1
|
Can Karaca A, Rezaei A, Qamar M, Assadpour E, Esatbeyoglu T, Jafari SM. Lipid-based nanodelivery systems of curcumin: Recent advances, approaches, and applications. Food Chem 2025; 463:141193. [PMID: 39276542 DOI: 10.1016/j.foodchem.2024.141193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Despite its many beneficial effects, pharmaceutical applications of curcumin (CUR) are limited due to its chemical instability, low solubility/absorption and weak bioavailability. Recent advances in nanotechnology have enabled the development of CUR-loaded nanodelivery systems to tackle those issues. Within many different nanocarriers developed for CUR up to date, lipid-based nanocarriers (LBNs) are among the most extensively studied systems. LBNs such as nanoemulsions, solid lipid carriers, nanostructured phospholipid/surfactant carriers are shown to be potential delivery systems capable of improving the solubility, bioavailability, and chemical stability of CUR. The particle characteristics, stability, bioavailability, and release properties of CUR-loaded LBNs can be tailored via optimizing the formulation and processing parameters. This paper reviews the most recent studies on the development of various CUR-loaded LBNs. Approaches to the improvement of CUR bioavailability and release characteristics of LBNs are discussed. Furthermore, challenges in the development of CUR-loaded LBNs and their potential applications are presented.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Muhammad Qamar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
2
|
Wang J, Risola DD, Mattioli R, Zoratto N, Mosca L, Meo CD, Matricardi P. Hyaluronan-Cholesterol nanogels embedding betamethasone for the treatment of skin inflammatory conditions. Int J Pharm 2025; 668:124978. [PMID: 39571768 DOI: 10.1016/j.ijpharm.2024.124978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Topical application of the glucocorticoid betamethasone (BM) is a common treatment for inflammatory-related skin diseases, such as psoriasis. However, enhancing its bioavailability remains challenging due to poor skin permeability. Herein, we developed and evaluated hyaluronan-cholesterol (HACH) based nanohydrogel systems (NHs) and NHs-Carbopol formulation for dermal delivery of BM. Various parameters were investigated including particle size, surface charge, encapsulation efficiency, in vitro drug release kinetics and stability. The HACH-based NHs demonstrated high encapsulation efficiency, with apparent solubility improved up to 9-fold, small size (∼190 nm) and good stability at 4 ℃ and during long-term storage. Besides, the NHs-Carbopol formulation exhibited excellent rheological properties and an occlusive effect suitable for cutaneous application. Both in-vitro (using Strat-M® membrane) and ex-vivo (using pig ear skin) permeation studies revealed that these formulations significantly improved skin permeation and drug retention in the deeper layers of the epidermis and dermis, making it advantageous for the topical delivery of BM in psoriasis treatment. Moreover, the NHs system demonstrated potential anti-psoriatic activity by downregulating the proinflammatory cytokines in vitro in human keratinocytes (HaCaT cell line) and in an ex vivo 3D skin tissue model (EpiDerm-FT™).
Collapse
Affiliation(s)
- Ju Wang
- Departments of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy; The Academy of Chinese Health Risks, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu 610041, China
| | - Daniel Di Risola
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Roberto Mattioli
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Nicole Zoratto
- Departments of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Luciana Mosca
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Chiara Di Meo
- Departments of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Pietro Matricardi
- Departments of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy.
