [Indexed: 08/08/2023] Open
Abstract
Plant-derived nanomaterials (PDNM) have gained significant attention recently due to their potential pharmacological applications against pathogenic microbes, antimicrobial resistance (AMR), and certain metabolic diseases. This review introduces the concept of PDNMs and their unique properties, including their small size, high surface area, and ability to penetrate biological barriers. Besides various methods for synthesizing PDNMs, such as green synthesis techniques that utilize plant extracts and natural compounds, the advantages of using plant-derived materials, such as their biocompatibility, biodegradability, and low toxicity, were elucidated. In addition, it examines the recent and emerging trends in nanomaterials derived from plant approaches to combat antimicrobial resistance and metabolic diseases. The sizes of nanomaterials and their surface areas are vital as they play essential roles in the interactions and relationships between these materials and the biological components or organization. We critically analyze the biomedical applications of nanoparticles which include antibacterial composites for implantable devices and nanosystems to combat antimicrobial resistance, enhance antibiotic delivery, and improve microbial diagnostic/detection systemsIn addition, plant extracts can potentially interfere with metabolic syndrome pathways; hence most nano-formulations can reduce chronic inflammation, insulin resistance, oxidative stress, lipid profile, and antimicrobial resistance. As a result, these innovative plant-based nanosystems may be a promising contender for various pharmacological applications.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Enugu Nigeria
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, 410001 Enugu Nigeria
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Ekene John Nweze
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Enugu Nigeria
| | - Emeka Godwin Anaduaka
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Enugu Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Enugu Nigeria
| | - Charles Obinwanne Okoye
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 People’s Republic of China
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, 410001 Enugu Nigeria
- Biofuels Institute, Jiangsu University, Zhenjiang, 212013 People’s Republic of China
| | - Chioma Assumpta Anosike
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Enugu Nigeria
| | - Parker Elijah Joshua
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Enugu Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Enugu Nigeria
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Enugu Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Enugu Nigeria
- Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
44
|
Shabir S, Sehgal A, Dutta J, Devgon I, Singh SK, Alsanie WF, Alamri AS, Alhomrani M, Alsharif A, Basalamah MAM, Faidah H, Bantun F, Saati AA, Vamanu E, Singh MP. Therapeutic Potential of Green-Engineered ZnO Nanoparticles on Rotenone-Exposed D. melanogaster (Oregon R +): Unveiling Ameliorated Biochemical, Cellular, and Behavioral Parameters. Antioxidants (Basel) 2023; 12:1679. [PMID: 37759981 PMCID: PMC10525955 DOI: 10.3390/antiox12091679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Nanotechnology holds significant ameliorative potential against neurodegenerative diseases, as it can protect the therapeutic substance and allow for its sustained release. In this study, the reducing and capping agents of Urtica dioica (UD), Matricaria chamomilla (MC), and Murraya koenigii (MK) extracts were used to synthesize bio-mediated zinc oxide nanoparticles (ZnO-NPs) against bacteria (Staphylococcus aureus and Escherichia coli) and against rotenone-induced toxicities in D. melanogaster for the first time. Their optical and structural properties were analyzed via FT-IR, DLS, XRD, EDS, SEM, UV-Vis, and zeta potential. The antioxidant and antimicrobial properties of the fabricated ZnO-NPs were evaluated employing cell-free models (DPPH and ABTS) and the well diffusion method, respectively. Rotenone (500 µM) was administered to Drosophila third instar larvae and freshly emerged flies for 24-120 h, either alone or in combination with plant extracts (UD, MC, an MK) and their biogenic ZnO-NPs. A comparative study on the protective effects of synthesized NPs was undertaken against rotenone-induced neurotoxic, cytotoxic, and behavioral alterations using an acetylcholinesterase inhibition assay, dye exclusion test, and locomotor parameters. The findings revealed that among the plant-derived ZnO-NPs, MK-ZnO NPs exhibit strong antimicrobial and antioxidant activities, followed by UD-ZnO NPs and MC-ZnO NPs. In this regard, ethno-nano medicinal therapeutic uses mimic similar effects in D. melanogaster by suppressing oxidative stress by restoring biochemical parameters (AchE and proteotoxicity activity) and lower cellular toxicity. These findings suggest that green-engineered ZnO-NPs have the potential to significantly enhance outcomes, with the promise of effective therapies for neurodegeneration, and could be used as a great alternative for clinical development.
