1
|
Bernardoni BL, D'Agostino I, Scianò F, La Motta C. The challenging inhibition of Aldose Reductase for the treatment of diabetic complications: a 2019-2023 update of the patent literature. Expert Opin Ther Pat 2024; 34:1085-1103. [PMID: 39365044 DOI: 10.1080/13543776.2024.2412573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/12/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Aldose reductase (AKR1B1, EC: 1.1.1.21) is a recognized target for the treatment of long-term diabetic complications since its activation in hyperglycemia and role in the polyol pathway. In particular, the tissue-specificity of AKR1B1 expression makes the design of the traditional Aldose Reductase Inhibitors (ARIs) and the more recent Aldose Reductase Differential Inhibitors (ARDIs) exploitable strategies to treat pathologies resulting from diabetic conditions. AREAS COVERED A brief overview of the roles and functions of AKR1B1 along with known ARIs and ARDIs was provided. Then, the design of the latest inhibitors in the scientific scenario was discussed, aiming at introducing the research achievement in the field of intellectual properties. Patents dealing with AKR1B1 and diabetes filed in the 2019-2023 period were collected and analyzed. Reaxys, Espacenet, SciFindern, and Google Patents were surveyed, using 'aldose reductase' and 'inhibitor' as the reference keywords. The search results were then filtered by PRISMA protocol, thus obtaining 16 records to review. EXPERT OPINION Although fewer in number than in the early 2000s, patent applications are still being filed in the field of ARIs, with a large number of Chinese inventors reporting new synthetic ARIs in favor of the repositioning approach.
Collapse
Affiliation(s)
| | | | - Fabio Scianò
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | |
Collapse
|
2
|
Kaya A, Ceylan AF, Kavutcu M, Santamaria A, Šoltésová Prnová M, Stefek M, Karasu Ç. A dual-acting aldose reductase inhibitor impedes oxidative and carbonyl stress in tissues of fructose- and streptozotocin-induced rats: comparison with antioxidant stobadine. Drug Chem Toxicol 2024; 47:710-720. [PMID: 37795621 DOI: 10.1080/01480545.2023.2262164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/03/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023]
Abstract
Inhibiting aldose reductase (ALR2, AR) as well as maintaining a concomitant antioxidant (AO) activity via dual-acting agents may be a rational approach to prevent cellular glucotoxicity and at least delay the progression of diabetes mellitus (DM). This study was aimed at evaluating the dual-acting AR inhibitor (ARI) cemtirestat (CMTI) on tissue oxidative stress (OS) and carbonyl stress (CS) biomarkers in rats exposed to fructose alone (F) or fructose plus streptozotocin (D; type-2 diabetic). D and F rats were either untreated or treated daily with low- or high-dose CMTI, ARI drug epalrestat (EPA) or antioxidant stobadine (STB) for 14 weeks. Malondialdehyde (MDA), glutathione S-transferase (GST), nitric oxide synthase (NOS), and catalase (CAT) were increased in the sciatic nerve of F and D. These increases were attenuated by low doses of CMTI and STB in D, but exacerbated by low-dose EPA and high-dose CMTI in F. STB and CMTI and to a lesser extent EPA improved MDA, protein-carbonyl, GST and CAT in the hearts and lungs of F and D. CMTI and STB were more effective than EPA in improving the increased MDA and protein-carbonyl levels in the kidneys of F and especially D. CMTI ameliorated renal GST inhibition in D. In the lungs, hearts, and kidneys of F and D, the GSH to GSSG ratio decreased and caspase-3 activity increased, but partially resolved with treatments. In conclusion, CMTI with ARI/AO activity may be advantageous in overcoming OS, CS, and their undesirable consequences, with low dose efficacy and limited toxicity, compared to ARI or antioxidant alone.
