1
|
Thapa R, Ahmad Bhat A, Shahwan M, Ali H, PadmaPriya G, Bansal P, Rajotiya S, Barwal A, Siva Prasad GV, Pramanik A, Khan A, Hing Goh B, Dureja H, Kumar Singh S, Dua K, Gupta G. Proteostasis disruption and senescence in Alzheimer's disease pathways to neurodegeneration. Brain Res 2024; 1845:149202. [PMID: 39216694 DOI: 10.1016/j.brainres.2024.149202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/29/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's Disease (AD) is a progressive neurological disease associated with behavioral abnormalities, memory loss, and cognitive impairment that cause major causes of dementia in the elderly. The pathogenetic processes cause complex effects on brain function and AD progression. The proper protein homeostasis, or proteostasis, is critical for cell health. AD causes the buildup of misfolded proteins, particularly tau and amyloid-beta, to break down proteostasis, such aggregates are toxic to neurons and play a critical role in AD pathogenesis. The rise of cellular senescence is accompanied by aging, marked by irreversible cell cycle arrest and the release of pro-inflammatory proteins. Senescent cell build-up in the brains of AD patients exacerbates neuroinflammation and neuronal degeneration. These cells senescence-associated secretory phenotype (SASP) also disturbs the brain environment. When proteostasis failure and cellular senescence coalesce, a cycle is generated that compounds each other. While senescent cells contribute to proteostasis breakdown through inflammatory and degradative processes, misfolded proteins induce cellular stress and senescence. The principal aspects of the neurodegenerative processes in AD are the interaction of cellular senescence and proteostasis failure. This review explores the interconnected roles of proteostasis disruption and cellular senescence in the pathways leading to neurodegeneration in AD.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - G PadmaPriya
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | - Sumit Rajotiya
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Amit Barwal
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali - 140307, Punjab, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh-531162, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Abida Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia; Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
2
|
Khan S, Upadhyay S, Hassan MI. Novel prospects in targeting neurodegenerative disorders via autophagy. Eur J Pharmacol 2024; 984:177060. [PMID: 39426466 DOI: 10.1016/j.ejphar.2024.177060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Protein aggregation occurs as a consequence of dysfunction in the normal cellular proteostasis, which leads to the accumulation of toxic fibrillar aggregates of certain proteins in the cell. Enhancing the activity of proteolytic pathways may serve as a way of clearing these aggregates in a cell, and consequently, autophagy has surfaced as a promising target for the treatment of neurodegenerative disorders. Several strategies involving small molecule compounds that stimulate autophagic pathway of cell have been discovered. However, despite many compounds having demonstrated favorable outcomes in experimental disease models, the translation of these findings into clinical benefits for patient's remains limited. Consequently, alternative strategies are actively being explored to effectively target neurodegeneration via autophagy modulation. Recently, newer approaches such as modulation of expression of autophagic genes have emerged as novel and interesting areas of research in this field, which hold promising potential in neuroprotection. Similarly, as discussed for the first time in this review, the use of autophagy-inducing nanoparticles by utilizing their physicochemical properties to stimulate the autophagic process, rather than relying on their role as drug carriers, offers a completely fresh avenue for targeting neurodegeneration without the risk of drug-associated adverse effects. This review provides fresh perspectives on developing autophagy-targeted therapies for neurodegenerative disorders. Additionally, it discusses the challenges and impediments of implementing these strategies to alleviate the pathogenesis of neurodegenerative disorders in clinical settings and highlights the prospects and directions of future research in this context.
Collapse
Affiliation(s)
- Shumayila Khan
- International Health Division, Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India
| | - Saurabh Upadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
3
|
El-Shiekh RA, Atwa AM, Elgindy AM, Ibrahim KM, Senna MM, Ebid N, Mustafa AM. Current Perspective and Mechanistic Insights on α-Hederin for the Prevention and Treatment of Several Noncommunicable Diseases. Chem Biodivers 2024:e202402289. [PMID: 39607970 DOI: 10.1002/cbdv.202402289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/12/2024] [Accepted: 11/28/2024] [Indexed: 11/30/2024]
Abstract
α-Hederin, a naturally occurring compound found in various plant sources, has remarkable properties and therapeutic potential for human health. One notable attribute is its potent anti-inflammatory activity, such as in arthritis, asthma, and inflammatory bowel disease. In addition, it exhibits notable antioxidant effects implicated in the development of chronic diseases, including cardiovascular disorders and certain types of cancer. According to research, it may limit the growth and proliferation of cancer cells, making it a possible candidate for future cancer treatments. Moreover, it is a promising neuroprotective agent and enhances cognitive function, suggesting its potential in the treatment of neurodegenerative illnesses like Alzheimer's and Parkinson's disease. The multifaceted benefits of α-hederin make it an intriguing compound with significant therapeutic implications. As research progresses, exploring its mechanisms of action and clinical applications is warranted. Harnessing the potential of α-hederin may pave the way for innovative treatment strategies and improved outcomes in the battle against various chronic diseases.
