1
|
Pujana-Vaquerizo M, Bozal-Basterra L, Carracedo A. Metabolic adaptations in prostate cancer. Br J Cancer 2024; 131:1250-1262. [PMID: 38969865 PMCID: PMC11473656 DOI: 10.1038/s41416-024-02762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024] Open
Abstract
Prostate cancer is one of the most commonly diagnosed cancers in men and is a major cause of cancer-related deaths worldwide. Among the molecular processes that contribute to this disease, the weight of metabolism has been placed under the limelight in recent years. Tumours exhibit metabolic adaptations to comply with their biosynthetic needs. However, metabolites also play an important role in supporting cell survival in challenging environments or remodelling the tumour microenvironment, thus being recognized as a hallmark in cancer. Prostate cancer is uniquely driven by androgen receptor signalling, and this knowledge has also influenced the paths of cancer metabolism research. This review provides a comprehensive perspective on the metabolic adaptations that support prostate cancer progression beyond androgen signalling, with a particular focus on tumour cell intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Mikel Pujana-Vaquerizo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Laura Bozal-Basterra
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
- Traslational Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biobizkaia Health Research Institute, Baracaldo, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
2
|
Zhang X, Guo H, Li X, Tao W, Ma X, Zhang Y, Xiao W. Single-cell omics and machine learning integration to develop a polyamine metabolism-based risk score model in breast cancer patients. J Cancer Res Clin Oncol 2024; 150:473. [PMID: 39441216 PMCID: PMC11499360 DOI: 10.1007/s00432-024-06001-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Breast cancer remains the leading malignant neoplasm among women globally, posing significant challenges in terms of treatment and prognostic evaluation. The metabolic pathway of polyamines is crucial in breast cancer progression, with a strong association to the increased capabilities of tumor cells for proliferation, invasion, and metastasis. METHODS We used a multi-omics approach combining bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq) to study polyamine metabolism. Data from The Cancer Genome Atlas, Gene Expression Omnibus, and Genotype-Tissue Expression identified 286 differentially expressed genes linked to polyamine pathways in breast cancer. These genes were analyzed using univariate COX and machine learning algorithms to develop a prognostic scoring algorithm. Single-cell RNA sequencing validated the model by examining gene expression heterogeneity at the cellular level. RESULTS Our single-cell analyses revealed distinct subpopulations with different expressions of genes related to polyamine metabolism, highlighting the heterogeneity of the tumor microenvironment. The SuperPC model (a constructed risk score) demonstrated high accuracy when predicting patient outcomes. The immune profiling and functional enrichment analyses revealed that the genes identified play a crucial role in cell cycle control and immune modulation. Single-cell validation confirmed that polyamine metabolism genes were present in specific cell clusters. This highlights their potential as therapeutic targets. CONCLUSIONS This study integrates single cell omics with machine-learning to develop a robust scoring model for breast cancer based on polyamine metabolic pathways. Our findings offer new insights into tumor heterogeneity, and a novel framework to personalize prognosis. Single-cell technologies are being used in this context to enhance our understanding of the complex molecular terrain of breast cancer and support more effective clinical management.
Collapse
Affiliation(s)
- Xiliang Zhang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, No. 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Hanjie Guo
- Department of General Surgery, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xiaolong Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, No. 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Wei Tao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, No. 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Xiaoqing Ma
- Department of General Surgery, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yuxing Zhang
- Department of General Surgery, The Sixth Medical Center of PLA General Hospital, 6 Fucheng Road, Haidian, Beijing, 100048, P.R. China.
