1
|
Hu X, Wang H, Sun H, Zhang J, Ye Z, Huang Z. TRPC6 is a Biomarker for Prognosis and Immunotherapy of Stomach Adenocarcinoma Based on Bioinformatic Analysis and Experimental Validation. Immunotargets Ther 2024; 13:735-748. [PMID: 39691169 PMCID: PMC11649498 DOI: 10.2147/itt.s488953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024] Open
Abstract
Background Transient receptor potential canonical 6 (TRPC6), a key member of the TRPC family, is involved in diverse physiological and pathological processes. Although previous studies have implicated TRPC6 in the progression of stomach adenocarcinoma (STAD), its precise functions and mechanisms remain unclear. Understanding TRPC6's role in STAD may provide insights into its prognostic and therapeutic potential. Methods Using transcriptional and clinical data from The Cancer Genome Atlas (TCGA) database, we assessed the expression and prognostic value of TRPC6 in STAD through Kaplan-Meier survival curve analysis and correlation studies. Immune-related parameters, including immune cell infiltration and immune checkpoint gene expression, were also evaluated. Additionally, drug response analyses explored TRPC6's association with therapeutic agents. In vitro experiments were conducted to investigate TRPC6's role in STAD cell proliferation, migration, and invasion, focusing on its regulation of the PI3K-Akt signaling pathway. Results TRPC6 was significantly overexpressed in STAD tissues compared to normal tissues, with high TRPC6 expression associated with poor overall survival. TRPC6 expression correlated strongly with immune cell infiltration, immune checkpoint genes, and sensitivity to therapies such as Lapatinib, anti-CTLA4, and anti-PD1 treatments. Functional assays confirmed that TRPC6 promotes STAD cell proliferation, migration, and invasion by activating the PI3K-Akt signaling pathway. Conclusion This study highlights the prognostic significance of TRPC6 in STAD and its potential as a therapeutic target. TRPC6's involvement in immune regulation and cancer cell progression underscores its dual role in STAD pathogenesis and treatment, offering new avenues for targeted therapy development.
Collapse
Affiliation(s)
- Xingchi Hu
- Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu, 224000, People’s Republic of China
- Department of General Surgery, The First People’s Hospital of Yancheng, Yancheng, Jiangsu, 224000, People’s Republic of China
| | - Hongwei Wang
- Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu, 224000, People’s Republic of China
- Department of General Surgery, The First People’s Hospital of Yancheng, Yancheng, Jiangsu, 224000, People’s Republic of China
| | - Haitao Sun
- Department of General Surgery, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, People’s Republic of China
| | - Jingxin Zhang
- Department of General Surgery, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, People’s Republic of China
| | - ZhenXiong Ye
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, People’s Republic of China
| | - Zhenhua Huang
- Department of General Surgery, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, People’s Republic of China
| |
Collapse
|
2
|
Sukumar VK, Tai YK, Chan CW, Iversen JN, Wu KY, Fong CHH, Lim JSJ, Franco-Obregón A. Brief Magnetic Field Exposure Stimulates Doxorubicin Uptake into Breast Cancer Cells in Association with TRPC1 Expression: A Precision Oncology Methodology to Enhance Chemotherapeutic Outcome. Cancers (Basel) 2024; 16:3860. [PMID: 39594815 PMCID: PMC11592624 DOI: 10.3390/cancers16223860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Doxorubicin (DOX) is commonly used as a chemotherapeutic agent for the treatment of breast cancer. Nonetheless, its systemic delivery via intravenous injection and toxicity towards healthy tissues commonly result in a broad range of detrimental side effects. Breast cancer severity was previously shown to be correlated with TRPC1 channel expression that conferred upon it enhanced vulnerability to pulsed electromagnetic field (PEMF) therapy. PEMF therapy was also previously shown to enhance breast cancer cell vulnerability to DOX in vitro and in vivo that correlated with TRPC1 expression and mitochondrial respiratory rates. Methods: DOX uptake was assessed by measuring its innate autofluorescence within murine 4T1 or human MCF7 breast cancer cells following magnetic exposure. Cellular vulnerability to doxorubicin uptake was assessed by monitoring mitochondrial activity and cellular DNA content. Results: Here, we demonstrate that 10 min of PEMF exposure could augment DOX uptake into 4T1 and MCF7 breast cancer cells. DOX uptake could be increased by TRPC1 overexpression, whereas inhibiting the activity of TRPC1 channels with SKF-96356 or genetic knockdown, precluded DOX uptake. PEMF exposure enhances DOX-mediated killing of breast cancer cells, reducing the IC50 value of DOX by half, whereas muscle cells, representative of collateral tissues, were less sensitive to PEMF-enhanced DOX-mediated cytotoxicity. Vesicular loading of DOX correlated with TRPC1 expression. Conclusions: This study presents a novel TRPC1-mediated mechanism through which PEMF therapy may enhance DOX cytotoxicity in breast cancer cells, paving the way for the development of localized non-invasive PEMF platforms to improve cancer outcomes with lower systemic levels of DOX.