Collapse
Affiliation(s)
- Riham A El-Shiekh
- Faculty of Pharmacy, Department of Pharmacognosy, Cairo University, Cairo, Egypt
| | - Ahmed M Atwa
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Egyptian Russian University, Cairo, Egypt
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Ayen Iraqi University, Thi-Qar, Iraq
| | - Ali M Elgindy
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Egyptian Russian University, Cairo, Egypt
| | - Kawther Magdy Ibrahim
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Egyptian Russian University, Cairo, Egypt
| | - Mohamed Magdy Senna
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Egyptian Russian University, Cairo, Egypt
| | - Nouran Ebid
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Egyptian Russian University, Cairo, Egypt
| | - Aya M Mustafa
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Egyptian Russian University, Cairo, Egypt
| |
Collapse
|
4
|
Zhu CZ, Li GZ, Lyu HF, Lu YY, Li Y, Zhang XN. Modulation of autophagy by melatonin and its receptors: implications in brain disorders. Acta Pharmacol Sin 2024:10.1038/s41401-024-01398-2. [PMID: 39448859 DOI: 10.1038/s41401-024-01398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024] Open
Abstract
Autophagy plays a crucial role in maintaining neuronal homeostasis and function, and its disruption is linked to various brain diseases. Melatonin, an endogenous hormone that primarily acts through MT1 and MT2 receptors, regulates autophagy via multiple pathways. Growing evidence indicates that melatonin's ability to modulate autophagy provides therapeutic and preventive benefits in brain disorders, including neurodegenerative and affective diseases. In this review, we summarize the key mechanisms by which melatonin affects autophagy and explore its therapeutic potential in the treatment of brain disorders.
Collapse
Affiliation(s)
- Chen-Ze Zhu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Gui-Zhi Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Hai-Feng Lyu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yang-Yang Lu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Yue Li
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Xiang-Nan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
| |
Collapse
|
5
|
Wang Z, Tian J, Dai W, Zhang N, Wang J, Li Z. The Effectiveness and Safety Analysis of Duloxetine in Treating Comorbid Depression in Parkinson's Disease: A Retrospective Study. ACTAS ESPANOLAS DE PSIQUIATRIA 2024; 52:607-615. [PMID: 39403917 PMCID: PMC11475055 DOI: 10.62641/aep.v52i5.1634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder characterized by both motor and non-motor symptoms, including depression, which significantly impacts the quality of life of affected individuals. This study aims to investigate the real-world effectiveness and safety of duloxetine in treating comorbid depression in patients with Parkinson's disease and to compare its outcomes with traditional treatment approaches. METHODS This study included adult patients diagnosed with Parkinson's disease combined with depression from December 2020 to December 2023. Based on the use of duloxetine, the cohort was divided into a traditional treatment group and a duloxetine group (traditional treatment combined with duloxetine). Patients with incomplete medical records, concurrent antidepressant therapy, or major psychiatric or neurological disorders were excluded. Retrospective data, including demographic information, treatment adherence, and various assessment scores, were collected from medical records by trained research staff. RESULTS In total, 106 patients were analyzed, with 50 patients receiving traditional treatment and 56 patients receiving duloxetine. The duloxetine group exhibited significantly lower scores than the traditional treatment group in the Unified PD Rating Scale (p = 0.015), Hamilton Depression Rating Scale (p = 0.013), Beck Depression Inventory (p = 0.031), Parkinson's disease Questionnaire-39 (p = 0.006), and Clinical Global Impression-Improvement (p < 0.001) scores. In motor function assessment, the duloxetine group demonstrated improvements in kinetic tremor scores (p = 0.017), gait speed (p < 0.001), Timed Up and Go Test performance (p < 0.001), dyskinesia severity (p = 0.017), and rigidity (p = 0.019) compared to the traditional treatment group. Additionally, the duloxetine group exhibited better cognitive function across various assessments, including the Symbol Digit Modalities Test (p = 0.024), Stroop Color-Word Test (p = 0.048), and Montreal Cognitive Assessment (p = 0.024). CONCLUSION Duloxetine is associated with superior efficacy in improving motor and non-motor symptoms, overall clinical status, and cognitive function. These findings support the potential utility of duloxetine as a comprehensive treatment option for comorbid depression in Parkinson's disease.
