1
|
Stoicovy RA, Cora N, Perez A, Nagliya D, Del Calvo G, Lopez TB, Weinstein EC, Borges JI, Maning J, Lymperopoulos A. Cyclic adenosine monophosphate critically modulates cardiac GLP-1 receptor's anti-inflammatory effects. Inflamm Res 2024; 73:2043-2056. [PMID: 39305297 DOI: 10.1007/s00011-024-01950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND Glucagon-like peptide (GLP)-1 receptor (GLP1R) agonists exert a multitude of beneficial cardiovascular effects beyond control of blood glucose levels and obesity reduction. They also have anti-inflammatory actions through both central and peripheral mechanisms. GLP1R is a G protein-coupled receptor (GPCR), coupling to adenylyl cyclase (AC)-stimulatory Gs proteins to raise cyclic 3`-5`-adenosine monophosphate (cAMP) levels in cells. cAMP exerts various anti-apoptotic and anti-inflammatory effects via its effectors protein kinase A (PKA) and Exchange protein directly activated by cAMP (Epac). However, the precise role and importance of cAMP in mediating GLP1R`s anti-inflammatory actions, at least in the heart, remains to be determined. To this end, we tested the effects of the GLP1R agonist liraglutide on lipopolysaccharide (LPS)-induced acute inflammatory injury in H9c2 cardiac cells, either in the absence of cAMP production (AC inhibition) or upon enhancement of cAMP levels via phosphodiesterase (PDE)-4 inhibition with roflumilast. METHODS & RESULTS Liraglutide dose-dependently inhibited LPS-induced apoptosis and increased cAMP levels in H9c2 cells, with roflumilast but also PDE8 inhibition further enhancing cAMP production by liraglutide. GLP1R-stimulated cAMP markedly suppressed the LPS-dependent induction of pro-inflammatory tumor necrosis factor (TNF)-a, interleukin (IL)-1b, and IL-6 cytokine expression, of inducible nitric oxide synthase (iNOS) expression and nuclear factor (NF)-kB activity, of matrix metalloproteinases (MMP)-2 and MMP-9 levels and activities, and of myocardial injury markers in H9c2 cardiac cells. The effects of liraglutide were mediated by the GLP1R since they were abolished by the GLP1R antagonist exendin(9-39). Importantly, AC inhibition completely abrogated liraglutide`s suppression of LPS-dependent inflammatory injury, whereas roflumilast significantly enhanced the protective effects of liraglutide against LPS-induced inflammation. Finally, PKA inhibition or Epac1/2 inhibition alone only partially blocked liraglutide`s suppression of LPS-induced inflammation in H9c2 cardiac cells, but, together, PKA and Epac1/2 inhibition fully prevented liraglutide from reducing LPS-dependent inflammation. CONCLUSIONS cAMP, via activation of both PKA and Epac, is essential for GLP1R`s anti-inflammatory signaling in cardiac cells and that cAMP levels crucially regulate the anti-inflammatory efficacy of GLP1R agonists in the heart. Strategies that elevate cardiac cAMP levels, such as PDE4 inhibition, may potentiate the cardiovascular, including anti-inflammatory, benefits of GLP1R agonist drugs.
Collapse
Affiliation(s)
- Renee A Stoicovy
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Arianna Perez
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Deepika Nagliya
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Giselle Del Calvo
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Teresa Baggio Lopez
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Emma C Weinstein
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Jordana I Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA.
- , University Dr., HPD (Terry) Bldg./Room 1350, Fort Lauderdale, FL, 33328-2018, USA.
| |
Collapse
|
3
|
Chetran A, Bădescu MC, Şerban IL, Duca ŞT, Afrăsânie I, Cepoi MR, Dmour BA, Matei IT, Haba MŞC, Costache AD, Mitu O, Cianga CM, Tuchiluş C, Constantinescu D, Costache-Enache II. Insights into the Novel Cardiac Biomarker in Acute Heart Failure: Mybp-C. Life (Basel) 2024; 14:513. [PMID: 38672783 PMCID: PMC11051483 DOI: 10.3390/life14040513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: Given its high cardiac specificity and its capacity to directly assess the cardiac function, cardiac myosin-binding protein (MyBP-C) is a promising biomarker in patients with acute heart failure (AHF). The aim of our study was to investigate the clinical utility of this novel marker for diagnosis and short-term prognosis in subjects with AHF. (2) Methods: We measured plasma levels of MyBP-C at admission in 49 subjects (27 patients admitted with AHF and 22 controls). (3) Results: The plasma concentration of MyBP-C was significantly higher in patients with AHF compared to controls (54.88 vs. 0.01 ng/L, p < 0.001). For 30-day prognosis, MyBP-C showed significantly greater AUC (0.972, p < 0.001) than NT-proBNP (0.849, p = 0.001) and hs-TnI (0.714, p = 0.047). In a multivariate logistic regression analysis, an elevated level of MyBP-C was the best independent predictor of 30-day mortality (OR = 1.08, p = 0.039) or combined death/recurrent 30-days rehospitalization (OR = 1.12, p = 0.014). (4) Conclusions: Our data show that circulating MyBP-C is a sensitive and cardiac-specific biomarker with potential utility for the accurate diagnosis and prognosis of AHF.