Collapse
Affiliation(s)
- Alican Kaya
- Department of Medical Services and Techniques, Health Services Vocational School, Medical Laboratory Techniques Program, Bayburt University, Bayburt, Turkey
| | - Aslı F Ceylan
- Department of Medical Pharmacology, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Mustafa Kavutcu
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Marta Šoltésová Prnová
- Centre of Experimental Medicine, Institute of Experimental Pharmacology & Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Milan Stefek
- Centre of Experimental Medicine, Institute of Experimental Pharmacology & Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Çimen Karasu
- Department of Medical Pharmacology, Cellular Stress Response and Signal Transduction Research Laboratory, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
3
|
Le TM, Njangiru IK, Vincze A, Zupkó I, Balogh GT, Szakonyi Z. Synthesis and medicinal chemical characterisation of antiproliferative O, N-functionalised isopulegol derivatives. RSC Adv 2024; 14:18508-18518. [PMID: 38867736 PMCID: PMC11168086 DOI: 10.1039/d4ra03467h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024] Open
Abstract
Benzylation of isopulegol furnished O-benzyl-protected isopulegol, which was transformed into aminodiols via epoxidation followed by ring opening of the corresponding epoxides and subsequent hydrogenolysis. On the other hand, (-)-isopulegol was oxidised to a diol, which was then converted into dibenzyl-protected diol derivatives. The products were then transformed into aminotriols by using a similar method. The antiproliferative activity of aminodiol and aminotriol derivatives was examined. In addition, structure-activity relationships were also explored from the aspects of substituent effects and stereochemistry on the aminodiol and aminotriol systems. The drug-likeness of the compounds was assessed by in silico and experimental physicochemical characterisations, completed by kinetic aqueous solubility and in vitro intestinal-specific parallel artificial membrane permeability assay (PAMPA-GI) measurements.
Collapse
Affiliation(s)
- Tam Minh Le
- Institute of Pharmaceutical Chemistry, University of Szeged Eötvös utca 6 H-6720 Szeged Hungary +36 62 545705 +36 62 546809
- HUN-REN-SZTE Stereochemistry, Research Group, University of Szeged Eötvös u. 6 H-6720 Szeged Hungary
| | - Isaac Kinyua Njangiru
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged H-6720 Eötvös utca 6 Szeged Hungary
| | - Anna Vincze
- Department of Pharmaceutical Chemistry, Semmelweis University Hőgyes Endre u. 9 H-1092 Budapest Hungary
| | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged H-6720 Eötvös utca 6 Szeged Hungary
| | - György T Balogh
- Department of Pharmaceutical Chemistry, Semmelweis University Hőgyes Endre u. 9 H-1092 Budapest Hungary
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry, University of Szeged Eötvös utca 6 H-6720 Szeged Hungary +36 62 545705 +36 62 546809
| |
Collapse
|
4
|
Lv Y, Yao X, Li X, Ouyang Y, Fan C, Qian Y. Cell metabolism pathways involved in the pathophysiological changes of diabetic peripheral neuropathy. Neural Regen Res 2024; 19:598-605. [PMID: 37721290 PMCID: PMC10581560 DOI: 10.4103/1673-5374.380872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/31/2023] [Accepted: 06/08/2023] [Indexed: 09/19/2023] Open
Abstract
Diabetic peripheral neuropathy is a common complication of diabetes mellitus. Elucidating the pathophysiological metabolic mechanism impels the generation of ideal therapies. However, existing limited treatments for diabetic peripheral neuropathy expose the urgent need for cell metabolism research. Given the lack of comprehensive understanding of energy metabolism changes and related signaling pathways in diabetic peripheral neuropathy, it is essential to explore energy changes and metabolic changes in diabetic peripheral neuropathy to develop suitable treatment methods. This review summarizes the pathophysiological mechanism of diabetic peripheral neuropathy from the perspective of cellular metabolism and the specific interventions for different metabolic pathways to develop effective treatment methods. Various metabolic mechanisms (e.g., polyol, hexosamine, protein kinase C pathway) are associated with diabetic peripheral neuropathy, and researchers are looking for more effective treatments through these pathways.