Collapse
Affiliation(s)
- Zhuoqun Wang
- Department of Neurology, Jilin Province FAW General Hospital, 130021 Changchun, Jilin, China
| | - Jing Tian
- Department of Neurology, Jilin Province FAW General Hospital, 130021 Changchun, Jilin, China
| | - Weixin Dai
- Department of Cardiology, Jilin Province FAW General Hospital, 130021 Changchun, Jilin, China
| | - Na Zhang
- Department of Electrodiagnosis, Jilin Province FAW General Hospital, 130021 Changchun, Jilin, China
| | - Jianglin Wang
- Department of Psychiatry, Yanbian Brain Hospital, 133000 Yanji, Jilin, China
| | - Zhanyu Li
- Department of Traumatology, Jilin Province FAW General Hospital, 130021 Changchun, Jilin, China
| |
Collapse
|
6
|
Sung CC, Lam WY, Chung KKK. The role of polo-like kinases 2 in the proteasomal and lysosomal degradation of alpha-synuclein in neurons. FASEB J 2024; 38:e70121. [PMID: 39436202 PMCID: PMC11580719 DOI: 10.1096/fj.202401035r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by the degeneration of dopaminergic neurons in the brain stem. PD is mostly sporadic, but familial PD (FPD) cases are recorded in different studies. The first gene mutation that is linked to FPD is α-synuclein (α-syn). It was then found that α-syn is also accumulated in Lewy body (LB), a classical pathological hallmark in PD patients. Different studies have shown that α-syn accumulation and aggregation can be a crucial factor contributing to the degeneration of dopaminergic neurons in PD. α-syn has been found to be degraded by the ubiquitin proteasomal system (UPS) and autophagy-lysosomal pathway (ALP). In this study, we initially explored how α-syn phosphorylation by GRK6, PLK2 and CK2α would facilitate its degradation in relation to the UPS or ALP. Unexpectedly, we found that the degradation of α-syn through PLK2 phosphorylation could be modulated by UPS and ALP in a novel mechanism. Specially, attenuation of UPS could increase the amount of PLK2 and then could facilitate the phosphorylation and degradation of α-syn through ALP. To test this further in vivo, we attenuate the proteasomal activity in a well-established A53T α-syn transgenic PD mouse model. We found that attenuation of proteasomal activity in the A53T α-syn transgenic mice could reduce the accumulation of α-syn in the striatum and midbrain. Based on our results, this study provides a new insight into how α-syn is degraded through the UPS and ALP.
Collapse
Affiliation(s)
- Chun Chau Sung
- Division of Life Science, State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyHong KongChina
| | - Wai Yun Lam
- Division of Life Science, State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyHong KongChina
| | - Kenny K. K. Chung
- Division of Life Science, State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyHong KongChina
| |
Collapse
|
7
|
Zhang X, Wu H, Tang B, Guo J. Clinical, mechanistic, biomarker, and therapeutic advances in GBA1-associated Parkinson's disease. Transl Neurodegener 2024; 13:48. [PMID: 39267121 PMCID: PMC11391654 DOI: 10.1186/s40035-024-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/17/2024] [Indexed: 09/14/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The development of PD is closely linked to genetic and environmental factors, with GBA1 variants being the most common genetic risk. Mutations in the GBA1 gene lead to reduced activity of the coded enzyme, glucocerebrosidase, which mediates the development of PD by affecting lipid metabolism (especially sphingolipids), lysosomal autophagy, endoplasmic reticulum, as well as mitochondrial and other cellular functions. Clinically, PD with GBA1 mutations (GBA1-PD) is characterized by particular features regarding the progression of symptom severity. On the therapeutic side, the discovery of the relationship between GBA1 variants and PD offers an opportunity for targeted therapeutic interventions. In this review, we explore the genotypic and phenotypic correlations, etiologic mechanisms, biomarkers, and therapeutic approaches of GBA1-PD and summarize the current state of research and its challenges.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Heng Wu
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang, 421001, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
8
|
Wang SS, Peng Y, Fan PL, Ye JR, Ma WY, Wu QL, Wang HY, Tian YJ, He WB, Yan X, Zhang Z, Chu SF, Chen NH. Ginsenoside Rg1 ameliorates stress-exacerbated Parkinson's disease in mice by eliminating RTP801 and α-synuclein autophagic degradation obstacle. Acta Pharmacol Sin 2024:10.1038/s41401-024-01374-w. [PMID: 39227736 DOI: 10.1038/s41401-024-01374-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