Collapse
Affiliation(s)
- Viresh Krishnan Sukumar
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; (V.K.S.); (J.S.J.L.)
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Yee Kit Tai
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; (V.K.S.); (J.S.J.L.)
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Ching Wan Chan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Jan Nikolas Iversen
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Kwan Yu Wu
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Charlene Hui Hua Fong
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Joline Si Jing Lim
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; (V.K.S.); (J.S.J.L.)
- Experimental Therapeutics Programme, Cancer Science Institute, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University Singapore, Singapore 119228, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore 119074, Singapore
| | - Alfredo Franco-Obregón
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; (V.K.S.); (J.S.J.L.)
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
3
|
Fan ZQ, Zeng Q, Yu BF. Analysis of mRNA expression profile in the treatment of diabetic foot ulcer healing by tibial cortex transverse distraction. Sci Rep 2024; 14:24865. [PMID: 39438549 PMCID: PMC11496491 DOI: 10.1038/s41598-024-76291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
To investigate mRNA Expression profile and associated signaling pathways in the treatment of diabetic foot ulcer healing by tibial cortex transverse distraction. Tissue samples were collected from the wound edge before and after the surgery. After reference genome transcriptome sequencing and subsequent bioinformatics analysis, the differentially expressed genes and related pathways were explored, and functional analysis of important genes and pathways was conducted. qRT-PCR was used to verify the significantly expressed genes-HLA-DRB1, HLA-DRB5, CXCL5 and IGFL1. There were 2441 significantly up-regulated and 3904 significantly down-regulated genes in the postoperative group. The qRT-PCR results showed the expression of HLA-DRB1, HLA-DRB5 and CXCL5 was consistent with the transcriptional sequencing results. CXCL5 and CXCL6 differentially up-regulated genes are involved in the process of neovascularization, and HLA-DRB1 is involved in the improvement of the degree of diabetic peripheral nerve degeneration. Pathway analysis showed that differential genes were most significantly enriched in Adherens junction, Inflammatory mediator regulation of TRP channels and Wnt signaling pathway. Inflammatory mediator regulation of TRP channels is involved in the improvement of peripheral neurodegeneration, VEGF signaling pathway is involved in the process of neovascularization, and Wnt signaling pathway is involved in the process of bone healing. Significantly up-regulated CXCL5 and CXCL6 and enriched VEGF signaling pathway analyzed are involved in postoperative lower limb neovascularization. The HLA-DRB1 and the enriched Inflammatory mediator regulation of TRP channels may be related to the improvement of postoperative peripheral neurodegeneration. The differentially expressed genes and related pathways can provide objective basis for further mechanism study.