| |
Collapse
|
3
|
Chen D, Song T, Liu Y, Wang Y, Qin B, Zhang Q, Hu W, Zhou X, Qi R. Effective Hydrogel Vascular Patch Dual-Loaded with Cycloastragenol Nanostructured Lipid Carriers and Doxycycline for Repairing Extravascular Injury in Abdominal Aortic Aneurysm. Adv Healthc Mater 2024:e2402497. [PMID: 39703126 DOI: 10.1002/adhm.202402497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/25/2024] [Indexed: 12/21/2024]
Abstract
Endovascular aneurysm repair (EVAR) plays a crucial role in the treatment of abdominal aortic aneurysm (AAA) in the clinic, but the aneurysm remains in the patient's body after surgery, continuing to pose a risk of progression. Cycloastragenol (CAG) is proven to be an effective anti-AAA drug, and its vascular protective effects can be further improved when the hydrophobic CAG is encapsulated into nano-sized formulations to enhance its bioavailability. In this context, this study developed an extravascular patch hydrogel loaded with CAG nanostructured lipid carriers and a hydrophilic drug of doxycycline hydrochloride (DOX). The extravascular patch delivered onto the mouse abdominal aortas can promote local permeation of hydrophilic/hydrophobic drugs at the vessel sites and provide effective vascular protection against AAA injury induced by elastase. This study introduces a novel and promising approach for AAA treatment, which can serve as a supplementary strategy after EVAR surgery.
Collapse
Affiliation(s)
- Du Chen
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling. NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
- School of Pharmacy / Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, 832003, China
| | - Tiantian Song
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling. NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Yi Liu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Ying Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling. NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
- School of Pharmacy / Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, 832003, China
| | - Boyang Qin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling. NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Qingyi Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling. NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Weipeng Hu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling. NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Xiqiao Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling. NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling. NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
- School of Pharmacy / Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
4
|
Yang J, Shen L, Zhao Y, Zhou X, Liu Y. Antioxidant and antibacterial coconut mesocarp polyphenol hydrogel dressing based on PVA/quaternary chitosan/sodium alginate with β-glycerophosphate. Int J Biol Macromol 2024:138923. [PMID: 39708860 DOI: 10.1016/j.ijbiomac.2024.138923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
This study developed PQSp wound dressing hydrogels (S0-S6) using polyvinyl alcohol (PVA), quaternary chitosan (QCS), and sodium alginate (SA) as the matrix, with the addition of coconut mesocarp polyphenol (P-CTP, 0.1 %, 0.5 %, and 1.0 %) and β-glycerophosphate disodium (GP, 1.0 %) through a freeze-thaw method. Compared to hydrogels without P-CTP and GP (S0), the tensile strength of S1-S6 increased from 0.08 MPa to 0.45 MPa, elongation at break improved from 200 % to 320 %, and the swelling ratio decreased from 186 % to 82 % due to the effects of P-CTP and GP, while maintaining water content above 80 %, ensuring a moist environment for wound healing. Their thermal stability was also improved. SEM, FTIR, and XPS results confirmed enhanced crosslinking within the multi-network of the hydrogels, attributed to the increased hydrogen bonding from GP and P-CTP, independent of chemical crosslinking. However, antioxidant and antibacterial activities were dose-dependent only on P-CTP, with S3 and S6 showing the best effects. CAM and chicken embryo assays confirmed the hydrogels' non-toxicity and biocompatibility. These findings suggest that PQSp hydrogels, with their excellent mechanical properties, bioactivity, and safety, hold great potential for advanced wound dressing applications and provide a reference for expanding the application range of P-CTP.
Collapse
Affiliation(s)
- Jing Yang
- School of Chemistry and Chemical Engineering, North University of China, No.3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China; Shanxi Jingxi Biotechnology Co. Ltd, Taiyuan, Shanxi 030051, China.