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, No. 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| |
Collapse
|
3
|
Fujii J. Redox remodeling of central metabolism as a driving force for cellular protection, proliferation, differentiation, and dysfunction. Free Radic Res 2024:1-24. [PMID: 39316831 DOI: 10.1080/10715762.2024.2407147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
The production of reactive oxygen species (ROS) is elevated via metabolic hyperactivation in response to a variety of stimuli such as growth factors and inflammation. Tolerable amounts of ROS moderately inactivate enzymes via oxidative modification, which can be reversed back to the native form in a redox-dependent manner. The excessive production of ROS, however, causes cell dysfunction and death. Redox-reactive enzymes are present in primary metabolic pathways such as glycolysis and the tricarboxylic acid cycle, and these act as floodgates for carbon flux. Oxidation of a specific form of cysteine inhibits glyceraldehyde-3-phosphate dehydrogenase, which is reversible, and causes an accumulation of upstream intermediary compounds that increases the flux of glucose-6-phosphate to the pentose phosphate pathway. These reactions increase the NADPH and ribose-5-phosphate that are available for reductive reactions and nucleotide synthesis, respectively. On the other hand, oxidative inactivation of mitochondrial aconitase increases citrate, which is then recruited to synthesize fatty acids in the cytoplasm. Decreases in the use of carbohydrate for ATP production can be compensated via amino acid catabolism, and this metabolic change makes nitrogen available for nucleic acid synthesis. Coupling of the urea cycle also converts nitrogen to urea and polyamine, the latter of which supports cell growth. This metabolic remodeling stimulates the proliferation of tumor cells and fibrosis in oxidatively damaged tissues. Oxidative modification of these enzymes is generally reversible in the early stages of oxidizing reactions, which suggests that early treatment with appropriate antioxidants promotes the maintenance of natural metabolism.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| |
Collapse
|
4
|
Fallah M, Karim Dehnavi M, Lotfi K, Aminianfar A, Azadbakht L, Esmaillzadeh A. Folate Biomarkers, Folate Intake, and Risk of Death From All Causes, Cardiovascular Disease, and Cancer: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Nutr Rev 2024:nuae077. [PMID: 38950416 DOI: 10.1093/nutrit/nuae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Abstract
CONTEXT Existing evidence on the relation between folate intake and biomarkers with mortality risk is controversial. OBJECTIVE Previous cohort studies were examined regarding folate intake and biomarkers in relation to risk of all-cause, cardiovascular disease- (CVD), and cancer-related mortality through a systematic review and meta-analysis. DATA SOURCES A systematic search was performed of the PubMed, Scopus, and ISI Web of Science databases up to July 2023. DATA EXTRACTION Prospective cohort studies examining the association of folate biomarkers (in serum, plasma, red blood cells) and intake with risk of all-cause, CVD-, and cancer-related mortality were considered. A random-effects model was applied to combine study-specific risk estimates. Dose-response relations were assessed by 1-stage weighted mixed-effects meta-analysis. DATA ANALYSIS A total of 25 cohorts with 423 304 participants, 36 558 all-cause, 12 662 CVD-, and 2426 cancer-related deaths were included. No significant association was observed between the highest levels of folate biomarkers and all-cause mortality risk (hazard ratio [HR], 0.91; 95% CI, 0.77-1.06; n = 17; I2 = 89.4%; P < .001), CVD-related mortality risk (HR, 0.97; 95% CI, 0.87-1.06; n = 11; I2 = 0.0%; P = .57), and cancer-related mortality risk (HR, 0.85; 95% CI, 0.69-1.05; n = 6; I2 = 57.8%; P = .04) compared with the lowest. Furthermore, each 10 nmol/L increase was marginally related to a 12% reduced all-cause mortality risk but not to CVD- and cancer-related mortality risk. A significant inverse association was found between highest intake of dietary folate and the lowest, and risk of all-cause (HR, 0.87; 95% CI, 0.78-0.96; n = 3; I2 = 63.6%; P = .06) and CVD (HR, 0.77; 95% CI, 0.57-0.93; n = 4; I2 = 80.2%; P = .002) mortality. CONCLUSIONS This meta-analysis revealed a significant inverse relation between dietary folate intake and risk of all-cause and CVD mortality. Such an association was not found in the case of folate biomarkers. Further prospective studies are warranted to confirm these findings. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42023401700.
Collapse
Affiliation(s)
- Melika Fallah
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, 14155-6117, Iran
| | - Maryam Karim Dehnavi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, 14155-6117, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, 14155-6117, Iran
| | - Keyhan Lotfi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, 14155-6117, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, 14155-6117, Iran
| | - Azadeh Aminianfar
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Leila Azadbakht
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, 14155-6117, Iran
- Diabetes Research Centre, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 14155-6117, Iran
| | - Ahmad Esmaillzadeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, 14155-6117, Iran
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 14155-6117, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, 81745, Iran
| |
Collapse
|
5
|
Qiu Y, Xie E, Xu H, Cheng H, Li G. One-carbon metabolism shapes T cell immunity in cancer. Trends Endocrinol Metab 2024:S1043-2760(24)00160-7. [PMID: 38925992 DOI: 10.1016/j.tem.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
One-carbon metabolism (1CM), comprising folate metabolism and methionine metabolism, serves as an important mechanism for cellular energy provision and the production of vital signaling molecules, including single-carbon moieties. Its regulation is instrumental in sustaining the proliferation of cancer cells and facilitating metastasis; in addition, recent research has shed light on its impact on the efficacy of T cell-mediated immunotherapy. In this review, we consolidate current insights into how 1CM affects T cell activation, differentiation, and functionality. Furthermore, we delve into the strategies for modulating 1CM in both T cells and tumor cells to enhance the efficacy of adoptively transferred T cells, overcome metabolic challenges in the tumor microenvironment (TME), and maximize the benefits of T cell-mediated immunotherapy.