Collapse
Affiliation(s)
- Zhi-Qiang Fan
- Department of Orthopaedic Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Ai Guo Road, Nanchang, 330006, Jiangxi, China.
| | - Qi Zeng
- Department of Plastic Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Jiangxi, China
| | - Bao-Fu Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Xie Y, Kim HI, Yang Q, Wang J, Huang W. TRPV3 regulates Breast Cancer Cell Proliferation and Apoptosis by EGFR/AKT pathway. J Cancer 2024; 15:2891-2899. [PMID: 38706904 PMCID: PMC11064276 DOI: 10.7150/jca.93940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/11/2024] [Indexed: 05/07/2024] Open
Abstract
Breast cancer (BC) is one of the most common cancer types worldwide and the first cause of cancer-related deaths in women. Transient receptor potential vanillin 3 (TRPV3) has been preliminarily discovered to play an important role in various cancers, including BC. Here, we explored the effect of TRPV3 on breast cancer cells and its potential mechanism. TRPV3 level was measured in BC tissue and adjacent noncancerous breast tissue using real-time RT-PCR and Western blot. Wound healing was used to detect cell migration. MTT and EDU were detected cell proliferation. TUNEL and Caspase-3 activity were used to detect cell apoptosis. We found that TRPV3 expression significantly increased in both human BC tissues and breast cells line. TRPV3 siRNA (TRPV3 inhibition) dramatically suppressed cell migration and proliferation, promoted the apoptosis, and decreased [Ca2+]i; whereas Carvacrol (TRPV3 agonist) has opposite effect in MCF-7 cells. We validated EGFR (Epidermal growth factor receptor) is a direct target protein of TRPV3. Mechanism studies have shown that Carvacrol increased phosphorylation levels of EGFR and AKT, and were decreased by suppression of TRPV3. Moreover, Erlotinib (EGFR inhibitor) and LY294002 (PI3K inhibitor) diminished Carvacrol induced cell migration and proliferation, promoted cell apoptosis, and increased [Ca2+]i in Carvacrol group. Our results collectively suggest that TRPV3 siRNA inhibits migration and proliferation, and promoted apoptosis in breast cancer cells by EGFR/AKT pathway. These findings indicate that TRPV3 may represent a novel therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Yan Xie
- Basic Medicine College of Daqing Campus, Harbin Medical University-Daqing, Daqing, 163319, China
| | - Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, 02215, United States of America
| | - Qianzhi Yang
- Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Wei Huang
- Department of Pharmacology, Hainan Medical University, Haikou, 571199, China
| |
Collapse
|
5
|
Suzuki S, Wakano C, Monteilh-Zoller MK, Cullen AJ, Fleig A, Penner R. Cannabigerolic Acid (CBGA) Inhibits the TRPM7 Ion Channel Through its Kinase Domain. FUNCTION 2023; 5:zqad069. [PMID: 38162115 PMCID: PMC10757070 DOI: 10.1093/function/zqad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Cannabinoids are a major class of compounds produced by the plant Cannabis sativa. Previous work has demonstrated that the main cannabinoids cannabidiol (CBD) and tetrahydrocannabinol (THC) can have some beneficial effects on pain, inflammation, epilepsy, and chemotherapy-induced nausea and vomiting. While CBD and THC represent the two major plant cannabinoids, some hemp varieties with enzymatic deficiencies produce mainly cannabigerolic acid (CBGA). We recently reported that CBGA has a potent inhibitory effect on both Store-Operated Calcium Entry (SOCE) via inhibition of Calcium Release-Activated Calcium (CRAC) channels as well as currents carried by the channel-kinase TRPM7. Importantly, CBGA prevented kidney damage and suppressed mRNA expression of inflammatory cytokines through inhibition of these mechanisms in an acute nephropathic mouse model. In the present study, we investigate the most common major and minor cannabinoids to determine their potential efficacy on TRPM7 channel function. We find that approximately half of the tested cannabinoids suppress TRPM7 currents to some degree, with CBGA having the strongest inhibitory effect on TRPM7. We determined that the CBGA-mediated inhibition of TRPM7 requires a functional kinase domain, is sensitized by both intracellular Mg⋅ATP and free Mg2+ and reduced by increases in intracellular Ca2+. Finally, we demonstrate that CBGA inhibits native TRPM7 channels in a B lymphocyte cell line. In conclusion, we demonstrate that CBGA is the most potent cannabinoid in suppressing TRPM7 activity and possesses therapeutic potential for diseases in which TRPM7 is known to play an important role such as cancer, stroke, and kidney disease.