Collapse
Affiliation(s)
- Yaowei Lv
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Xiangyun Yao
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Li
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Adewumi AT, Mosebi S. Characteristic Binding Landscape of Estrogen Receptor-α36 Protein Enhances Promising Cancer Drug Design. Biomolecules 2023; 13:1798. [PMID: 38136668 PMCID: PMC10741999 DOI: 10.3390/biom13121798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Breast cancer (BC) remains the most common cancer among women worldwide, and estrogen receptor-α expression is a critical diagnostic factor for BC. Estrogen receptor (ER-α36) is a dominant-negative effector of ER-α66-mediated estrogen-responsive gene pathways. ER-α36 is a novel target that mediates the non-genomic estrogen signaling pathway. However, the crystallized structure of ER-α36 remains unavailable for molecular studies. ER-positive and triple-negative BC tumors aggressively resist the FDA-approved drugs; therefore, highly potent structure-based inhibitors with preeminent benefits over toxicity will preferably replace the current BC treatment. Broussoflanol B (BFB), a B. papyrifera bark compound, exhibits potent growth inhibitory activity in ER-negative BC cells by inducing cell cycle arrest. For the first time, we unravel the comparative dynamic events of the enzymes' structures and the binding mechanisms of BFB when bound to the ER-α36 and ER-α66 ligand-binding domain using an all-atom molecular dynamics simulations approach and MM/PBSA-binding-free energy calculations. The dynamic findings have revealed that ER-α36 and ER-α66 LBD undergo timescale "coiling", opening and closing conformations favoring the high-affinity BFB-bound ER-α36 (ΔG = -52.57 kcal/mol) compared to the BFB-bound ER-α66 (ΔG = -42.41 kcal/mol). Moreover, the unbound (1.260 Å) and bound ER-α36 (1.182 Å) exhibit the highest flexibilities and atomistic motions relative to the ER-α66 systems. The RMSF (Å) of the unbound ER-α36 and ER-α66 exhibit lesser stabilities than the BFB-bound systems, resulting in higher structural flexibilities and atomistic motions than the bound variants. These findings present a model that describes the mechanisms by which the BFB compound induces downregulation-accompanied cell cycle arrest at the Gap0 and Gap1 phases.
Collapse
Affiliation(s)
| | - Salerwe Mosebi
- Department of Life and Consumer Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| |
Collapse
|
6
|
Ciccone L, Camodeca C, Tonali N, Barlettani L, Rossello A, Fruchart Gaillard C, Kaffy J, Petrarolo G, La Motta C, Nencetti S, Orlandini E. New Hybrid Compounds Incorporating Natural Products as Multifunctional Agents against Alzheimer's Disease. Pharmaceutics 2023; 15:2369. [PMID: 37896129 PMCID: PMC10610016 DOI: 10.3390/pharmaceutics15102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 10/29/2023] Open
Abstract
A series of new hybrid derivatives 1a-c, 2a-c, 3a-c, 4a-c, 5a-c, inspired by nature, were synthesized and studied as multifunctional agents for the treatment of Alzheimer's disease (AD). These compounds were designed to merge together the trifluoromethyl benzyloxyaminic bioactive moiety, previously identified, with different acids available in nature. The ability of the synthesized compounds to chelate biometals, such as Cu2+, Zn2+ and Fe2+, was studied by UV-Vis spectrometer, and through a preliminary screening their antioxidant activity was evaluated by DPPH. Then, selected compounds were tested by in vitro ABTS free radical method and ex vivo rat brain TBARS assay. Compounds 2a-c, combining the strongest antioxidant and biometal chelators activities, were studied for their ability to contrast Aβ1-40 fibrillization process. Finally, starting from the promising profile obtained for compound 2a, we evaluated if it could be able to induce a positive cross-interaction between transthyretin (TTR) and Aβ in presence and in absence of Cu2+.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
| | - Caterina Camodeca
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
| | - Nicolò Tonali
- CNRS, BioCIS, Bâtiment Henri Moissan, Université Paris-Saclay, 17 Av. des Sciences, 91400 Orsay, France; (N.T.); (J.K.)
| | - Lucia Barlettani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
- Research Center “E. Piaggio”, University of Pisa, 56122 Pisa, Italy;
| | - Carole Fruchart Gaillard
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Université Paris Saclay, 91191 Gif-sur-Yvette, France;
| | - Julia Kaffy
- CNRS, BioCIS, Bâtiment Henri Moissan, Université Paris-Saclay, 17 Av. des Sciences, 91400 Orsay, France; (N.T.); (J.K.)