| | - Liping Shen
- School of Chemistry and Chemical Engineering, North University of China, No.3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Yiqing Zhao
- School of Chemistry and Chemical Engineering, North University of China, No.3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Xingyu Zhou
- School of Chemistry and Chemical Engineering, North University of China, No.3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - YonGping Liu
- School of Chemistry and Chemical Engineering, North University of China, No.3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| |
Collapse
|
5
|
Jacob S, Kather FS, Morsy MA, Boddu SHS, Attimarad M, Shah J, Shinu P, Nair AB. Advances in Nanocarrier Systems for Overcoming Formulation Challenges of Curcumin: Current Insights. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:672. [PMID: 38668166 PMCID: PMC11054677 DOI: 10.3390/nano14080672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Curcumin, an organic phenolic molecule that is extracted from the rhizomes of Curcuma longa Linn, has undergone extensive evaluation for its diverse biological activities in both animals and humans. Despite its favorable characteristics, curcumin encounters various formulation challenges and stability issues that can be effectively addressed through the application of nanotechnology. Nano-based techniques specifically focused on enhancing solubility, bioavailability, and therapeutic efficacy while mitigating toxicity, have been explored for curcumin. This review systematically presents information on the improvement of curcumin's beneficial properties when incorporated, either individually or in conjunction with other drugs, into diverse nanosystems such as liposomes, nanoemulsions, polymeric micelles, dendrimers, polymeric nanoparticles, solid-lipid nanoparticles, and nanostructured lipid carriers. Additionally, the review examines ongoing clinical trials and recently granted patents, offering a thorough overview of the dynamic landscape in curcumin delivery. Researchers are currently exploring nanocarriers with crucial features such as surface modification, substantial loading capacity, biodegradability, compatibility, and autonomous targeting specificity and selectivity. Nevertheless, the utilization of nanocarriers for curcumin delivery is still in its initial phases, with regulatory approval pending and persistent safety concerns surrounding their use.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Fathima Sheik Kather
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (M.A.); (A.B.N.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (M.A.); (A.B.N.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (M.A.); (A.B.N.)
| |
Collapse
|
6
|
Febrianti NQ, Aziz AYR, Tunggeng MGR, Ramadhany ID, Syafika N, Azis SBA, Djabir YY, Asri RM, Permana AD. Development of pH-Sensitive Nanoparticle Incorporated into Dissolving Microarray Patch for Selective Delivery of Methotrexate. AAPS PharmSciTech 2024; 25:70. [PMID: 38538953 DOI: 10.1208/s12249-024-02777-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/22/2024] [Indexed: 04/24/2024] Open
Abstract
PURPOSE Rheumatoid arthritis (RA) is a systemic autoimmune disease that attacks human joints. Methotrexate (MTX), as one the most effective medications to treat RA, has limitations when administered either orally or by injection. To overcome this limitation, we formulated MTX through a smart nanoparticle (SNP) combined with dissolving microarray patch (DMAP) to achieve selective-targeted delivery of RA. METHODS SNP was made using the combination of polyethylene glycol (PEG) and polycaprolactone (PCL) polymers, while DMAP was made using the combination of hyaluronic acid and polyvinylpyrrolidone K-30. SNP-DMAP was then evaluated for its mechanical and chemical characteristics, ex vivo permeation test, in vivo pharmacokinetic study, hemolysis, and hen's egg test-chorioallantoic membrane (HET-CAM) test. RESULT The results showed that the characteristics of the SNP-DMAP-MTX formulas meet the requirements for transdermal delivery, with the particle size of 189.09 ±12.30 nm and absorption efficiency of 65.40 ± 5.0%. The hemolysis and HET-CAM testing indicate that this formula was non-toxic and non-irritating. Ex vivo permeation shows a concentration of 51.50 ± 3.20 µg/mL of SNP-DMAP-MTX in PBS pH 5.0. The pharmacokinetic profile of SNP-DMAP-MTX showed selectivity and sustained release compared with oral and DMAP-MTX with values of t1/2 (4.88 ± 0 h), Tmax (8 ± 0 h), Cmax (0.50 ± 0.04 μg/mL), AUC (3.15 ± 0.54 μg/mL.h), and mean residence time (MRT) (9.13 ± 0 h). CONCLUSION The developed SNP-DMAP-MTX has been proven to deliver MTX transdermal and selectively at the RA site, potentially avoiding conventional MTX side effects and enhancing the effectiveness of RA therapy.