Collapse
Affiliation(s)
- Sayuri Suzuki
- Center for Biomedical Research, The Queen’s Medical Center, 1301 Punchbowl St., Honolulu, HI 96813, USA
| | - Clay Wakano
- Center for Biomedical Research, The Queen’s Medical Center, 1301 Punchbowl St., Honolulu, HI 96813, USA
| | | | - Aaron J Cullen
- Center for Biomedical Research, The Queen’s Medical Center, 1301 Punchbowl St., Honolulu, HI 96813, USA
| | - Andrea Fleig
- Center for Biomedical Research, The Queen’s Medical Center, 1301 Punchbowl St., Honolulu, HI 96813, USA
- University of Hawaii Cancer Center, 651 Ilalo St., Honolulu, HI 96813, USA
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI 96813, USA
| | - Reinhold Penner
- Center for Biomedical Research, The Queen’s Medical Center, 1301 Punchbowl St., Honolulu, HI 96813, USA
- University of Hawaii Cancer Center, 651 Ilalo St., Honolulu, HI 96813, USA
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI 96813, USA
| |
Collapse
|
6
|
HU WEI, WARTMANN THOMAS, STRECKER MARCO, PERRAKIS ARISTOTELIS, CRONER ROLAND, SZALLASI ARPAD, SHI WENJIE, KAHLERT ULFD. Transient receptor potential channels as predictive marker and potential indicator of chemoresistance in colon cancer. Oncol Res 2023; 32:227-239. [PMID: 38188686 PMCID: PMC10767253 DOI: 10.32604/or.2023.043053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/13/2023] [Indexed: 01/09/2024] Open
Abstract
Transient receptor potential (TRP) channels are strongly associated with colon cancer development and progression. This study leveraged a multivariate Cox regression model on publicly available datasets to construct a TRP channels-associated gene signature, with further validation of signature in real world samples from our hospital treated patient samples. Kaplan-Meier (K-M) survival analysis and receiver operating characteristic (ROC) curves were employed to evaluate this gene signature's predictive accuracy and robustness in both training and testing cohorts, respectively. Additionally, the study utilized the CIBERSORT algorithm and single-sample gene set enrichment analysis to explore the signature's immune infiltration landscape and underlying functional implications. The support vector machine algorithm was applied to evaluate the signature's potential in predicting chemotherapy outcomes. The findings unveiled a novel three TRP channels-related gene signature (MCOLN1, TRPM5, and TRPV4) in colon adenocarcinoma (COAD). The ROC and K-M survival curves in the training dataset (AUC = 0.761; p = 1.58e-05) and testing dataset (AUC = 0.699; p = 0.004) showed the signature's robust predictive capability for the overall survival of COAD patients. Analysis of the immune infiltration landscape associated with the signature revealed higher immune infiltration, especially an increased presence of M2 macrophages, in high-risk group patients compared to their low-risk counterparts. High-risk score patients also exhibited potential responsiveness to immune checkpoint inhibitor therapy, evident through increased CD86 and PD-1 expression profiles. Moreover, the TRPM5 gene within the signature was highly expressed in the chemoresistance group (p = 0.00095) and associated with poor prognosis (p = 0.036) in COAD patients, highlighting its role as a hub gene of chemoresistance. Ultimately, this signature emerged as an independent prognosis factor for COAD patients (p = 6.48e-06) and expression of model gene are validated by public data and real-world patients. Overall, this bioinformatics study provides valuable insights into the prognostic implications and potential chemotherapy resistance mechanisms associated with TRPs-related genes in colon cancer.