Collapse
Affiliation(s)
- Shabnam Shabir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Amit Sehgal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Joydeep Dutta
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Inderpal Devgon
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sandeep K. Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, Uttar Pradesh, India
| | - Walaa F. Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | | | - Hani Faidah
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Abdullah Ali Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
| | - Mahendra P. Singh
- Department of Zoology and Centre of Genomics and Bioinformatics, DDU Gorakhpur University, Gorakhpur 273009, Uttar Pradesh, India
| |
Collapse
|
45
|
Herdiana Y. Chitosan Nanoparticles for Gastroesophageal Reflux Disease Treatment. Polymers (Basel) 2023; 15:3485. [PMID: 37631542 PMCID: PMC10460071 DOI: 10.3390/polym15163485] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Gastroesophageal Reflux Disease (GERD) is a chronic ailment that results from the backward flow of stomach acid into the esophagus, causing heartburn and acid regurgitation. This review explores nanotechnology as a novel treatment approach for GERD. Chitosan nanoparticles (CSNPs) offer several advantages, including biocompatibility, biodegradability, and targeted drug delivery capabilities. CSNPs have been extensively studied due to their ability to encapsulate and release medications in a controlled manner. Different nanoparticle (NP) delivery systems, including gels, microspheres, and coatings, have been developed to enhance drug retention, drug targeting, and controlled release in the esophagus. These nanoparticles can target specific molecular pathways associated with acid regulation, esophageal tissue protection, and inflammation modulation. However, the optimization of nanoparticle formulations faces challenges, including ensuring stability, scalability, and regulatory compliance. The future may see CSNPs combined with other treatments like proton pump inhibitors (PPIs) or mucosal protectants for a synergistic therapeutic approach. Thus, CSNPs provide exciting opportunities for novel GERD treatment strategies.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
46
|
Singh H, Desimone MF, Pandya S, Jasani S, George N, Adnan M, Aldarhami A, Bazaid AS, Alderhami SA. Revisiting the Green Synthesis of Nanoparticles: Uncovering Influences of Plant Extracts as Reducing Agents for Enhanced Synthesis Efficiency and Its Biomedical Applications. Int J Nanomedicine 2023; 18:4727-4750. [PMID: 37621852 PMCID: PMC10444627 DOI: 10.2147/ijn.s419369] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Background Conventional nanoparticle synthesis methods involve harsh conditions, high costs, and environmental pollution. In this context, researchers are actively searching for sustainable, eco-friendly alternatives to conventional chemical synthesis methods. This has led to the development of green synthesis procedures among which the exploration of the plant-mediated synthesis of nanoparticles experienced a great development. Especially, because plant extracts can work as reducing and stabilizing agents. This opens up new possibilities for cost-effective, environmentally-friendly nanoparticle synthesis with enhanced size uniformity and stability. Moreover, bio-inspired nanoparticles derived from plants exhibit intriguing pharmacological properties, making them highly promising for use in medical applications due to their biocompatibility and nano-dimension. Objective This study investigates the role of specific phytochemicals, such as phenolic compounds, terpenoids, and proteins, in plant-mediated nanoparticle synthesis together with their influence on particle size, stability, and properties. Additionally, we highlight the potential applications of these bio-derived nanoparticles, particularly with regard to drug delivery, disease management, agriculture, bioremediation, and application in other industries. Methodology Extensive research on scientific databases identified green synthesis methods, specifically plant-mediated synthesis, with a focus on understanding the contributions of phytochemicals like phenolic compounds, terpenoids, and proteins. The database search covered the field's development over the past 15 years. Results Insights gained from this exploration highlight plant-mediated green synthesis for cost-effective nanoparticle production with significant pharmacological properties. Utilizing renewable biological resources and controlling nanoparticle characteristics through biomolecule interactions offer promising avenues for future research and applications. Conclusion This review delves into the scientific intricacies of plant-mediated synthesis of nanoparticles, highlighting the advantages of this approach over the traditional chemical synthesis methods. The study showcases the immense potential of green synthesis for medical and other applications, aiming to inspire further research in this exciting area and promote a more sustainable future.