Collapse
Affiliation(s)
| | | | | | | | - Nur Syafika
- Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | | | | | | | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia.
| |
Collapse
|
7
|
Biswasroy P, Pradhan D, Pradhan DK, Ghosh G, Rath G. Development of Betulin-Loaded Nanostructured Lipid Carriers for the Management of Imiquimod-Induced Psoriasis. AAPS PharmSciTech 2024; 25:57. [PMID: 38472545 DOI: 10.1208/s12249-024-02774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Psoriasis is a complex and persistent autoimmune skin disease. The present research focused on the therapeutic evaluation of betulin-loaded nanostructured lipid carriers (BE-NLCs) towards managing psoriasis. The BE-NLCs were synthesized using the emulsification cum solidification method, exhibiting a spherical shape with a particle size of 183.5±1.82nm and a narrow size distribution window (PDI: 0.142±0.05). A high zeta potential -38.64±0.05mV signifies the relative stability of the nano-dispersion system. BE-NLCs show a drug loading and entrapment efficiency of 47.35±3.25% and 87.8±7.86%, respectively. In vitro release study, BE NLCs show a cumulative percentage release of 90.667±5.507% over BE-sol (57.334±5.03%) and BD-oint (42±4.58%) for 720min. In an ex vivo 24-h permeation study, % cumulative amount permeated per cm2 was found to be 55.667±3.33% from BE-NLCs and 32.012±3.26% from BE-sol, demonstrating a better permeability of 21.66% when compared to the standard formulation BD-oint. The in vivo anti-psoriatic activity in the IMQ-induced model shows topical application of BE-sol, BE-NLCs, and BD-oint resulted in recovery rates of 56%, 82%, and 65%, respectively, based on PASI (Psoriasis Area and Severity Index) score. Notably, BE-NLCs demonstrated a more significant reduction in spleen mass, indicating attenuation of the local innate immune system in psoriatic mice. Reductions in TNF-α, IL-6, and IL-17 levels were observed in both BE-sol and BE-NLCs groups compared to the disease control (DC) group, with BE-NLCs exhibiting superior outcomes (74.05%, 44.76%, and 49.26% reduction, respectively). Soy lecithin and squalene-based NLCs could be better carrier system for the improvement of the therapeutic potential of BE towards management of psoriasis.
Collapse
Affiliation(s)
- Prativa Biswasroy
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), 751003, Bhubaneswar, Odisha, India
| | - Deepak Pradhan
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), 751003, Bhubaneswar, Odisha, India
| | - Dilip Kumar Pradhan
- Department of Medicine, Pandit Raghunath Murmu Medical College, and Hospital, Baripada, Odisha, India
| | - Goutam Ghosh
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), 751003, Bhubaneswar, Odisha, India.
| | - Goutam Rath
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), 751003, Bhubaneswar, Odisha, India.
| |
Collapse
|
8
|
Li Y, Chen S, Zhang M, Ma X, Zhao J, Ji Y. Novel Injectable, Self-Healing, Long-Effective Bacteriostatic, and Healed-Promoting Hydrogel Wound Dressing and Controlled Drug Delivery Mechanisms. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2140-2153. [PMID: 38178630 DOI: 10.1021/acsami.3c15705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Multivalent ion cross-linking has been used to form hydrogels between sodium alginate (SA) and hyaluronic acid (HA) in previous studies. However, more stable and robust covalent cross-linking is rarely reported. Herein, we present a facile approach to fabricate a SA and HA hydrogel for wound dressings with injectable, good biocompatibility, and high ductility. HA was first reacted with ethylenediamine to graft an amino group. Then, it was cross-linked with oxidized SA with dialdehyde to form hydrogel networks. The dressing can effectively promote cell migration and wound healing. To increase the antibacterial property of the dressing, we successfully loaded tetracycline hydrochloride into the hydrogel as a model drug. The drug can be released slowly in the alkaline environment of chronic wounds, and the hydrogel releases drugs again in the more acidic environment with wound healing, achieving a long-term antibacterial effect. In addition, one-dimensional partial differential equations based on Fickian diffusion with time-varying diffusion coefficients and hydrogel thicknesses were used to model the entire complex drug release process and to predict drug release.