Collapse
Affiliation(s)
- Yajing Qiu
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Ermei Xie
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Haipeng Xu
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fujian, 350011, China
| | - Hongcheng Cheng
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China.
| | - Guideng Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
6
|
Lu J, Gui W, Tang S, Shi Q, Wang X, Huang L, Shen Y, Yang S, Xiang J, Yuan J, Mo J, Kong X, Huang M, Li X, Lu C. Nicotinamide N-Methyltransferase (NNMT) is Involved in Gastric Adenocarcinoma Immune Infiltration by Driving Amino Acid Metabolism. Nutr Cancer 2024; 76:745-759. [PMID: 38855943 DOI: 10.1080/01635581.2024.2359741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/11/2024]
Abstract
Objectives: This study investigates the role of Nicotinamide N-methyltransferase (NNMT) in immune infiltration modulation through amino acid metabolism in gastric adenocarcinoma (STAD). Methods: Utilizing data from The Cancer Genome Atlas (TCGA) and validated with clinical samples, we analyzed NNMT expression and its prognostic implications in STAD. Differential amino acid profiles between cancerous and adjacent normal tissues were assessed, along with their associations with NNMT. Results: NNMT exhibits heightened expression in STAD cancer tissues, positively correlating with tumor immune infiltration. Additionally, twenty-eight amino acids display differential expression in gastric tissue, with their metabolic enzymes showing connections to NNMT. Conclusions: Elevated NNMT expression in STAD tissues potentially influences amino acid metabolism, thereby affecting immune infiltration dynamics and tumorigenesis in gastric adenocarcinoma.
Collapse
Affiliation(s)
- Jianyong Lu
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Wenliang Gui
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Shen Tang
- School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Qianqian Shi
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Xinhang Wang
- School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Liyuan Huang
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Yinghui Shen
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Shuting Yang
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Junni Xiang
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Jianglang Yuan
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Jiao Mo
- School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Xingxing Kong
- School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Mingwei Huang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiyi Li
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Nanning, China
| | - Cailing Lu
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Nanning, China
| |
Collapse
|
7
|
More TH, Hiller K, Seifert M, Illig T, Schmidt R, Gronauer R, von Hahn T, Weilert H, Stang A. Metabolomics analysis reveals novel serum metabolite alterations in cancer cachexia. Front Oncol 2024; 14:1286896. [PMID: 38450189 PMCID: PMC10915872 DOI: 10.3389/fonc.2024.1286896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Background Cachexia is a body wasting syndrome that significantly affects well-being and prognosis of cancer patients, without effective treatment. Serum metabolites take part in pathophysiological processes of cancer cachexia, but apart from altered levels of select serum metabolites, little is known on the global changes of the overall serum metabolome, which represents a functional readout of the whole-body metabolic state. Here, we aimed to comprehensively characterize serum metabolite alterations and analyze associated pathways in cachectic cancer patients to gain new insights that could help instruct strategies for novel interventions of greater clinical benefit. Methods Serum was sampled from 120 metastatic cancer patients (stage UICC IV). Patients were grouped as cachectic or non-cachectic according to the criteria for cancer cachexia agreed upon international consensus (main criterium: weight loss adjusted to body mass index). Samples were pooled by cachexia phenotype and assayed using non-targeted gas chromatography-mass spectrometry (GC-MS). Normalized metabolite levels were compared using t-test (p < 0.05, adjusted for false discovery rate) and partial least squares discriminant analysis (PLS-DA). Machine-learning models were applied to identify metabolite signatures for separating cachexia states. Significant metabolites underwent MetaboAnalyst 5.0 pathway analysis. Results Comparative analyses included 78 cachectic and 42 non-cachectic patients. Cachectic patients exhibited 19 annotable, significantly elevated (including glucose and fructose) or decreased (mostly amino acids) metabolites associating with aminoacyl-tRNA, glutathione and amino acid metabolism pathways. PLS-DA showed distinct clusters (accuracy: 85.6%), and machine-learning models identified metabolic signatures for separating cachectic states (accuracy: 83.2%; area under ROC: 88.0%). We newly identified altered blood levels of erythronic acid and glucuronic acid in human cancer cachexia, potentially linked to pentose-phosphate and detoxification pathways. Conclusion We found both known and yet unknown serum metabolite and metabolic pathway alterations in cachectic cancer patients that collectively support a whole-body metabolic state with impaired detoxification capability, altered glucose and fructose metabolism, and substrate supply for increased and/or distinct metabolic needs of cachexia-associated tumors. These findings together imply vulnerabilities, dependencies and targets for novel interventions that have potential to make a significant impact on future research in an important field of cancer patient care.