Collapse
Affiliation(s)
- Adriana Chetran
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.); (M.-R.C.); (B.A.D.); (I.T.M.); (M.Ş.C.H.); (A.D.C.); (O.M.); (I.I.C.-E.)
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Minerva Codruţa Bădescu
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.); (M.-R.C.); (B.A.D.); (I.T.M.); (M.Ş.C.H.); (A.D.C.); (O.M.); (I.I.C.-E.)
- III Internal Medicine Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Ionela Lăcrămioara Şerban
- Department of Morpho-Functional Science II-Physiology, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| | - Ştefania Teodora Duca
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.); (M.-R.C.); (B.A.D.); (I.T.M.); (M.Ş.C.H.); (A.D.C.); (O.M.); (I.I.C.-E.)
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Irina Afrăsânie
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.); (M.-R.C.); (B.A.D.); (I.T.M.); (M.Ş.C.H.); (A.D.C.); (O.M.); (I.I.C.-E.)
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Maria-Ruxandra Cepoi
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.); (M.-R.C.); (B.A.D.); (I.T.M.); (M.Ş.C.H.); (A.D.C.); (O.M.); (I.I.C.-E.)
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Bianca Ana Dmour
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.); (M.-R.C.); (B.A.D.); (I.T.M.); (M.Ş.C.H.); (A.D.C.); (O.M.); (I.I.C.-E.)
- III Internal Medicine Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Iulian Theodor Matei
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.); (M.-R.C.); (B.A.D.); (I.T.M.); (M.Ş.C.H.); (A.D.C.); (O.M.); (I.I.C.-E.)
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Mihai Ştefan Cristian Haba
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.); (M.-R.C.); (B.A.D.); (I.T.M.); (M.Ş.C.H.); (A.D.C.); (O.M.); (I.I.C.-E.)
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Alexandru Dan Costache
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.); (M.-R.C.); (B.A.D.); (I.T.M.); (M.Ş.C.H.); (A.D.C.); (O.M.); (I.I.C.-E.)
- Cardiovascular Rehabilitation Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ovidiu Mitu
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.); (M.-R.C.); (B.A.D.); (I.T.M.); (M.Ş.C.H.); (A.D.C.); (O.M.); (I.I.C.-E.)
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Corina Maria Cianga
- Department of Immunology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (C.M.C.); (D.C.)
- Immunology Laboratory, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Cristina Tuchiluş
- Department of Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Microbiology Laboratory, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Daniela Constantinescu
- Department of Immunology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (C.M.C.); (D.C.)
- Immunology Laboratory, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Irina Iuliana Costache-Enache
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.); (M.-R.C.); (B.A.D.); (I.T.M.); (M.Ş.C.H.); (A.D.C.); (O.M.); (I.I.C.-E.)
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| |
Collapse
|
4
|
Kryczka KE, Demkow M, Dzielińska Z. Biomarkers in Peripartum Cardiomyopathy-What We Know and What Is Still to Be Found. Biomolecules 2024; 14:103. [PMID: 38254703 PMCID: PMC10813209 DOI: 10.3390/biom14010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Peripartum cardiomyopathy (PPCM) is a form of heart failure, often severe, that occurs in previously healthy women at the end of their pregnancy or in the first few months after delivery. In PPCM, the recovery of heart function reaches 45-50%. However, the all-cause mortality in long-term observation remains high, reaching 20% irrespective of recovery status. The incidence of PPCM is increasing globally; therefore, effort is required to clarify the pathophysiological background of the disease, as well as to discover specific diagnostic and prognostic biomarkers. The etiology of the disease remains unclear, including oxidative stress; inflammation; hormonal disturbances; endothelial, microcirculatory, cardiomyocyte and extracellular matrix dysfunction; fibrosis; and genetic mutations. Currently, antiangiogenic 16-kDa prolactin (PRL), cleaved from standard 23-kDa PRL in the case of unbalanced oxidative stress, is recognized as the main trigger of the disease. In addition, 16-kDa PRL causes damage to cardiomyocytes, acting via microRNA-146a secreted from endothelial cells as a cause of the NF-κβ pathway. Bromocriptine, which inhibits the secretion of PRL from the pituitary gland, is now the only specific treatment for PPCM. Many different phenotypes of the disease, as well as cases of non-responders to bromocriptine treatment, indicate other pathophysiological pathways that need further investigation. Biomarkers in PPCM are not well established. There is a deficiency in specific diagnostic biomarkers. Pro-brain-type natriuretic peptide (BNP) and N-terminal BNP are the best, however unspecific, diagnostic biomarkers of heart failure at the moment. Therefore, more efforts should be engaged in investigating more specific biomolecules of a diagnostic and prognostic manner such as 16-kDa PRL, galectin-3, myeloperoxidase, or soluble Fms-like tyrosine kinase-1/placental growth factor ratio. In this review, we present the current state of knowledge and future directions of exploring PPCM pathophysiology, including microRNA and heat shock proteins, which may improve diagnosis, treatment monitoring, and the development of specific treatment strategies, and consequently improve patients' prognosis and outcome.
Collapse
Affiliation(s)
- Karolina E. Kryczka
- Department of Coronary and Structural Heart Diseases, National Institute of Cardiology, 04-628 Warsaw, Poland
| | | | | |
Collapse
|