1
|
Zhuang R, Chang X, Sha J, Yu Z, Shi E, Lu M, Liu J, Zhang G, Zhou D, Li L. Optoelectronic-Coupled-Driven Microrobot for Biological Cargo Transport in Conductive Isosmotic Glucose Solution. ACS APPLIED MATERIALS & INTERFACES 2025; 17:28425-28435. [PMID: 40299716 DOI: 10.1021/acsami.5c06042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Electric field-driven micro/nanorobots, as micro/nanodevices with autonomous motion capability, have emerged as promising candidates for targeted cargo delivery in biomedical applications due to their advantages of label-free operation, selectivity, and controllability. In biological systems, many biological cargos need to be operated in conductive isosmotic solutions to ensure their viability. However, in the conductive solution, electric field-driven micro/nanorobots exhibit significantly reduced propulsion performance, despite retaining the capability to manipulate cargos by the dielectrophoretic force. This limitation restricts the wider applicability of electric field-driven micro/nanorobots in biomedical fields. This paper presents a novel optoelectronic-coupled-driven α-Fe2O3@aTiO2/Au microrobot, which exhibits significantly improved mobility and enables biological cargo transportation in the conductive isosmotic glucose solution. Benefiting from the flowerlike surface structure and composite photocatalytic material, the proposed microrobot exhibits enhanced photocatalytic capability, enabling efficient propulsion in glucose solution under light irradiation. In addition, the motion behavior of the microrobot under light, electric, and optoelectronic-coupled fields is investigated. It is found that the speed of the microrobot could exceed 300 μm/s under coupled fields, which is more than ten times faster than that of previously reported electric field-driven micro/nanorobots. Due to the magnetic property, the proposed microrobot can be precisely navigated under the guidance of an external uniform magnetic field. Furthermore, the proposed microrobot can achieve the transportation of various biological cargos in a conductive isosmotic glucose solution. The proposed microrobot opens a new avenue for targeted delivery and holds great potential for applications in the biological and pharmaceutical fields.
Collapse
Affiliation(s)
- Rencheng Zhuang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 400722, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Xiaocong Chang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 400722, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Jinrui Sha
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 400722, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Zehao Yu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 400722, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Enbo Shi
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 400722, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Minqiao Lu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Junmin Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 400722, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Guangyu Zhang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Dekai Zhou
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 400722, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Longqiu Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| |
Collapse
|
2
|
Abhinav V, Basu P, Verma SS, Verma J, Das A, Kumari S, Yadav PR, Kumar V. Advancements in Wearable and Implantable BioMEMS Devices: Transforming Healthcare Through Technology. MICROMACHINES 2025; 16:522. [PMID: 40428648 PMCID: PMC12113605 DOI: 10.3390/mi16050522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025]
Abstract
Wearable and implantable BioMEMSs (biomedical microelectromechanical systems) have transformed modern healthcare by enabling continuous, personalized, and minimally invasive monitoring, diagnostics, and therapy. Wearable BioMEMSs have advanced rapidly, encompassing a diverse range of biosensors, bioelectronic systems, drug delivery platforms, and motion tracking technologies. These devices enable non-invasive, real-time monitoring of biochemical, electrophysiological, and biomechanical signals, offering personalized and proactive healthcare solutions. In parallel, implantable BioMEMS have significantly enhanced long-term diagnostics, targeted drug delivery, and neurostimulation. From continuous glucose and intraocular pressure monitoring to programmable drug delivery and bioelectric implants for neuromodulation, these devices are improving precision treatment by continuous monitoring and localized therapy. This review explores the materials and technologies driving advancements in wearable and implantable BioMEMSs, focusing on their impact on chronic disease management, cardiology, respiratory care, and glaucoma treatment. We also highlight their integration with artificial intelligence (AI) and the Internet of Things (IoT), paving the way for smarter, data-driven healthcare solutions. Despite their potential, BioMEMSs face challenges such as regulatory complexities, global standardization, and societal determinants. Looking ahead, we explore emerging directions like multifunctional systems, biodegradable power sources, and next-generation point-of-care diagnostics. Collectively, these advancements position BioMEMS as pivotal enablers of future patient-centric healthcare systems.