Collapse
Affiliation(s)
- Yufeng Li
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Shanqi Chen
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Mingdong Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xiang Ma
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
9
|
Elkhateeb O, Badawy MEI, Tohamy HG, Abou-Ahmed H, El-Kammar M, Elkhenany H. Curcumin-infused nanostructured lipid carriers: a promising strategy for enhancing skin regeneration and combating microbial infection. BMC Vet Res 2023; 19:206. [PMID: 37845727 PMCID: PMC10577905 DOI: 10.1186/s12917-023-03774-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Curcumin is a biomolecule that can be extracted from the Curcuma longa that has been shown to have the potential to aid skin wound healing. It has been studied for its anti-inflammatory and antioxidant properties, which may help to reduce swelling and promote tissue repair. However, curcumin has low solubility in water, which can limit its absorption and bioavailability. Encapsulating it in lipid nanoparticles may help to increase its absorption, leading to improved bioavailability. METHODS Curcumin-loaded nanostructure lipid nanocarriers (CURC-NLCs) were prepared and characterized. Also, the phenolic, flavonoid contents, antioxidant and antimicrobial efficacy against gram-positive and gram-negative bacteria were investigated. Furthermore, in vivo rabbit animal model was used to test its regenerative capacity and wound-healing efficiency. RESULTS The CURC-NLCs significantly increased the content of phenolic and flavonoid compounds compared to curcumin, resulting in a dramatic increase in antioxidant activity. CURC-NLCs also showed a potent inhibitory effect on Gram-positive, Gram-negative, and fungi, two times higher than curcumin. CURC-NLCs showed a higher potential to fasten the wound healing of full-thickness skin injuries as it resulted in 1.15- and 1.9-fold higher wound closure at the first week of injury compared to curcumin and control, respectively (p < 0.0001). CONCLUSION These results suggest that CURC-NLCs have an excellent potential to promote skin regeneration, which could be attributed to its antioxidant and broad-spectrum antimicrobial effect.
Collapse
Affiliation(s)
- Ola Elkhateeb
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Mohamed E I Badawy
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria, 21545, Egypt
| | - Hossam G Tohamy
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Howaida Abou-Ahmed
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Mahmoud El-Kammar
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Hoda Elkhenany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt.
| |
Collapse
|
10
|
Madamsetty V, Vazifehdoost M, Alhashemi SH, Davoudi H, Zarrabi A, Dehshahri A, Fekri HS, Mohammadinejad R, Thakur VK. Next-Generation Hydrogels as Biomaterials for Biomedical Applications: Exploring the Role of Curcumin. ACS OMEGA 2023; 8:8960-8976. [PMID: 36936324 PMCID: PMC10018697 DOI: 10.1021/acsomega.2c07062] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Since the first report on the pharmacological activity of curcumin in 1949, enormous amounts of research have reported diverse activities for this natural polyphenol found in the dietary spice turmeric. However, curcumin has not yet been used for human application as an approved drug. The clinical translation of curcumin has been hampered due to its low solubility and bioavailability. The improvement in bioavailability and solubility of curcumin can be achieved by its formulation using drug delivery systems. Hydrogels with their biocompatibility and low toxicity effects have shown a substantial impact on the successful formulation of hydrophobic drugs for human clinical trials. This review focuses on hydrogel-based delivery systems for curcumin and describes its applications as anti-cancer as well as wound healing agents.