Collapse
Affiliation(s)
- WEI HU
- The Fourth Clinical Medical College of Yangzhou University, Nantong Rich Hospital, Nantong, China
| | - THOMAS WARTMANN
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - MARCO STRECKER
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - ARISTOTELIS PERRAKIS
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - ROLAND CRONER
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - ARPAD SZALLASI
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - WENJIE SHI
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - ULF D. KAHLERT
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
7
|
Wei Y, Khalaf AT, Rui C, Abdul Kadir SY, Zainol J, Oglah Z. The Emergence of TRP Channels Interactome as a Potential Therapeutic Target in Pancreatic Ductal Adenocarcinoma. Biomedicines 2023; 11:biomedicines11041164. [PMID: 37189782 DOI: 10.3390/biomedicines11041164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Integral membrane proteins, known as Transient Receptor Potential (TRP) channels, are cellular sensors for various physical and chemical stimuli in the nervous system, respiratory airways, colon, pancreas, bladder, skin, cardiovascular system, and eyes. TRP channels with nine subfamilies are classified by sequence similarity, resulting in this superfamily's tremendous physiological functional diversity. Pancreatic Ductal Adenocarcinoma (PDAC) is the most common and aggressive form of pancreatic cancer. Moreover, the development of effective treatment methods for pancreatic cancer has been hindered by the lack of understanding of the pathogenesis, partly due to the difficulty in studying human tissue samples. However, scientific research on this topic has witnessed steady development in the past few years in understanding the molecular mechanisms that underlie TRP channel disturbance. This brief review summarizes current knowledge of the molecular role of TRP channels in the development and progression of pancreatic ductal carcinoma to identify potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Basic Medical College, Chengdu University, Chengdu 610106, China
| | | | - Cao Rui
- Basic Medical College, Chengdu University, Chengdu 610106, China
| | - Samiah Yasmin Abdul Kadir
- Faculty of Medicine, Widad University College, BIM Point, Bandar Indera Mahkota, Kuantan 25200, Malaysia
| | - Jamaludin Zainol
- Faculty of Medicine, Widad University College, BIM Point, Bandar Indera Mahkota, Kuantan 25200, Malaysia
| | - Zahraa Oglah
- School of Science, Auckland University of Technology (AUT), 55 Wellesley Street, Auckland 1010, New Zealand
| |
Collapse
|
8
|
Yang F, Sivils A, Cegielski V, Singh S, Chu XP. Transient Receptor Potential (TRP) Channels in Pain, Neuropsychiatric Disorders, and Epilepsy. Int J Mol Sci 2023; 24:ijms24054714. [PMID: 36902145 PMCID: PMC10003176 DOI: 10.3390/ijms24054714] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Pharmacomodulation of membrane channels is an essential topic in the study of physiological conditions and disease status. Transient receptor potential (TRP) channels are one such family of nonselective cation channels that have an important influence. In mammals, TRP channels consist of seven subfamilies with a total of twenty-eight members. Evidence shows that TRP channels mediate cation transduction in neuronal signaling, but the full implication and potential therapeutic applications of this are not entirely clear. In this review, we aim to highlight several TRP channels which have been shown to mediate pain sensation, neuropsychiatric disorders, and epilepsy. Recent findings suggest that TRPM (melastatin), TRPV (vanilloid), and TRPC (canonical) are of particular relevance to these phenomena. The research reviewed in this paper validates these TRP channels as potential targets of future clinical treatment and offers patients hope for more effective care.