Collapse
Affiliation(s)
- Vishnuram Abhinav
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India;
| | - Prithvi Basu
- Department of Electrical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Shikha Supriya Verma
- Integrated Disease Surveillance Program, National Health Mission, Guwahati 781005, Assam, India
| | - Jyoti Verma
- Department of Electrical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Atanu Das
- Department of Electronics and Communication Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Savita Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Prateek Ranjan Yadav
- School of Mechanical and Materials Engineering, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Vibhor Kumar
- Department of Electrical Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Tenenhaus M, Rennekampff HO, Vassolas GA. Wearable biosensors for monitoring and as a predictive adjunct for patients at risk for ischemic cardiac-related injury. J Intern Med 2025; 297:437-447. [PMID: 39988463 DOI: 10.1111/joim.20073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Despite increased attention and preventive efforts, the prevalence of major adverse cardiovascular events continues to rise, resulting in profound concerns for both the individual and the population at large. Rapidly evolving biotechnologies, micro-computerization, communication, and battery design have led to widespread commercial adoption, use, and dependence on smart devices, and, more recently, biosensors. Currently worn and carried, smart devices such as mobile phones and smart watches possess impressive computational and communication capabilities, monitoring a variety of biometrics such as heart rate, blood pressure, and cardiac rhythm. Several promising biomarkers have been identified that are expressed early in the development of cardiac injury. Biosensors that can assay multiple variants are now described, obviating the limitations generally attributed to dependence upon a single biomarker. Employing mathematical modeling along with intelligent learning capabilities complements and augments their potential value. Data derived from wearable multivariate biosensors linked to already worn smart devices can communicate information to protected settings with enhanced computational capability and cogency by evaluating relayed biometrics and early expressed biomarkers as well as trending data, improving sensitivity and specificity. Integrating intelligent learning capabilities can further power these efforts with beneficial impact on individuals and groups at risk, yielding great promise as monitoring and predictive adjuncts. Future derivations might, for those of particular concern, be linked to critical drug delivery and interventional systems.
Collapse
Affiliation(s)
| | - Hans Oliver Rennekampff
- Department of Plastic Surgery, Hand and Burn Surgery, Rhein Maas Klinikum, Wuerselen, Germany
| | | |
Collapse
|
4
|
Dave R, Pandey K, Khatri V, Patel R, Gour N, Bhatia D. Biological AIE Molecules: Innovations in Synthetic Design and AI-Driven Discovery. Adv Biol (Weinh) 2025:e2400792. [PMID: 40091623 DOI: 10.1002/adbi.202400792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/17/2025] [Indexed: 03/19/2025]
Abstract
Biological aggregation -induced emission (AIE) molecules offer significant advantages over synthetic organic fluorophores, particularly in biocompatibility, environmental sustainability, and emission properties in biological systems. Derived from biomolecules such as peptides, proteins, and nucleic acids, biological AIE molecules hold great promise for applications in biosensing, bioimaging, and target drug delivery. This review explores the design principles, mechanistic insights, and functional properties of biological AIE molecules whiles highlighting the role of artificial intelligence (AI) in accelerating their discovery and optimization. AI-driven approaches, including machine learning and computational modeling, are transforming the identification and synthesis of AIE molecules by enabling precise structural modifications and enhanced fluorescence efficiency. These advancements are paving the way for the integration of AIE molecules in next-generation smart biomedical devices, personalized medicine and sustainable technological applications. Emerging trends, including hybrid biomaterials, Ai-guided molecular engineering, and advanced imaging techniques, are expanding the scope of biological AIE molecules in healthcare and environmental monitoring. The synergy between AI and biological AIE molecules is unlocking new frontiers in biomedical technology, enabling transformative advancements in material science and healthcare applications, and shaping the future of fluorescence- based diagnostics and therapeutics.