Collapse
Affiliation(s)
- Vijay
Sagar Madamsetty
- Department
of Biochemistry and Molecular Biology, Mayo
Clinic College of Medicine and Science, Jacksonville, Florida 32224, United States
| | - Maryam Vazifehdoost
- Department
of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman 6718773654, Iran
| | - Samira Hossaini Alhashemi
- Pharmaceutical
Sciences Research Center, Shiraz University
of Medical Sciences, Shiraz 7146864685, Iran
| | - Hesam Davoudi
- Department
of Biology, Faculty of Sciences, University
of Zanjan, Zanjan 4537138111, Iran
| | - Ali Zarrabi
- Department
of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey
| | - Ali Dehshahri
- Department
of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Hojjat Samareh Fekri
- Student Research
Committee, Kerman University of Medical
Sciences, Kerman 7619813159, Iran
| | - Reza Mohammadinejad
- Research
Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7619813159, Iran
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.
- School
of Engineering, University of Petroleum
& Energy Studies (UPES), Dehradun, Uttarakhand 248007, India
| |
Collapse
|
11
|
Solid Lipid Nanoparticles: Review of the Current Research on Encapsulation and Delivery Systems for Active and Antioxidant Compounds. Antioxidants (Basel) 2023; 12:antiox12030633. [PMID: 36978881 PMCID: PMC10045442 DOI: 10.3390/antiox12030633] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
Various active compounds are easily damaged, so they need protection and must be easily absorbed and targeted. This problem can be overcome by encapsulating in the form of solid lipid nanoparticles (SLNs). Initially, SLNs were widely used to encapsulate hydrophobic (non-polar) active compounds because of their matched affinity and interactions. Currently, SLNs are being widely used for the encapsulation of hydrophilic (polar) and semipolar active compounds, but there are challenges, including increasing their entrapment efficiency. This review provides information on current research on SLNs for encapsulation and delivery systems for active and antioxidant compounds, which includes various synthesis methods and applications of SLNs in various fields of utilization. SLNs can be developed starting from the selection of solid lipid matrices, emulsifiers/surfactants, types of active compounds or antioxidants, synthesis methods, and their applications or utilization. The type of lipid used determines crystal formation, control of active compound release, and encapsulation efficiency. Various methods can be used in the SLN fabrication of active compounds and hydrophilic/hydrophobic antioxidants, which have advantages and disadvantages. Fabrication design, which includes the selection of lipid matrices, surfactants, and fabrication methods, determines the characteristics of SLNs. High-shear homogenization combined with ultrasonication is the recommended method and has been widely used because of the ease of preparation and good results. Appropriate fabrication design can produce SLNs with stable active compounds and antioxidants that become suitable encapsulation systems for various applications or uses.
Collapse
|
12
|
Farasati Far B, Naimi-Jamal MR, Sedaghat M, Hoseini A, Mohammadi N, Bodaghi M. Combinational System of Lipid-Based Nanocarriers and Biodegradable Polymers for Wound Healing: An Updated Review. J Funct Biomater 2023; 14:jfb14020115. [PMID: 36826914 PMCID: PMC9963106 DOI: 10.3390/jfb14020115] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Skin wounds have imposed serious socioeconomic burdens on healthcare providers and patients. There are just more than 25,000 burn injury-related deaths reported each year. Conventional treatments do not often allow the re-establishment of the function of affected regions and structures, resulting in dehydration and wound infections. Many nanocarriers, such as lipid-based systems or biobased and biodegradable polymers and their associated platforms, are favorable in wound healing due to their ability to promote cell adhesion and migration, thus improving wound healing and reducing scarring. Hence, many researchers have focused on developing new wound dressings based on such compounds with desirable effects. However, when applied in wound healing, some problems occur, such as the high cost of public health, novel treatments emphasizing reduced healthcare costs, and increasing quality of treatment outcomes. The integrated hybrid systems of lipid-based nanocarriers (LNCs) and polymer-based systems can be promising as the solution for the above problems in the wound healing process. Furthermore, novel drug delivery systems showed more effective release of therapeutic agents, suitable mimicking of the physiological environment, and improvement in the function of the single system. This review highlights recent advances in lipid-based systems and the role of lipid-based carriers and biodegradable polymers in wound healing.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
- Correspondence: (M.R.N.-J.); (M.B.)