Collapse
Affiliation(s)
- Harjeet Singh
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
| | - Martin F Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Shivani Pandya
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
- Department of Forensic Science, PIAS, Parul University, Vadodara, Gujarat, 391760, India
| | - Srushti Jasani
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
| | - Noble George
- Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
- Department of Forensic Science, PIAS, Parul University, Vadodara, Gujarat, 391760, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Abdu Aldarhami
- Department of Medical Microbiology, Qunfudah Faculty of Medicine, Umm Al-Qura University, Al-Qunfudah, 28814, Saudi Arabia
| | - Abdulrahman S Bazaid
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, Hail, 55476, Saudi Arabia
| | - Suliman A Alderhami
- Chemistry Department, Faculty of Science and Arts in Almakhwah, Al-Baha University, Al-Baha, Saudi Arabia
| |
Collapse
|
47
|
Ahmad MA, Chaudhary S, Deng X, Cheema M, Javed R. Nano-stevia interaction: Past, present, and future. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107807. [PMID: 37311291 DOI: 10.1016/j.plaphy.2023.107807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Nanotechnology has recently been emerged as a transformative technology that offers efficient and sustainable options for nano-bio interface. There has been a considerable interest in exploring the factors affecting elicitation mechanism and nanomaterials have been emerged as strong elicitors in medicinal plants. Stevia rebaudiana is well-known bio-sweetener and the presence of zero calorie, steviol glycosides (SGs) in the leaves of S. rebaudiana have made it a desirable crop to be cultivated on large scale to obtain its higher yield and maximal content of high quality natural sweeteners. Besides, phenolics, flavonoids, and antioxidants are abundant in stevia which contribute to its medicinal importance. Currently, scientists are trying to increase the market value of stevia by the enhancement in production of its bioactive compounds. As such, various in vitro and cell culture strategies have been adopted. In stevia agronanotechnology, nanoparticles behave as elicitors for the triggering of its secondary metabolites, specifically rebaudioside A. This review article discusses the importance of S. rebaudiana and SGs, conventional approaches that have failed to increase the desired yield and quality of stevia, modern approaches that are currently being applied to obtain utmost benefits of SGs, and future needs of advanced technologies for further exploitation of this wonder of nature.
Collapse
Affiliation(s)
- Muhammad Arslan Ahmad
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Sadaf Chaudhary
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Xu Deng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| | - Mumtaz Cheema
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook, A2H 5G4, Newfoundland, Canada
| | - Rabia Javed
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook, A2H 5G4, Newfoundland, Canada.
| |
Collapse
|
48
|
Hashemi P, Mahmoodi S, Ghasemian A. An updated review on oral protein-based antigen vaccines efficiency and delivery approaches: a special attention to infectious diseases. Arch Microbiol 2023; 205:289. [PMID: 37468763 DOI: 10.1007/s00203-023-03629-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023]
Abstract
Various infectious agents affect human health via the oral entrance. The majority of pathogens lack approved vaccines. Oral vaccination is a convenient, safe and cost-effective approach with the potential of provoking mucosal and systemic immunity and maintaining individual satisfaction. However, vaccines should overcome the intricate environment of the gastrointestinal tract (GIT). Oral protein-based antigen vaccines (OPAVs) are easier to administer than injectable vaccines and do not require trained healthcare professionals. Additionally, the risk of needle-related injuries, pain, and discomfort is eliminated. However, OPAVs stability at environmental and GIT conditions should be considered to enhance their stability and facilitate their transport and storage. These vaccines elicit the local immunity, protecting GIT, genital tract and respiratory epithelial surfaces, where numerous pathogens penetrate the body. OPAVs can also be manipulated (such as using specific incorporated ligand and receptors) to elicit targeted immune response. However, low bioavailability of OPAVs necessitates development of proper protein carriers and formulations to enhance their stability and efficacy. There are several strategies to improve their efficacy or protective effects, such as incorporation of adjuvants, enzyme inhibitors, mucoadhesive or penetrating devices and permeation enhancers. Hence, efficient delivery of OPAVs into GIT require proper delivery systems mainly including smart target systems, probiotics, muco-adhesive carriers, lipid- and plant-based delivery systems and nano- and microparticles.