| | - Giovanni Petrarolo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
| | - Elisabetta Orlandini
- Research Center “E. Piaggio”, University of Pisa, 56122 Pisa, Italy;
- Department of Earth Sciences, University of Pisa, Via Santa Maria 53, 56126 Pisa, Italy
| |
Collapse
|
7
|
Zeng Y, Zheng Z, Yin M, Li J, Xu J, Tang Y, Zhang K, Liu Z, Chen S, Sun P, Chen H. Length and rigidity of the spacer impact on aldose reductase inhibition of the 5F-like ARIs in a dual-occupied mode. Bioorg Chem 2023; 131:106300. [PMID: 36455484 DOI: 10.1016/j.bioorg.2022.106300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The primary objective of this study was to investigate the structure-activity relationship of a new series of 5F-like Aldose Reductase Inhibitors (ARIs) using in silico docking method. In this perspective, 6 novel ARIs have been designed and synthesized. Evaluation of the inhibition of these compounds to ALR2 was carried on with epalrestat and 5F as the references. It was found that the spacer of 5F-like ARIs has a great influence on their inhibitory activity. Rigid spacer with length equal to 3 ∼ 4 carbon alkyl chain brings about better inhibitory activity. Among them, compound 4b was verified as the most active ARIs, where its IC50 value was 16.8 ± 1.3 nM. Furthermore, in silico docking studies using AutoDock 4.2 as well as molecular simulation using GROMACS 2022.1 showed that 5F-like ARIs adopt a dual-occupation mode. The interaction energy (-25 to -74 kcal/mol), as well as MM-GBSA binding free energy (-37 to -65 kcal/mol) was positively correlated with their ALR2 inhibition constant (2000 to 16.8 nM). Docking interaction explained well the structure-activity relationship. A pharmacophore model has been set up for 5F-like ARIs thereafter. This model indicates that as an effective ARI, the entity should have four characteristics: an aromatic center, two hydrogen bond donors, and one hydrogen bond acceptor. By the way, all the 5F-like ARIs reported here are good to mild antioxidant with EC50 value between 13.6 ± 1.2 and 71.1 ± 3.2 μM. All our data direct the further development of more optimal ARIs for the treatment of diabetic complication in the future.
Collapse
Affiliation(s)
- Yancong Zeng
- Institute of Traditional Chinese Medicine and Natural Products/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Ziyou Zheng
- Institute of Traditional Chinese Medicine and Natural Products/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Meili Yin
- Institute of Traditional Chinese Medicine and Natural Products/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Jiahao Li
- Institute of Traditional Chinese Medicine and Natural Products/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Jun Xu
- Institute of Traditional Chinese Medicine and Natural Products/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Yinying Tang
- Institute of Traditional Chinese Medicine and Natural Products/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Kun Zhang
- Institute of Traditional Chinese Medicine and Natural Products/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Zhijun Liu
- Institute of Traditional Chinese Medicine and Natural Products/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangzhou PharmCherub Medicine & Sci-Tech Incorporated Company, Guangzhou 510700, PR China
| | - Shijian Chen
- Institute of Traditional Chinese Medicine and Natural Products/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangzhou PharmCherub Medicine & Sci-Tech Incorporated Company, Guangzhou 510700, PR China
| | - Pinghua Sun
- Institute of Traditional Chinese Medicine and Natural Products/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| | - Heru Chen
- Institute of Traditional Chinese Medicine and Natural Products/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
8
|
Resveratrol Analogs and Prodrugs Differently Affect the Survival of Breast Cancer Cells Impairing Estrogen/Estrogen Receptor α/Neuroglobin Pathway. Int J Mol Sci 2023; 24:ijms24032148. [PMID: 36768470 PMCID: PMC9916867 DOI: 10.3390/ijms24032148] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Breast cancer is the first leading tumor in women in terms of incidence worldwide. Seventy percent of cases are estrogen receptor (ER) α-positive. In these malignancies, 17β-estradiol (E2) via ERα increases the levels of neuroglobin (NGB), a compensatory protein that protects cancer cells from stress-induced apoptosis, including chemotherapeutic drug treatment. Our previous data indicate that resveratrol (RSV), a plant-derived polyphenol, prevents E2/ERα-induced NGB accumulation in this cellular context, making E2-dependent breast cancer cells more prone to apoptosis. Unfortunately, RSV is readily metabolized, thus preventing its effectiveness. Here, four different RSV analogs have been developed, and their effect on the ERα/NGB pathway has been compared with RSV conjugated with highly hydrophilic gold nanoparticles as prodrug to evaluate if RSV derivatives maintain the breast cancer cells' susceptibility to the chemotherapeutic drug paclitaxel as the original compound. Results demonstrate that RSV conjugation with gold nanoparticles increases RSV efficacy, with respect to RSV analogues, reducing NGB levels and enhancing the pro-apoptotic action of paclitaxel, even preventing the anti-apoptotic action exerted by E2 treatment on these cells. Overall, RSV conjugation with gold nanoparticles makes this complex a promising agent for medical application in breast cancer treatment.