Collapse
Affiliation(s)
- Tushar H. More
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Martin Seifert
- Asklepios Precision Medicine, Asklepios Hospitals GmbH & Co KgaA, Königstein (Taunus), Germany
- Connexome GmbH, Fischen, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- Hannover Unified Biobank (HUB), Hannover, Germany
| | - Rudi Schmidt
- Asklepios Precision Medicine, Asklepios Hospitals GmbH & Co KgaA, Königstein (Taunus), Germany
- Immunetrue, Cologne, Germany
| | - Raphael Gronauer
- Asklepios Precision Medicine, Asklepios Hospitals GmbH & Co KgaA, Königstein (Taunus), Germany
- Connexome GmbH, Fischen, Germany
| | - Thomas von Hahn
- Asklepios Hospital Barmbek, Department of Gastroenterology, Hepatology and Endoscopy, Hamburg, Germany
- Asklepios Tumorzentrum Hamburg, Hamburg, Germany
- Semmelweis University, Asklepios Campus Hamburg, Budapest, Hungary
| | - Hauke Weilert
- Asklepios Tumorzentrum Hamburg, Hamburg, Germany
- Semmelweis University, Asklepios Campus Hamburg, Budapest, Hungary
- Asklepios Hospital Barmbek, Department of Hematology, Oncology and Palliative Care Medicine, Hamburg, Germany
| | - Axel Stang
- Asklepios Tumorzentrum Hamburg, Hamburg, Germany
- Semmelweis University, Asklepios Campus Hamburg, Budapest, Hungary
- Asklepios Hospital Barmbek, Department of Hematology, Oncology and Palliative Care Medicine, Hamburg, Germany
| |
Collapse
|
8
|
Ren X, Wang X, Zheng G, Wang S, Wang Q, Yuan M, Xu T, Xu J, Huang P, Ge M. Targeting one-carbon metabolism for cancer immunotherapy. Clin Transl Med 2024; 14:e1521. [PMID: 38279895 PMCID: PMC10819114 DOI: 10.1002/ctm2.1521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND One-carbon (1C) metabolism is a metabolic network that plays essential roles in biological reactions. In 1C metabolism, a series of nutrients are used to fuel metabolic pathways, including nucleotide metabolism, amino acid metabolism, cellular redox defence and epigenetic maintenance. At present, 1C metabolism is considered the hallmark of cancer. The 1C units obtained from the metabolic pathways increase the proliferation rate of cancer cells. In addition, anticancer drugs, such as methotrexate, which target 1C metabolism, have long been used in the clinic. In terms of immunotherapy, 1C metabolism has been used to explore biomarkers connected with immunotherapy response and immune-related adverse events in patients. METHODS We collected numerous literatures to explain the roles of one-carbon metabolism in cancer immunotherapy. RESULTS In this review, we focus on the important pathways in 1C metabolism and the function of 1C metabolism enzymes in cancer immunotherapy. Then, we summarise the inhibitors acting on 1C metabolism and their potential application on cancer immunotherapy. Finally, we provide a viewpoint and conclusion regarding the opportunities and challenges of targeting 1C metabolism for cancer immunotherapy in clinical practicability in the future. CONCLUSION Targeting one-carbon metabolism is useful for cancer immunotherapy.