Collapse
Affiliation(s)
- Parisa Hashemi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
49
|
Karunakaran G, Sudha KG, Ali S, Cho EB. Biosynthesis of Nanoparticles from Various Biological Sources and Its Biomedical Applications. Molecules 2023; 28:molecules28114527. [PMID: 37299004 DOI: 10.3390/molecules28114527] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
In the last few decades, the broad scope of nanomedicine has played an important role in the global healthcare industry. Biological acquisition methods to obtain nanoparticles (NPs) offer a low-cost, non-toxic, and environmentally friendly approach. This review shows recent data about several methods for procuring nanoparticles and an exhaustive elucidation of biological agents such as plants, algae, bacteria, fungi, actinomycete, and yeast. When compared to the physical, chemical, and biological approaches for obtaining nanoparticles, the biological approach has significant advantages such as non-toxicity and environmental friendliness, which support their significant use in therapeutic applications. The bio-mediated, procured nanoparticles not only help researchers but also manipulate particles to provide health and safety. In addition, we examined the significant biomedical applications of nanoparticles, such as antibacterial, antifungal, antiviral, anti-inflammatory, antidiabetic, antioxidant, and other medical applications. This review highlights the findings of current research on the bio-mediated acquisition of novel NPs and scrutinizes the various methods proposed to describe them. The bio-mediated synthesis of NPs from plant extracts has several advantages, including bioavailability, environmental friendliness, and low cost. Researchers have sequenced the analysis of the biochemical mechanisms and enzyme reactions of bio-mediated acquisition as well as the determination of the bioactive compounds mediated by nanoparticle acquisition. This review is primarily concerned with collating research from researchers from a variety of disciplines that frequently provides new clarifications to serious problems.
Collapse
Affiliation(s)
- Gopalu Karunakaran
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Kattakgoundar Govindaraj Sudha
- Department of Biotechnology, K. S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode 637215, Tamil Nadu, India
| | - Saheb Ali
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, Tamil Nadu, India
| | - Eun-Bum Cho
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| |
Collapse
|
50
|
Le TTH, Ngo TH, Nguyen TH, Hoang VH, Nguyen VH, Nguyen PH. Anti-cancer activity of green synthesized silver nanoparticles using Ardisia gigantifolia leaf extract against gastric cancer cells. Biochem Biophys Res Commun 2023; 661:99-107. [PMID: 37087804 DOI: 10.1016/j.bbrc.2023.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
Using extracts from herbs for silver nanoparticle synthesis is attracting attention for its anticancer activity. Ardisia gigantifolia is a herb used in traditional Chinese medicine for treating stomach ailments, and some compounds isolated from this plant exhibit the inhibitory activity against different cancer cells. However, the synthesis of silver nanoparticle using extract of Ardisia gigantiflia leaves and their anti-cancer activity was not reported. In this report, the green synthesized silver nanoparticles using Ardisia gigantiflia extract (Arg-AgNPs) has average diameter of 6 nm with functional groups including O-H, C-H, and CO founded on the surface of these nanoparticles. The viability assays results revealed Arg-AgNPs reduced gastric cancer cell proliferation in a dose-dependent manner, with IC50 values of 1.37 and 0.65 μg/mL for AGS cells and 1.03 and 0.96 μg/mL for MKN45 cells. Arg-AgNPs caused cell cycle arrest at the G0/G1 phase and suppressed cell migration. Additionally, Arg-AgNPs significantly increased the percentage of senescent cells and promoted overproduction of reactive oxygen species (ROS) compared to the control. Thus, this study indicates that Arg-AgNPs can be considered as a promising candidate against human gastric cancer cells.
Collapse
Affiliation(s)
- Thi Thanh Huong Le
- Faculty of Biotechnology, TNU- University of Sciences (TNUS), Thai Nguyen City, Viet Nam
| | - Thu Ha Ngo
- Faculty of Biotechnology, TNU- University of Sciences (TNUS), Thai Nguyen City, Viet Nam
| | - Thi Huong Nguyen
- Faculty of Biotechnology, TNU- University of Sciences (TNUS), Thai Nguyen City, Viet Nam
| | - Van Hung Hoang
- Thai Nguyen University (TNU), Thai Nguyen City, Viet Nam
| | - Van Hao Nguyen
- Institute of Science and Technology, TNU - University of Sciences (TNUS), Thai Nguyen City, Viet Nam.
| | - Phu Hung Nguyen
- Faculty of Biotechnology, TNU- University of Sciences (TNUS), Thai Nguyen City, Viet Nam; Center of Interdisciplinary Science and Education, Thai Nguyen City, Viet Nam.
| |
Collapse
|