Collapse
|
9
|
Ciccone L, Piragine E, Brogi S, Camodeca C, Fucci R, Calderone V, Nencetti S, Martelli A, Orlandini E. Resveratrol-like Compounds as SIRT1 Activators. Int J Mol Sci 2022; 23:ijms232315105. [PMID: 36499460 PMCID: PMC9738298 DOI: 10.3390/ijms232315105] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The sirtuin 1 (SIRT1) activator resveratrol has emerged as a promising candidate for the prevention of vascular oxidative stress, which is a trigger for endothelial dysfunction. However, its clinical use is limited by low oral bioavailability. In this work, we have applied a previously developed computational protocol to identify the most promising derivatives from our in-house chemical library of resveratrol derivatives. The most promising compounds in terms of SIRT1 activation and oral bioavailability, predicted in silico, were evaluated for their ability to activate the isolated SIRT1 enzyme. Then, we assessed the antioxidant effects of the most effective derivative, compound 3d, in human umbilical vein endothelial cells (HUVECs) injured with H2O2 100 µM. The SIRT1 activator 3d significantly preserved cell viability and prevented an intracellular reactive oxygen species increase in HUVECs exposed to the oxidative stimulus. Such effects were partially reduced in the presence of a sirtuin inhibitor, sirtinol, confirming the potential role of sirtuins in the activity of resveratrol and its derivatives. Although 3d appeared less effective than resveratrol in activating the isolated enzyme, the effects exhibited by both compounds in HUVECs were almost superimposable, suggesting a higher ability of 3d to cross cell membranes and activate the intracellular target SIRT1.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Eugenia Piragine
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Caterina Camodeca
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Raffaele Fucci
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
- Correspondence: (S.N.); (A.M.)
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
- Correspondence: (S.N.); (A.M.)
| | - Elisabetta Orlandini
- Department of Earth Science, University of Pisa, Via Santa Maria 53, 56126 Pisa, Italy
- Research Centre E. Piaggio, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
10
|
Oselusi S, Fadaka AO, Wyckoff GJ, Egieyeh SA. Computational Target-Based Screening of Anti-MRSA Natural Products Reveals Potential Multitarget Mechanisms of Action through Peptidoglycan Synthesis Proteins. ACS OMEGA 2022; 7:37896-37906. [PMID: 36312373 PMCID: PMC9609086 DOI: 10.1021/acsomega.2c05061] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/06/2022] [Indexed: 05/22/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the leading causes of bacterial infections in both healthcare and community settings. MRSA can acquire resistance to any current antibiotic, which has major implications for its current and future treatment options. As such, it is globally a major focus for infection control efforts. The mechanical rigidity provided by peptidoglycans in the bacteria cell walls makes it a promising target for broad-spectrum antibacterial drug discovery. The development of drugs that can target different stages of the synthesis of peptidoglycan in MRSA may compromise the integrity of its cell wall and consequently result in the rapid decline of diseases associated with this drug-resistant bacteria. The present study is aimed at screening natural products with known in vitro activities against MRSA to identify their potential to inhibit the proteins involved in the biosynthesis of the peptidoglycan cell wall. A total of 262 compounds were obtained when a literature survey was conducted on anti-MRSA natural products (AMNPs). Virtual screening of the AMNPs was performed against various proteins (targets) that are involved in the biosynthesis of the peptidoglycan (PPC) cell wall using Schrödinger software (release 2020-3) to determine their binding affinities. Nine AMNPs were identified as potential multitarget inhibitors against peptidoglycan biosynthesis proteins. Among these compounds, DB211 showed the strongest binding affinity and interactions with six protein targets, representing three stages of peptidoglycan biosynthesis, and thus was selected as the most promising compound. The MD simulation results for DB211 and its proteins indicated that the protein-ligand complexes were relatively stable over the simulation period of 100 ns. In conclusion, DB211 showed the potential to inhibit six proteins involved in the biosynthesis of the peptidoglycan cell wall in MRSA, thus reducing the chance of MRSA developing resistance to this compound. Therefore, DB211 provided a starting point for the design of new compounds that can inhibit multiple targets in the biosynthesis of the peptidoglycan layer in MRSA.