| | - Meysam Sedaghat
- Advanced Materials Research Center, Materials Engineering Department, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
| | - Alireza Hoseini
- Department of Materials Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Negar Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Science, Ahvaz 6135733184, Iran
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Correspondence: (M.R.N.-J.); (M.B.)
| |
Collapse
|
13
|
Clay-Based Hydrogels as Drug Delivery Vehicles of Curcumin Nanocrystals for Topical Application. Pharmaceutics 2022; 14:pharmaceutics14122836. [PMID: 36559329 PMCID: PMC9788558 DOI: 10.3390/pharmaceutics14122836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The poor water solubility of a significant number of active pharmaceutical ingredients (API) remains one of the main challenges in the drug development process, causing low bioavailability and therapeutic failure of drug candidates. Curcumin is a well-known Biopharmaceutics Classification System (BCS) class IV drug, characterized by lipophilicity and low permeability, which hampers topical bioavailability. Given these premises, the aim of this work was the design and the development of curcumin nanocrystals and their incorporation into natural inorganic hydrogels for topical application. Curcumin nanocrystals were manufactured by the wet ball milling technique and then loaded in clay-based hydrogels. Bentonite and/or palygorskite were selected as the inorganic gelling agents. Curcumin nanocrystal-loaded hydrogels were manufactured by means of a homogenization process and characterized with respect to their chemico-physical properties, in vitro release, antioxidant activity and skin permeation. The results highlighted that the presence of bentonite provided an increase of curcumin skin penetration and simultaneously allowed its radical scavenging properties, due to the desirable rheological characteristics, which should guarantee the necessary contact time of the gel with the skin.
Collapse
|
14
|
Sarfraz M, Iqbal R, Khan KU, Minhas MU. Carbopol Based Hydrogels for ITOPRIDE Hydrochloride Delivery; Synthesis, Characterization and Comparative Assessment with Various Monomers. J Funct Biomater 2022; 13:jfb13040295. [PMID: 36547555 PMCID: PMC9785656 DOI: 10.3390/jfb13040295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
The objective of the current study was to synthesize and characterize carbopol containing hydrogels with different monomers such as methacrylic acid (MAA), 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and itaconic acid (ITA). Free radical polymerization method was optimized for the preparation of different formulations using N,N-methylene bis-acrylamide (MBA) as cross linking agent. Different studies were performed to evaluate the effect of different monomers on swelling, drug loading and drug release. Itopride Hydrochloride was used as model drug. FTIR, TGA, DSC and SEM were performed to probe the characteristics of fabricated hydrogels. Swelling studies of different fabricated hydrogels were performed in three pH conditions (1.2, 4.5 & 6.8). Higher swelling was observed at pH 6.8. An in-vitro release study was performed on pH 1.2 and 6.8. The synthesized hydrogels exhibited excellent mechanical strength, higher drug loading, pH sensitive and time dependent release up to 30 h. The excellent mechanical strength and extended drug release of Carbopol-co-poly-MAA-ITA hydrogels make them a potential candidate for controlled delivery of Itopride hydrochloride.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain 64141, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi Campus, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Rabia Iqbal
- College of Pharmacy, University of Sargodha, Sargodha 40100, Punjab, Pakistan
| | | | - Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, Sargodha 40100, Punjab, Pakistan
- Correspondence: or ; Tel.: +92-33-1975-0053
| |
Collapse
|
15
|
Viola M, Migliorini C, Matricardi P, Di Meo C. Synthesis and characterization of a novel amphiphilic polyacrylate-cholesterol derivative as promising material for pharmaceutical and cosmetic applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Sun Y, Jing X, Liu Y, Yu B, Hu H, Cong H, Shen Y. A chitosan derivative-crosslinked hydrogel with controllable release of polydeoxyribonucleotides for wound treatment. Carbohydr Polym 2022; 300:120298. [DOI: 10.1016/j.carbpol.2022.120298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/11/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|