Collapse
Affiliation(s)
- Raj Dave
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Kshipra Pandey
- Department of Biosciences, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Viral Khatri
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Ritu Patel
- Department of Biosciences, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Nidhi Gour
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gujarat, 382355, India
| |
Collapse
|
5
|
Vo DK, Trinh KTL. Advances in Wearable Biosensors for Wound Healing and Infection Monitoring. BIOSENSORS 2025; 15:139. [PMID: 40136936 PMCID: PMC11940385 DOI: 10.3390/bios15030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
Wound healing is a complicated biological process that is important for restoring tissue integrity and function after injury. Infection, usually due to bacterial colonization, significantly complicates this process by hindering the course of healing and enhancing the chances of systemic complications. Recent advances in wearable biosensors have transformed wound care by making real-time monitoring of biomarkers such as pH, temperature, moisture, and infection-related metabolites like trimethylamine and uric acid. This review focuses on recent advances in biosensor technologies designed for wound management. Novel sensor architectures, such as flexible and stretchable electronics, colorimetric patches, and electrochemical platforms, enable the non-invasive detection of changes associated with wounds with high specificity and sensitivity. These are increasingly combined with AI and analytics based on smartphones that can enable timely and personalized interventions. Examples are the PETAL patch sensor that applies multiple sensing mechanisms for wide-ranging views on wound status and closed-loop systems that connect biosensors to therapeutic devices to automate infection control. Additionally, self-powered biosensors that tap into body heat or energy from the biofluids themselves avoid any external batteries and are thus more effective in field use or with limited resources. Internet of Things connectivity allows further support for remote sharing and monitoring of data, thus supporting telemedicine applications. Although wearable biosensors have developed relatively rapidly and their prospects continue to expand, regular clinical application is stalled by significant challenges such as regulatory, cost, patient compliance, and technical problems related to sensor accuracy, biofouling, and power, among others, that need to be addressed by innovative solutions. The goal of this review is to synthesize current trends, challenges, and future directions in wound healing and infection monitoring, with emphasis on the potential for wearable biosensors to improve patient outcomes and reduce healthcare burdens. These innovations are leading the way toward next-generation wound care by bridging advanced materials science, biotechnology, and digital health.
Collapse
Affiliation(s)
- Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
6
|
Alavian F, Khodabakhshi F, Chenary FH. Biosensors for early stroke detection. Clin Chim Acta 2025; 567:120079. [PMID: 39643153 DOI: 10.1016/j.cca.2024.120079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
This article aims to provide a comprehensive review of the latest advances in biosensor technology for early stroke diagnosis. Analyzing current research from authoritative databases highlights the significance of biosensors in improving stroke detection and treatment outcomes, discusses their diagnostic capabilities, and addresses the challenges that must be overcome for broader clinical application. This review utilizes updated information and valid research from ISI, Google Scholar, Science Direct, Scopus, and PubMed to examine recent developments in biosensors applicable to early stroke diagnosis. The results indicate that biosensors are crucial for the early detection of strokes, and enhance treatment efficacy. The biosensors studied in this research serve as rapid and non-intrusive diagnostic instruments with exceptional precision and detection capabilities. Cutting-edge biosensors can identify distinct stroke-related biomarkers, offering rapid and non-invasive diagnostic solutions to improve stroke care outcomes. Despite these advancements, significant challenges remain regarding the sensitivity, specificity, and reliability of biosensors. These issues must be resolved to facilitate their widespread implementation in clinical settings.
Collapse
Affiliation(s)
- Firoozeh Alavian
- Department of Biology Education, Farhangian University, PO Box 889-14665, Tehran, Iran.
| | - Fatemeh Khodabakhshi
- Biology Secretary, Laran Region, Shahrekord, Chaharmahal and Bakhtiari Province, Iran
| | | |
Collapse
|
7
|
Zheng R, Yu C, Yao D, Cai M, Zhang L, Ye F, Huang X. Engineering Stimuli-Responsive Materials for Precision Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406439. [PMID: 39444066 PMCID: PMC11707583 DOI: 10.1002/smll.202406439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Over the past decade, precision medicine has garnered increasing attention, making significant strides in discovering new therapeutic drugs and mechanisms, resulting in notable achievements in symptom alleviation, pain reduction, and extended survival rates. However, the limited target specificity of primary drugs and inter-individual differences have often necessitated high-dosage strategies, leading to challenges such as restricted deep tissue penetration rates and systemic side effects. Material science advancements present a promising avenue for these issues. By leveraging the distinct internal features of diseased regions and the application of specific external stimuli, responsive materials can be tailored to achieve targeted delivery, controllable release, and specific biochemical reactions. This review aims to highlight the latest advancements in stimuli-responsive materials and their potential in precision medicine. Initially, we introduce disease-related internal stimuli and capable external stimuli, elucidating the reaction principles of responsive functional groups. Subsequently, we provide a detailed analysis of representative pre-clinical achievements of stimuli responsive materials across various clinical applications, including enhancements in the treatment of cancers, injury diseases, inflammatory diseases, infection diseases, and high-throughput microfluidic biosensors. Finally, we discuss some clinical challenges, such as off-target effects, long-term impacts of nano-materials, potential ethical concerns, and offer insights into future perspectives of stimuli-responsive materials.