Collapse
|
9
|
Immanuel T, Li J, Green TN, Bogdanova A, Kalev-Zylinska ML. Deregulated calcium signaling in blood cancer: Underlying mechanisms and therapeutic potential. Front Oncol 2022; 12:1010506. [PMID: 36330491 PMCID: PMC9623116 DOI: 10.3389/fonc.2022.1010506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Intracellular calcium signaling regulates diverse physiological and pathological processes. In solid tumors, changes to calcium channels and effectors via mutations or changes in expression affect all cancer hallmarks. Such changes often disrupt transport of calcium ions (Ca2+) in the endoplasmic reticulum (ER) or mitochondria, impacting apoptosis. Evidence rapidly accumulates that this is similar in blood cancer. Principles of intracellular Ca2+ signaling are outlined in the introduction. We describe different Ca2+-toolkit components and summarize the unique relationship between extracellular Ca2+ in the endosteal niche and hematopoietic stem cells. The foundational data on Ca2+ homeostasis in red blood cells is discussed, with the demonstration of changes in red blood cell disorders. This leads to the role of Ca2+ in neoplastic erythropoiesis. Then we expand onto the neoplastic impact of deregulated plasma membrane Ca2+ channels, ER Ca2+ channels, Ca2+ pumps and exchangers, as well as Ca2+ sensor and effector proteins across all types of hematologic neoplasms. This includes an overview of genetic variants in the Ca2+-toolkit encoding genes in lymphoid and myeloid cancers as recorded in publically available cancer databases. The data we compiled demonstrate that multiple Ca2+ homeostatic mechanisms and Ca2+ responsive pathways are altered in hematologic cancers. Some of these alterations may have genetic basis but this requires further investigation. Most changes in the Ca2+-toolkit do not appear to define/associate with specific disease entities but may influence disease grade, prognosis, treatment response, and certain complications. Further elucidation of the underlying mechanisms may lead to novel treatments, with the aim to tailor drugs to different patterns of deregulation. To our knowledge this is the first review of its type in the published literature. We hope that the evidence we compiled increases awareness of the calcium signaling deregulation in hematologic neoplasms and triggers more clinical studies to help advance this field.
Collapse
Affiliation(s)
- Tracey Immanuel
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan City, China
| | - Taryn N. Green
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
10
|
Wang J, Qiao S, Liang S, Qian C, Dong Y, Pei M, Wang H, Wan G. TRPM4 and TRPV2 are two novel prognostic biomarkers and promising targeted therapy in UVM. Front Mol Biosci 2022; 9:985434. [PMID: 36081847 PMCID: PMC9445434 DOI: 10.3389/fmolb.2022.985434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/01/2022] [Indexed: 12/21/2022] Open
Abstract
Uveal melanoma (UVM) is the most common primary intraocular malignancy tumor in adults. Almost 50% of UVM patients develop metastatic disease, and is usually fatal within 1 year. However, the mechanism of etiology remains unclear. The lack of prognostic, diagnostic and therapeutic biomarkers is a main limitation for clinical diagnosis and treatment. The transient receptor potential (TRP) channels play important roles in the occurrence and development of tumors, which may have the potential as a therapeutic target for UVM. This current study aimed to identify the potential effect and function of the TRPs that could provide survival prediction and new insight into therapy for UVM. Based on the transcriptome data and potential key genes of UVM were screened using the Cancer Genome Atlas (TCGA) databases, Gene expression analysis showed the expression of TRPM4, TRPV2 and other TRPs was high levels in UVM. Using survival analysis, we screened out that the high expression of TRPM4 and TRPV2 was negatively correlated with the prognosis of UVM patients. Cox regression analysis and functional enrichment analysis further indicated that TRPM4 and TRPV2 were the most convincing therapeutic targets of UVM, and the majority of genes involved in ferroptosis pathways in UVM showed positively correlated with the expression levels of TRPM4 and TRPV2. In conclusion, TRPM4 and TRPV2 were considered as two novel prognostic biomarkers and a promising targeted therapy in UVM.
Collapse
Affiliation(s)
- Jiong Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sen Qiao
- Assisted Reproduction Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Shenzhi Liang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cheng Qian
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Dong
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Minghang Pei
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
- *Correspondence: Hongmei Wang, ; Guangming Wan,
| | - Guangming Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Hongmei Wang, ; Guangming Wan,
| |
Collapse
|