Emerging evidence shows that psychological stress promotes the progression of Parkinson's disease (PD) and the onset of dyskinesia in non-PD individuals, highlighting a potential avenue for therapeutic intervention. We previously reported that chronic restraint-induced psychological stress precipitated the onset of parkinsonism in 10-month-old transgenic mice expressing mutant human α-synuclein (αSyn) (hαSyn A53T). We refer to these as chronic stress-genetic susceptibility (CSGS) PD model mice. In this study we investigated whether ginsenoside Rg1, a principal compound in ginseng notable for soothing the mind, could alleviate PD deterioration induced by psychological stress. Ten-month-old transgenic hαSyn A53T mice were subjected to 4 weeks' restraint stress to simulate chronic stress conditions that worsen PD, meanwhile the mice were treated with Rg1 (40 mg· kg-1 ·d-1, i.g.), and followed by functional magnetic resonance imaging (fMRI) and a variety of neurobehavioral tests. We showed that treatment with Rg1 significantly alleviated both motor and non-motor symptoms associated with PD. Functional MRI revealed that Rg1 treatment enhanced connectivity between brain regions implicated in PD, and in vivo multi-channel electrophysiological assay showed improvements in dyskinesia-related electrical activity. In addition, Rg1 treatment significantly attenuated the degeneration of dopaminergic neurons and reduced the pathological aggregation of αSyn in the striatum and SNc. We revealed that Rg1 treatment selectively reduced the level of the stress-sensitive protein RTP801 in SNc under chronic stress conditions, without impacting the acute stress response. HPLC-MS/MS analysis coupled with site-directed mutation showed that Rg1 promoted the ubiquitination and subsequent degradation of RTP801 at residues K188 and K218, a process mediated by the Parkin RING2 domain. Utilizing αSyn A53T+; RTP801-/- mice, we confirmed the critical role of RTP801 in stress-aggravated PD and its necessity for Rg1's protective effects. Moreover, Rg1 alleviated obstacles in αSyn autophagic degradation by ameliorating the RTP801-TXNIP-mediated deficiency of ATP13A2. Collectively, our results suggest that ginsenoside Rg1 holds promise as a therapeutic choice for treating PD-sensitive individuals who especially experience high levels of stress and self-imposed expectations.
Collapse
Affiliation(s)
- Sha-Sha Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ye Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Ping-Long Fan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jun-Rui Ye
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wen-Yu Ma
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qing-Lin Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Hong-Yun Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ya-Juan Tian
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Wen-Bin He
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Xu Yan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
9
|
Perez-Abshana LP, Mendivil-Perez M, Jimenez-Del-Rio M, Velez-Pardo C. The GBA1 K198E Variant Is Associated with Suppression of Glucocerebrosidase Activity, Autophagy Impairment, Oxidative Stress, Mitochondrial Damage, and Apoptosis in Skin Fibroblasts. Int J Mol Sci 2024; 25:9220. [PMID: 39273169 PMCID: PMC11394901 DOI: 10.3390/ijms25179220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Parkinson's disease (PD) is a multifactorial, chronic, and progressive neurodegenerative disorder inducing movement alterations as a result of the loss of dopaminergic (DAergic) neurons of the pars compacta in the substantia nigra and protein aggregates of alpha synuclein (α-Syn). Although its etiopathology agent has not yet been clearly established, environmental and genetic factors have been suggested as the major contributors to the disease. Mutations in the glucosidase beta acid 1 (GBA1) gene, which encodes the lysosomal glucosylceramidase (GCase) enzyme, are one of the major genetic risks for PD. We found that the GBA1 K198E fibroblasts but not WT fibroblasts showed reduced catalytic activity of heterozygous mutant GCase by -70% but its expression levels increased by 3.68-fold; increased the acidification of autophagy vacuoles (e.g., autophagosomes, lysosomes, and autolysosomes) by +1600%; augmented the expression of autophagosome protein Beclin-1 (+133%) and LC3-II (+750%), and lysosomal-autophagosome fusion protein LAMP-2 (+107%); increased the accumulation of lysosomes (+400%); decreased the mitochondrial membrane potential (∆Ψm) by -19% but the expression of Parkin protein remained unperturbed; increased the oxidized DJ-1Cys106-SOH by +900%, as evidence of oxidative stress; increased phosphorylated LRRK2 at Ser935 (+1050%) along with phosphorylated α-synuclein (α-Syn) at pathological residue Ser129 (+1200%); increased the executer apoptotic protein caspase 3 (cleaved caspase 3) by +733%. Although exposure of WT fibroblasts to environmental neutoxin rotenone (ROT, 1 μM) exacerbated the autophagy-lysosomal system, oxidative stress, and apoptosis markers, ROT moderately increased those markers in GBA1 K198E fibroblasts. We concluded that the K198E mutation endogenously primes skin fibroblasts toward autophagy dysfunction, OS, and apoptosis. Our findings suggest that the GBA1 K198E fibroblasts are biochemically and molecularly equivalent to the response of WT GBA1 fibroblasts exposed to ROT.