Collapse
Affiliation(s)
- Ruixuan Zheng
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
| | - Chang Yu
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
- Intervention DepartmentThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Dan Yao
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
| | - Mengsi Cai
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
| | - Lexiang Zhang
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Fangfu Ye
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
| | - Xiaoying Huang
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
| |
Collapse
|
8
|
Takaloo S, Xu AH, Zaidan L, Irannejad M, Yavuz M. Towards Point-of-Care Single Biomolecule Detection Using Next Generation Portable Nanoplasmonic Biosensors: A Review. BIOSENSORS 2024; 14:593. [PMID: 39727858 DOI: 10.3390/bios14120593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Over the past few years, nanoplasmonic biosensors have gained widespread interest for early diagnosis of diseases thanks to their simple design, low detection limit down to the biomolecule level, high sensitivity to even small molecules, cost-effectiveness, and potential for miniaturization, to name but a few benefits. These intrinsic natures of the technology make it the perfect solution for compact and portable designs that combine sampling, analysis, and measurement into a miniaturized chip. This review summarizes applications, theoretical modeling, and research on portable nanoplasmonic biosensor designs. In order to develop portable designs, three basic components have been miniaturized: light sources, plasmonic chips, and photodetectors. There are five types of portable designs: portable SPR, miniaturized components, flexible, wearable SERS-based, and microfluidic. The latter design also reduces diffusion times and allows small amounts of samples to be delivered near plasmonic chips. The properties of nanomaterials and nanostructures are also discussed, which have improved biosensor performance metrics. Researchers have also made progress in improving the reproducibility of these biosensors, which is a major obstacle to their commercialization. Furthermore, future trends will focus on enhancing performance metrics, optimizing biorecognition, addressing practical constraints, considering surface chemistry, and employing emerging technologies. In the foreseeable future, these trends will be merged to result in portable nanoplasmonic biosensors offering detection of even a single biomolecule.
Collapse
Affiliation(s)
- Saeed Takaloo
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
| | - Alexander H Xu
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Liena Zaidan
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | | - Mustafa Yavuz
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
9
|
Soni A, Singh P, Tripathi GK, Dixit P. IoT and Nano‐Bioelectronics for Target Drug Delivery. INTERNET OF THINGS IN BIOELECTRONICS 2024:17-40. [DOI: 10.1002/9781394241903.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Hazarika D, Sarma S, Shankarishan P. Nanotechnology in cancer therapeutics, diagnosis, and management. BIOTECHNOLOGIA 2024; 105:287-303. [PMID: 39439717 PMCID: PMC11492894 DOI: 10.5114/bta.2024.141807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 10/25/2024] Open
Abstract
Nanotechnology presents an exciting opportunity in cancer research by offering significant advancements in therapies, diagnosis, and management. It possesses unparalleled potential to enhance the accuracy and effectiveness of cancer therapy while simultaneously reducing adverse effects, owing to its distinctive capability to manipulate matter at a molecular level. Using nanoparticle carriers has facilitated the precise administration of therapeutic agents to afflicted areas within the human body through customized drug delivery systems, resulting in improved treatment accuracy and efficacy while reducing adverse effects. These techniques improve drug solubility and stability, leading to elevated levels of biochemical availability and improved efficacy outcomes for patients with minimal negative effects during treatment cycles. Another use case for nanoparticles includes tumor imaging; functionalized with targeting ligands containing diagnostic agents, they foster early detection, making quicker remedial action plans possible. Overall, the incorporation of nanotechnology ensures a promising future, although it stresses the need to address regulatory hurdles and safety concerns before widespread clinical implementation. Despite the complexity of cancer research and patient care, nanotechnology shows promise in transforming both fields.