Collapse
Affiliation(s)
- Samson
Olaitan Oselusi
- University
of the Western Cape, School of Pharmacy,
Faculty of Natural Sciences, Robert Sobukwe Road, Bellville, Cape Town, Western Cape ZA 7535, South Africa
| | - Adewale Oluwaseun Fadaka
- University
of the Western Cape, Science and Innovation/Mintek
Nanotechnology Innovation Centre, Department of Biotechnology, Faculty
of Natural Sciences, Robert
Sobukwe Road, Bellville, Cape Town, Western Cape ZA 7535, South Africa
| | - Gerald J. Wyckoff
- University
of Missouri Kansas City, School of Pharmacy,
Division of Pharmacology and Pharmaceutical Sciences, 5000 Holmes Street, Kansas
City, Missouri 64110-2446, United States
| | - Samuel Ayodele Egieyeh
- University
of the Western Cape, School of Pharmacy,
Faculty of Natural Sciences, Robert Sobukwe Road, Bellville, Cape Town, Western Cape ZA 7535, South Africa
| |
Collapse
|
11
|
Multiprotein Inhibitory Effect of Dietary Polyphenol Rutin from Whole Green Jackfruit Flour Targeting Different Stages of Diabetes Mellitus: Defining a Bio-Computational Stratagem. SEPARATIONS 2022. [DOI: 10.3390/separations9090262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The anti-diabetic potential of whole unripe jackfruit (peel with pulp, flake, and seed) was investigated using inhibitory assays for α-glucosidase, α-amylase, aldose reductase, and glycation at multiple stages. Using activity-guided repeated fractionation on a silica gel column chromatography, dietary flavonoid rutin with potent antihyperglycemic activity was extracted from the methanol extract of whole jackfruit flour (MJ). Rutin was found to inhibit both α-glucosidase (IC50: 7.86 µg/mL) and α-amylase (IC50: 22.00 µg/mL) in a competitive manner of inhibition with low Ki values. In addition, in vitro glycation experiments revealed that rutin prevented each stage of protein glycation as well as the production of intermediate molecules. Furthermore, rutin significantly inhibited aldose reductase (IC50: 2.75 µg/mL) in a non-competitive manner. During in silico studies, molecular docking and molecular dynamics simulation studies have suggested that rutin has a high binding affinity for the enzymes studied, which could explain its inhibitory effects. Rutin interacted with the key residues of the target enzymes’ inhibitor binding sites. Compared to the controls used, rutin had a higher binding efficiency as well as stability in the inhibitor binding pocket of the target enzymes. According to our findings, the presence of rutin is more likely to be associated with the potential of MJ in antihyperglycemic activity via inhibition of α-glucosidase and in anti-diabetic action via inhibition of the polyol pathway and protein glycation. The bio-computational study indicates rutin as a potential lead inhibitor of all the target enzymes used and could be used as an effective anti-diabetic drug in the near future.
Collapse
|
12
|
Antioxidant Quercetin 3-O-Glycosylated Plant Flavonols Contribute to Transthyretin Stabilization. CRYSTALS 2022. [DOI: 10.3390/cryst12050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plants are rich in secondary metabolites, which are often useful as a relevant source of nutraceuticals. Quercetin (QUE) is a flavonol aglycone able to bind Transthyretin (TTR), a plasma protein that under pathological conditions can lose its native structure leading to fibrils formation and amyloid diseases onset. Here, the dual nature of five quercetin 3-O-glycosylated flavonol derivatives, isolated from different plant species, such as possible binders of TTR and antioxidants, was investigated. The crystal structure of 3-O-β-D-galactopyranoside in complex with TTR was solved, suggesting that not only quercetin but also its metabolites can contribute to stabilizing the TTR tetramer.
Collapse
|