Collapse
Affiliation(s)
- Laura Patricia Perez-Abshana
- Neuroscience Research Group, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
- Faculty of Medicine, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
| | - Miguel Mendivil-Perez
- Neuroscience Research Group, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
- Faculty of Nursing, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
- Faculty of Medicine, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
- Institute of Medical Research, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
- Faculty of Medicine, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
- Institute of Medical Research, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
| |
Collapse
|
10
|
George J, Shafiq K, Kapadia M, Kalia LV, Kalia SK. High frequency electrical stimulation reduces α-synuclein levels and α-synuclein-mediated autophagy dysfunction. Sci Rep 2024; 14:16091. [PMID: 38997273 PMCID: PMC11245498 DOI: 10.1038/s41598-024-64131-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/05/2024] [Indexed: 07/14/2024] Open
Abstract
Accumulation of α-synuclein (α-Syn) has been implicated in proteasome and autophagy dysfunction in Parkinson's disease (PD). High frequency electrical stimulation (HFS) mimicking clinical parameters used for deep brain stimulation (DBS) in vitro or DBS in vivo in preclinical models of PD have been found to reduce levels of α-Syn and, in certain cases, provide possible neuroprotection. However, the mechanisms by which this reduction in α-Syn improves cellular dysfunction associated with α-Syn accumulation remains elusive. Using HFS parameters that recapitulate DBS in vitro, we found that HFS led to a reduction of mutant α-Syn and thereby limited proteasome and autophagy impairments due to α-Syn. Additionally, we observed that HFS modulates via the ATP6V0C subunit of V-ATPase and mitigates α-Syn mediated autophagic dysfunction. This study highlights a role for autophagy in reduction of α-Syn due to HFS which may prove to be a viable approach to decrease pathological protein accumulation in neurodegeneration.
Collapse
Affiliation(s)
- Jimmy George
- Toronto Western Hospital, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
| | - Kashfia Shafiq
- Toronto Western Hospital, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
| | - Minesh Kapadia
- Toronto Western Hospital, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
| | - Lorraine V Kalia
- Toronto Western Hospital, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
- Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- CRANIA, Toronto, ON, Canada
| | - Suneil K Kalia
- Toronto Western Hospital, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada.
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.
- KITE, University Health Network, Toronto, ON, Canada.
- CRANIA, Toronto, ON, Canada.
| |
Collapse
|
11
|
Thapa R, Moglad E, Afzal M, Gupta G, Bhat AA, Almalki WH, Kazmi I, Alzarea SI, Pant K, Ali H, Paudel KR, Dureja H, Singh TG, Singh SK, Dua K. ncRNAs and their impact on dopaminergic neurons: Autophagy pathways in Parkinson's disease. Ageing Res Rev 2024; 98:102327. [PMID: 38734148 DOI: 10.1016/j.arr.2024.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Parkinson's Disease (PD) is a complex neurological illness that causes severe motor and non-motor symptoms due to a gradual loss of dopaminergic neurons in the substantia nigra. The aetiology of PD is influenced by a variety of genetic, environmental, and cellular variables. One important aspect of this pathophysiology is autophagy, a crucial cellular homeostasis process that breaks down and recycles cytoplasmic components. Recent advances in genomic technologies have unravelled a significant impact of ncRNAs on the regulation of autophagy pathways, thereby implicating their roles in PD onset and progression. They are members of a family of RNAs that include miRNAs, circRNA and lncRNAs that have been shown to play novel pleiotropic functions in the pathogenesis of PD by modulating the expression of genes linked to autophagic activities and dopaminergic neuron survival. This review aims to integrate the current genetic paradigms with the therapeutic prospect of autophagy-associated ncRNAs in PD. By synthesizing the findings of recent genetic studies, we underscore the importance of ncRNAs in the regulation of autophagy, how they are dysregulated in PD, and how they represent novel dimensions for therapeutic intervention. The therapeutic promise of targeting ncRNAs in PD is discussed, including the barriers that need to be overcome and future directions that must be embraced to funnel these ncRNA molecules for the treatment and management of PD.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Kumud Pant
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
12
|