Collapse
Affiliation(s)
- Xinxin Ren
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
- Department of PathologyCancer CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiang Wang
- Department of PharmacyAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Guowan Zheng
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| | - Shanshan Wang
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Qiyue Wang
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| | - Mengnan Yuan
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Tong Xu
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Jiajie Xu
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| | - Ping Huang
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Minghua Ge
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| |
Collapse
|
9
|
Xie J, Lin D, Li J, Zhou T, Lin S, Lin Z. Effects of Ganoderma lucidum polysaccharide peptide ameliorating cyclophosphamide-induced immune dysfunctions based on metabolomics analysis. Front Nutr 2023; 10:1179749. [PMID: 37305093 PMCID: PMC10248424 DOI: 10.3389/fnut.2023.1179749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/26/2023] [Indexed: 06/13/2023] Open
Abstract
Ganoderma lucidum polysaccharide peptide (GLPP) is one of the most abundant constituents of Ganoderma lucidum (G. lucidum), with a wide range of functional activities. The present study investigated the immunomodulatory effects of GLPP in cyclophosphamide (CTX)-induced immunosuppressive mice. The results showed that 100 mg/kg/day of GLPP administration significantly alleviated CTX-induced immune damage by improving immune organ indexes, earlap swelling rate, the index of carbon phagocytosis and clearance value, secretion of cytokines (TNF-α, IFN-γ, and IL-2), and immunoglobulin A(IgA) in the mice. Furthermore, ultra-performance liquid chromatography with mass/mass spectrometry (UPLC-MS/MS) was conducted to identify the metabolites, followed by biomarker and pathway analysis. The results showed that GLPP treatment alleviated CTX-induced alterations in the fecal metabolome profile, including arachidonic acid (AA), leukotriene D4 (LTD4), indole-3-ethanol, and formyltetrahydrofolate (CF), by reversing citric acid, malic acid, cortisol, and oleic acid. These results support the concept that GLPP exhibits immunomodulatory activity via the folate cycle, methionine cycle, TCA cycle, fatty acid biosynthesis and metabolism, glycerophospholipid metabolism, AA metabolism, and cAMP pathways. In conclusion, the results could be helpful to understand the use of GLPP to clarify the immunomodulatory mechanism and be used as immunostimulants to prevent CTX-induced side effects in the immune system.
Collapse
Affiliation(s)
- Jing Xie
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Hunan University of Humanities, Science, and Technology, Loudi, Hunan, China
| | - Dongmei Lin
- National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jing Li
- National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tonghui Zhou
- National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shuqian Lin
- National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhanxi Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
10
|
Liu L, Yu H, Bai J, Xu Q, Zhang Y, Zhang X, Yu Z, Liu Y. Positive Association of Serum Vitamin B6 Levels with Intrapulmonary Lymph Node and/or Localized Pleural Metastases in Non-Small Cell Lung Cancer: A Retrospective Study. Nutrients 2023; 15:nu15102340. [PMID: 37242223 DOI: 10.3390/nu15102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The relationship between vitamin B levels and the development and progression of lung cancer remains inconclusive. We aimed to investigate the relationship between B vitamins and intrapulmonary lymph nodes as well as localized pleural metastases in patients with non-small cell lung cancer (NSCLC). This was a retrospective study including patients who underwent lung surgery for suspected NSCLC at our institution from January 2016 to December 2018. Logistic regression models were used to evaluate the associations between serum B vitamin levels and intrapulmonary lymph node and/or localized pleural metastases. Stratified analysis was performed according to different clinical characteristics and tumor types. A total of 1498 patients were included in the analyses. Serum vitamin B6 levels showed a positive association with intrapulmonary metastasis in a multivariate logistic regression (odds ratio (OR) of 1.016, 95% confidence interval (CI) of 1.002-1.031, p = 0.021). After multivariable adjustment, we found a high risk of intrapulmonary metastasis in patients with high serum vitamin B6 levels (fourth quartile (Q4) vs. Q1, OR of 1.676, 95%CI of 1.092 to 2.574, p = 0.018, p for trend of 0.030). Stratified analyses showed that the positive association between serum vitamin B6 and lymph node metastasis appeared to be stronger in females, current smokers, current drinkers, and those with a family history of cancer, squamous cell carcinoma, a tumor of 1-3 cm in diameter, or a solitary tumor. Even though serum vitamin B6 levels were associated with preoperative NSCLC upstaging, B6 did not qualify as a useful biomarker due to weak association and wide confidence intervals. Thus, it would be appropriate to prospectively investigate the relationship between serum vitamin B6 levels and lung cancer further.
Collapse
Affiliation(s)
- Lu Liu
- Department of Nutrition, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Hang Yu
- Department of Respiratory and Critical Medicine, Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Jingmin Bai
- Department of Radiotherapy, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Qing Xu
- Department of Nutrition, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yong Zhang
- Department of Nutrition, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xinsheng Zhang
- Department of Nutrition, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Zhimeng Yu
- Department of Nutrition, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yinghua Liu
- Department of Nutrition, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|