Collapse
Affiliation(s)
- Disha Hazarika
- University of Science and Technology Meghalaya (USTM), Meghalaya, India
| | - Sumit Sarma
- University of Science and Technology Meghalaya (USTM), Meghalaya, India
| | | |
Collapse
|
11
|
Oldroyd P, Hadwe SE, Barone DG, Malliaras GG. Thin-film implants for bioelectronic medicine. MRS BULLETIN 2024; 49:1045-1058. [PMID: 39397879 PMCID: PMC11469980 DOI: 10.1557/s43577-024-00786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 10/15/2024]
Abstract
This article is based on the MRS Mid-Career Researcher Award "for outstanding contributions to the fundamentals and development of organic electronic materials and their application in biology and medicine" presentation given by George G. Malliaras, University of Cambridge, at the 2023 MRS Spring Meeting in San Francisco, Calif.Bioelectronic medicine offers a revolutionary approach to treating disease by stimulating the body with electricity. While current devices show safety and efficacy, limitations, including bulkiness, invasiveness, and scalability, hinder their wider application. Thin-film implants promise to overcome these limitations. Made using microfabrication technologies, these implants conform better to neural tissues, reduce tissue damage and foreign body response, and provide high-density, multimodal interfaces with the body. This article explores how thin-film implants using organic materials and novel designs may contribute to disease management, intraoperative monitoring, and brain mapping applications. Additionally, the technical challenges to be addressed for this technology to succeed are discussed. Graphical abstract
Collapse
Affiliation(s)
- Poppy Oldroyd
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Salim El Hadwe
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Damiano G. Barone
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Mariello M, Eş I, Proctor CM. Soft and Flexible Bioelectronic Micro-Systems for Electronically Controlled Drug Delivery. Adv Healthc Mater 2024; 13:e2302969. [PMID: 37924224 DOI: 10.1002/adhm.202302969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Indexed: 11/06/2023]
Abstract
The concept of targeted and controlled drug delivery, which directs treatment to precise anatomical sites, offers benefits such as fewer side effects, reduced toxicity, optimized dosages, and quicker responses. However, challenges remain to engineer dependable systems and materials that can modulate host tissue interactions and overcome biological barriers. To stay aligned with advancements in healthcare and precision medicine, novel approaches and materials are imperative to improve effectiveness, biocompatibility, and tissue compliance. Electronically controlled drug delivery (ECDD) has recently emerged as a promising approach to calibrated drug delivery with spatial and temporal precision. This article covers recent breakthroughs in soft, flexible, and adaptable bioelectronic micro-systems designed for ECDD. It overviews the most widely reported operational modes, materials engineering strategies, electronic interfaces, and characterization techniques associated with ECDD systems. Further, it delves into the pivotal applications of ECDD in wearable, ingestible, and implantable medical devices. Finally, the discourse extends to future prospects and challenges for ECDD.
Collapse
Affiliation(s)
- Massimo Mariello
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| | - Ismail Eş
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| | - Christopher M Proctor
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
13
|
Edo GI, Yousif E, Al-Mashhadani MH. Modified chitosan: Insight on biomedical and industrial applications. Int J Biol Macromol 2024; 275:133526. [PMID: 38960250 DOI: 10.1016/j.ijbiomac.2024.133526] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Chitosan (CS), a by -product of chitin deacetylation can be useful in a broad range of purposes, to mention agriculture, pharmaceuticals, material science, food and nutrition, biotechnology and of recent, in gene therapy. Chitosan is a highly desired biomolecule due to the existence of many sensitive functional groups inside the molecule and also because of its net cationicity. The latter provides flexibility for creating a wide range of derivatives for particular end users across various industries. This overview aims to compile some of the most recent research on the bio-related applications that chitosan and its derivatives can be used for. However, chitosan's reactive functional groups are amendable to chemical reaction. Modifying the material to show enhanced solubility, a greater range of application options and pH-sensitive targeting and others have been a major focus of chitosan research. This review describes the modifications of chitosan that have been made to improve its water solubility, pH sensitivity, and capacity to target chitosan derivatives. Applying the by-products of chitosan as antibacterial, in targeting, extended release and as delivery systems is also covered. The by-products of chitosan will be important and potentially useful in developing new biomedical drugs in time to come.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq.
| | - Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | | |
Collapse
|
14
|
Khane Y, Albukhaty S, Sulaiman GM, Fennich F, Bensalah B, Hafsi Z, Aouf M, Amar ZH, Aouf D, Al-kuraishy HM, Saadoun H, Mohammed HA, Mohsin MH, Al-aqbi ZT. Fabrication, characterization and application of biocompatible nanocomposites: A review. Eur Polym J 2024; 214:113187. [DOI: 10.1016/j.eurpolymj.2024.113187] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Niemiec M, Kim K. Lifetime engineering of bioelectronic implants with mechanically reliable thin film encapsulations. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2023; 6:012001. [PMID: 40516030 DOI: 10.1088/2516-1091/ad0b19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/09/2023] [Indexed: 06/16/2025]
Abstract
While the importance of thin form factor and mechanical tissue biocompatibility has been made clear for next generation bioelectronic implants, material systems meeting these criteria still have not demonstrated sufficient long-term durability. This review provides an update on the materials used in modern bioelectronic implants as substrates and protective encapsulations, with a particular focus on flexible and conformable devices. We review how thin film encapsulations are known to fail due to mechanical stresses and environmental surroundings under processing and operating conditions. This information is then reflected in recommending state-of-the-art encapsulation strategies for designing mechanically reliable thin film bioelectronic interfaces. Finally, we assess the methods used to evaluate novel bioelectronic implant devices and the current state of their longevity based on encapsulation and substrate materials. We also provide insights for future testing to engineer long-lived bioelectronic implants more effectively and to make implantable bioelectronics a viable option for chronic diseases in accordance with each patient's therapeutic timescale.