Bezrukova AI, Basharova KS, Baydakova GV, Zakharova EY, N Pchelina S, Usenko TS. Dose-Dependent Alterations of Lysosomal Activity and Alpha-Synuclein in Peripheral Blood Monocyte-Derived Macrophages and SH-SY5Y Neuroblastoma Cell Line by upon Inhibition of MTOR Protein Kinase - Assessment of the Prospects of Parkinson's Disease Therapy. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1300-1312. [PMID: 39218026 DOI: 10.1134/s0006297924070113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/22/2024] [Accepted: 06/09/2024] [Indexed: 09/04/2024]
Abstract
To date, the molecular mechanisms of the common neurodegenerative disorder Parkinson's disease (PD) are unknown and, as a result, there is no neuroprotective therapy that may stop or slow down the process of neuronal cell death. The aim of the current study was to evaluate the prospects of using the mTOR molecule as a potential target for PD therapy due to the dose-dependent effect of mTOR kinase activity inhibition on cellular parameters associated with, PD pathogenesis. The study used peripheral blood monocyte-derived macrophages and SH-SY5Y neuroblastoma cell line. As a result, we have for the first time showed that inhibition of mTOR by Torin1 only at a concentration of 100 nM affects the level of the lysosomal enzyme glucocerebrosidase (GCase), encoded by the GBA1 gene. Mutations in GBA1 are considered a high-risk factor for PD development. This concentration led a decrease in pathological phosphorylated alpha-synuclein (Ser129), an increase in its stable tetrameric form with no changes in the lysosomal enzyme activities and concentrations of lysosphingolipids. Our findings suggest that inhibition of the mTOR protein kinase could be a promising approach for developing therapies for PD, particularly for GBA1-associated PD.
Collapse
Affiliation(s)
- Anastasia I Bezrukova
- Konstantinov Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia.
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
| | - Katerina S Basharova
- Konstantinov Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | | | | | - Sofya N Pchelina
- Konstantinov Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
| | - Tatiana S Usenko
- Konstantinov Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
| |
Collapse
|
13
|
Cucinotta L, Mannino D, Filippone A, Romano A, Esposito E, Paterniti I. The role of autophagy in Parkinson's disease: a gender difference overview. Front Pharmacol 2024; 15:1408152. [PMID: 38933683 PMCID: PMC11199695 DOI: 10.3389/fphar.2024.1408152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Recent studies have demonstrated dysregulation of the autophagy pathway in patients with Parkinson's disease (PD) and in animal models of PD, highlighting its emerging role in disease. In particular, several studies indicate that autophagy, which is an essential degradative process for the damaged protein homeostasis and the management of cell balance, can manifest significant variations according to gender. While some evidence suggests increased autophagic activation in men with PD, women may have distinct regulatory patterns. In this review, we examined the existing literature on gender differences in PD-associated autophagic processes, focusing on the autophagy related proteins (ATGs) and leucine rich repeat kinase 2 (LRRK2) genes. Also, this review would suggest that an in-depth understanding of these gender differences in autophagic processes could open new perspectives for personalized therapeutic strategies, promoting more effective and targeted management of PD.
Collapse
Affiliation(s)
- Laura Cucinotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
14
|
Huenchuguala S, Segura-Aguilar J. Targets to Search for New Pharmacological Treatment in Idiopathic Parkinson's Disease According to the Single-Neuron Degeneration Model. Biomolecules 2024; 14:673. [PMID: 38927076 PMCID: PMC11201619 DOI: 10.3390/biom14060673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
One of the biggest problems in the treatment of idiopathic Parkinson's disease is the lack of new drugs that slow its progression. L-Dopa remains the star drug in the treatment of this disease, although it induces severe side effects. The failure of clinical studies with new drugs depends on the use of preclinical models based on neurotoxins that do not represent what happens in the disease since they induce rapid and expansive neurodegeneration. We have recently proposed a single-neuron degeneration model for idiopathic Parkinson's disease that requires years to accumulate enough lost neurons for the onset of motor symptoms. This single-neuron degeneration model is based on the excessive formation of aminochrome during neuromelanin synthesis that surpass the neuroprotective action of the enzymes DT-diaphorase and glutathione transferase M2-2, which prevent the neurotoxic effects of aminochrome. Although the neurotoxic effects of aminochrome do not have an expansive effect, a stereotaxic injection of this endogenous neurotoxin cannot be used to generate a preclinical model in an animal. Therefore, the aim of this review is to evaluate the strategies for pharmacologically increasing the expression of DT diaphorase and GSTM2-2 and molecules that induce the expression of vesicular monoamine transporter 2, such as pramipexole.
Collapse
Affiliation(s)
- Sandro Huenchuguala
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Santiago 8370003, Chile;
| | - Juan Segura-Aguilar
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago 8330111, Chile
| |
Collapse
|
15
|
Jiang YK, Li MM, Wang SY, Hao ZC, Meng X, Kuang HX, Yang BY, Liu Y. Protective effect of phenylpropionamides in the seed of Cannabis Sativa L. on Parkinson's disease through autophagy. Fitoterapia 2024; 175:105883. [PMID: 38458497 DOI: 10.1016/j.fitote.2024.105883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. As one of the major degradation pathways, autophagy plays a pivotal role in maintaining the effective turnover of proteins and damaged organelles in cells. Lewy bodies composed of α-synuclein (α-syn) abnormally aggregated in the substantia nigra are important pathological features of PD, and autophagy dysfunction is considered to be an important factor leading to abnormal aggregation of α-syn. Phenylpropionamides (PHS) in the seed of Cannabis sativa L. have a protective effect on neuroinflammation and antioxidant activity. However, the therapeutic role of PHS in PD is unclear. In this study, the seeds of Cannabis sativa L. were extracted under reflux with 60% EtOH-H2O, and the 60% EtOH-H2O elution fraction was identified as PHS with the UPLC-QTOF-MS. The 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-induced PD model in C57BL/6 J mice was used for behavioral and pharmacodynamic experiments. Behavioral symptoms were improved, Nissl-stained and TH-positive neurons in the substantia nigra were significantly increased in PHS-treated MPTP-induced PD model mice. Compared with the model group, PHS treatment reduced the expression level of α-syn, and the expression of TH increased significantly by western blotting, compared with the model group, the PHS group suppressed Caspase 3 and Bax expression and promoted Bcl-2 expression and levels of p62 decreased significantly, the ratio of LC3-II/I and p-mTOR/mTOR in the PHS group had a downward trend, suggesting that the therapeutic effect of PHS on MPTP-induced PD model mice may be triggered by the regulation of autophagy.
Collapse
Affiliation(s)
- Yi-Kai Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, PR China
| | - Meng-Meng Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, PR China
| | - Si-Yi Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, PR China
| | - Zhi-Chao Hao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, PR China
| | - Xin Meng
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, PR China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, PR China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, PR China.
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, PR China.
| |
Collapse
|
16
|
Zhou K, Xu S. Corydaline alleviates Parkinson's disease by regulating autophagy and GSK-3β phosphorylation. Psychopharmacology (Berl) 2024; 241:1027-1036. [PMID: 38289512 DOI: 10.1007/s00213-024-06536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/17/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Jitai tablet, a traditional Chinese medicine, has a neuroprotective effect on 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mice. As one of the main active ingredients in the Jitai tablet, corydaline (Cory) has analgesic and anti-allergic effects, but it has not been studied in PD. Here, we investigated the role and mechanism of Cory in PD. METHODS The PD model was induced by MPTP. Cell viability was measured by 3-(4, 5)-dimethylthiahiazo (-z-y1)-3, 5-di-phenytetrazoliumromide assay. The Pole test and traction test were performed to detect the behaviors of mice. The expression of tyrosine hydroxylase (Th) was detected by immunohistochemistry and Western blot. Immunofluorescence staining, monodansylcadaverine staining, and Western blot were conducted to assess autophagy. A lactic dehydrogenase release assay was used to detect cytotoxicity. Network pharmacology was used to screen the targets. RESULTS There existed cytotoxicity when the concentration of Cory reached 40 μg/mL. Cory (not exceeding 20 μg/mL) could alleviate MPTP-induced cell damage. In vivo experiments indicated that Cory could improve the motor coordination of mice with PD. Besides, Cory could increase LC3-II/LC3-I levels both in vivo and in vitro. In addition, the Th levels reduced in the striatum and middle brain tissues of Parkinson's mice were recovered by Cory injection. We also found that Cory decreased the phosphorylation of glucogen synthase kinase-3 beta (GSK-3β) at Tyr216 and increased the phosphorylation of GSK-3β at Ser9 not only in primary neurons and SH-SY5Y cells but also in the striatum and middle brain tissues. Furthermore, Cory increased LC3-II/LC3-I levels and decreased p62 levels by regulating GSK-3β. CONCLUSION Cory enhanced autophagy, attenuated MPTP-induced cytotoxicity, and alleviated PD partly through the regulation of GSK-3β phosphorylation.