Collapse
Affiliation(s)
- Martin Niemiec
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, United States of America
| | - Kyungjin Kim
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, United States of America
| |
Collapse
|
16
|
Singh J, Jindal N, Kumar V, Singh K. Role of green chemistry in synthesis and modification of graphene oxide and its application: A review study. CHEMICAL PHYSICS IMPACT 2023; 6:100185. [DOI: 10.1016/j.chphi.2023.100185] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
17
|
Versaci M, Morabito FC. Numerical Approaches for Recovering the Deformable Membrane Profile of Electrostatic Microdevices for Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:1688. [PMID: 36772726 PMCID: PMC9920444 DOI: 10.3390/s23031688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/22/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Recently, a circular symmetrical nonlinear stationary 2D differential model for biomedical micropumps, where the amplitude of the electrostatic field is locally proportional to the curvature of the membrane, was studied in detail. Starting from this, in this work, we first introduce a positive and limited function to model the dielectric properties of the material constituting the membrane according to experimental evidence which highlights that electrostatic capacitance variation occurs when the membrane deforms. Therefore, we present and discuss algebraic conditions of existence, uniqueness, and stability, even with the fringing field formulated according to the Pelesko-Driskoll theory, which is known to take these effects into account with terms characterized by reduced computational loads. These conditions, using "gold standard" numerical approaches, allow the optimal numerical recovery of the membrane profile to be achieved under different load conditions and also provide an important criterion for choosing the intended use of the device starting from the choice of the material constituting the membrane and vice versa. Finally, important insights are discussed regarding the pull-in voltage and electrostatic pressure.
Collapse
Affiliation(s)
- Mario Versaci
- DICEAM Department, "Mediterranea" University, 89124 Reggio Calabria, Italy
| | | |
Collapse
|
18
|
Pyridin-2-yl-substituted smart polymers sensitive to thermally triggered side group cyclization. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
19
|
Lim YY, Zaidi AMA, Miskon A. Composing On-Program Triggers and On-Demand Stimuli into Biosensor Drug Carriers in Drug Delivery Systems for Programmable Arthritis Therapy. Pharmaceuticals (Basel) 2022; 15:1330. [PMID: 36355502 PMCID: PMC9698912 DOI: 10.3390/ph15111330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 08/31/2023] Open
Abstract
Medication in arthritis therapies is complex because the inflammatory progression of rheumatoid arthritis (RA) and osteoarthritis (OA) is intertwined and influenced by one another. To address this problem, drug delivery systems (DDS) are composed of four independent exogenous triggers and four dependent endogenous stimuli that are controlled on program and induced on demand, respectively. However, the relationships between the mechanisms of endogenous stimuli and exogenous triggers with pathological alterations remain unclear, which results in a major obstacle in terms of clinical translation. Thus, the rationale for designing a guidance system for these mechanisms via their key irritant biosensors is in high demand. Many approaches have been applied, although successful clinical translations are still rare. Through this review, the status quo in historical development is highlighted in order to discuss the unsolved clinical difficulties such as infiltration, efficacy, drug clearance, and target localisation. Herein, we summarise and discuss the rational compositions of exogenous triggers and endogenous stimuli for programmable therapy. This advanced active pharmaceutical ingredient (API) implanted dose allows for several releases by remote controls for endogenous stimuli during lesion infections. This solves the multiple implantation and local toxic accumulation problems by using these flexible desired releases at the specified sites for arthritis therapies.
Collapse
Affiliation(s)
- Yan Yik Lim
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Sungai Besi Prime Camp, Kuala Lumpur 57000, Malaysia
| | - Ahmad Mujahid Ahmad Zaidi
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Sungai Besi Prime Camp, Kuala Lumpur 57000, Malaysia
| | - Azizi Miskon
- Faculty of Engineering, National Defence University of Malaysia, Sungai Besi Prime Camp, Kuala Lumpur 57000, Malaysia
| |
Collapse
|