Collapse
Affiliation(s)
- Kaikai Zhou
- School of Energy and Intelligence Engineering, Henan University of Animal Husbandry and Economy, No. 6 Longzihu North Road, Zhengzhou City, 454000, People's Republic of China.
| | - Shasha Xu
- the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Ellioff KJ, Osting SM, Lentine A, Welper AD, Burger C, Greenspan DS. Ablation of Mitochondrial RCC1-L Induces Nigral Dopaminergic Neurodegeneration and Parkinsonian-like Motor Symptoms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.01.567409. [PMID: 38585782 PMCID: PMC10996473 DOI: 10.1101/2023.12.01.567409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Mitochondrial dysfunction has been linked to both idiopathic and familial forms of Parkinson's disease (PD). We have previously identified RCC1-like (RCC1L) as a protein of the inner mitochondrial membrane important to mitochondrial fusion. Herein, to test whether deficits in RCC1L mitochondrial function might be involved in PD pathology, we have selectively ablated the Rcc1l gene in the dopaminergic (DA) neurons of mice. A PD-like phenotype resulted that includes progressive movement abnormalities, paralleled by progressive degeneration of the nigrostriatal tract. Experimental and control groups were examined at 2, 3-4, and 5-6 months of age. Animals were tested in the open field task to quantify anxiety, exploratory drive, locomotion, and immobility; and in the cylinder test to quantify rearing behavior. Beginning at 3-4 months, both female and male Rcc1l knockout mice show rigid muscles and resting tremor, kyphosis and a growth deficit compared with heterozygous or wild type littermate controls. Rcc1l knockout mice begin showing locomotor impairments at 3-4 months, which progress until 5-6 months of age, at which age the Rcc1l knockout mice die. The progressive motor impairments were associated with progressive and significantly reduced tyrosine hydroxylase immunoreactivity in the substantia nigra pars compacta (SNc), and dramatic loss of nigral DA projections in the striatum. Dystrophic spherical mitochondria are apparent in the soma of SNc neurons in Rcc1l knockout mice as early as 1.5-2.5 months of age and become progressively more pronounced until 5-6 months. Together, the results reveal the RCC1L protein to be essential to in vivo mitochondrial function in DA neurons. Further characterization of this mouse model will determine whether it represents a new model for in vivo study of PD, and the putative role of the human RCC1L gene as a risk factor that might increase PD occurrence and severity in humans.
Collapse
Affiliation(s)
- Kaylin J. Ellioff
- Department of Neurology, University of Wisconsin, Madison WI, 53706
- Present Address, Department of Pharmacology, University of Washington, Seattle WA, 98195
| | | | - Alyssa Lentine
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison WI, 53705
| | - Ashley D. Welper
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison WI, 53705
| | - Corinna Burger
- Department of Neurology, University of Wisconsin, Madison WI, 53706
| | - Daniel S. Greenspan
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison WI, 53705
| |
Collapse
|
18
|
Balistreri CR, Monastero R. Neuroinflammation and Neurodegenerative Diseases: How Much Do We Still Not Know? Brain Sci 2023; 14:19. [PMID: 38248234 PMCID: PMC10812964 DOI: 10.3390/brainsci14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
The term "neuroinflammation" defines the typical inflammatory response of the brain closely related to the onset of many neurodegenerative diseases (NDs). Neuroinflammation is well known, but its mechanisms and pathways are not entirely comprehended. Some progresses have been achieved through many efforts and research. Consequently, new cellular and molecular mechanisms, diverse and conventional, are emerging. In listing some of those that will be the subject of our description and discussion, essential are the important roles of peripheral and infiltrated monocytes and clonotypic cells, alterations in the gut-brain axis, dysregulation of the apelinergic system, alterations in the endothelial glycocalyx of the endothelial component of neuronal vascular units, variations in expression of some genes and levels of the encoding molecules by the action of microRNAs (miRNAs), or other epigenetic factors and distinctive transcriptional factors, as well as the role of autophagy, ferroptosis, sex differences, and modifications in the circadian cycle. Such mechanisms can add significantly to understanding the complex etiological puzzle of neuroinflammation and ND. In addition, they could represent biomarkers and targets of ND, which is increasing in the elderly.
Collapse
Affiliation(s)
- Carmela Rita Balistreri
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy
| | - Roberto Monastero
- Unit of Neurology & Neuro-Physiopathology, Department of Biomedicine, Neuroscience, and Advanced Diagnostics (Bi.N.D), University of Palermo, Via La Loggia 1, 90129 Palermo, Italy;
| |
Collapse
|