1
|
Kajitani N, Schwartz S. Role of Viral Ribonucleoproteins in Human Papillomavirus Type 16 Gene Expression. Viruses 2020; 12:E1110. [PMID: 33007936 PMCID: PMC7600041 DOI: 10.3390/v12101110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPVs) depend on the cellular RNA-processing machineries including alternative RNA splicing and polyadenylation to coordinate HPV gene expression. HPV RNA processing is controlled by cis-regulatory RNA elements and trans-regulatory factors since the HPV splice sites are suboptimal. The definition of HPV exons and introns may differ between individual HPV mRNA species and is complicated by the fact that many HPV protein-coding sequences overlap. The formation of HPV ribonucleoproteins consisting of HPV pre-mRNAs and multiple cellular RNA-binding proteins may result in the different outcomes of HPV gene expression, which contributes to the HPV life cycle progression and HPV-associated cancer development. In this review, we summarize the regulation of HPV16 gene expression at the level of RNA processing with focus on the interactions between HPV16 pre-mRNAs and cellular RNA-binding factors.
Collapse
Affiliation(s)
- Naoko Kajitani
- Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden;
| | | |
Collapse
|
2
|
Mole S, Faizo AAA, Hernandez-Lopez H, Griffiths M, Stevenson A, Roberts S, Graham SV. Human papillomavirus type 16 infection activates the host serine arginine protein kinase 1 (SRPK1) - splicing factor axis. J Gen Virol 2020; 101:523-532. [PMID: 32182205 PMCID: PMC7414453 DOI: 10.1099/jgv.0.001402] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
The infectious life cycle of human papillomaviruses (HPVs) is tightly linked to keratinocyte differentiation. Evidence suggests a sophisticated interplay between host gene regulation and virus replication. Alternative splicing is an essential process for host and viral gene expression, and is generally upregulated by serine arginine-rich splicing factors (SRSFs). SRSF activity can be positively or negatively controlled by cycles of phosphorylation/dephosphorylation. Here we show that HPV16 infection leads to accumulation of the paradigm SRSF protein, SRSF1, in the cytoplasm in a keratinocyte differentiation-specific manner. Moreover, HPV16 infection leads to increased levels of cytoplasmic and nuclear phosphorylated SRSF1. SR protein kinase 1 (SRPK1) phosphorylates SRSF1. Similar to HPV upregulation of SRSF1, we demonstrate HPV upregulation of SRPK1 via the viral E2 protein. SRPK1 depletion or drug inhibition of SRPK1 kinase activity resulted in reduced levels of SRSF1, suggesting that phosphorylation stabilizes the protein in differentiated HPV-infected keratinocytes. Together, these data indicate HPV infection stimulates the SRPK1-SRSF axis in keratinocytes.
Collapse
Affiliation(s)
- Sarah Mole
- MRC – University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
- Present address: GlaxoSmithKline, Stevenage, UK
| | - Arwa Ali A. Faizo
- MRC – University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
- Present address: Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hegel Hernandez-Lopez
- MRC – University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
- Present address: Bristol-Myers Squibb, Mexico City, USA
| | - Megan Griffiths
- MRC – University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Andrew Stevenson
- MRC – University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Sally Roberts
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research West, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Sheila V Graham
- MRC – University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| |
Collapse
|
3
|
Kaur R, Lal SK. The multifarious roles of heterogeneous ribonucleoprotein A1 in viral infections. Rev Med Virol 2020; 30:e2097. [PMID: 31989716 PMCID: PMC7169068 DOI: 10.1002/rmv.2097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/19/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Abstract
Viruses are obligate parasites known to interact with a wide variety of host proteins at different stages of infection. Current antiviral treatments target viral proteins and may be compromised due to the emergence of drug resistant viral strains. Targeting viral-host interactions is now gaining recognition as an alternative approach against viral infections. Recent research has revealed that heterogeneous ribonucleoprotein A1, an RNA-binding protein, plays an essential functional and regulatory role in the life cycle of many viruses. In this review, we summarize the interactions between heterogeneous ribonucleoprotein A1 (hnRNPA1) and multiple viral proteins during the life cycle of RNA and DNA viruses. hnRNPA1 protein levels are modulated differently, in different viruses, which further dictates its stability, function, and intracellular localization. Multiple reports have emphasized that in Sindbis virus, enteroviruses, porcine endemic diarrhea virus, and rhinovirus infection, hnRNPA1 enhances viral replication and survival. However, in others like hepatitis C virus and human T-cell lymphotropic virus, it exerts a protective response. The involvement of hnRNPA1 in viral infections highlights its importance as a central regulator of host and viral gene expression. Understanding the nature of these interactions will increase our understanding of specific viral infections and pathogenesis and eventually aid in the development of novel and robust antiviral intervention strategies.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Tropical Medicine and Biology Platform & School of Science, Monash University, 47500 Bandar Sunway, Selangor DE, Malaysia
| | - Sunil K Lal
- Tropical Medicine and Biology Platform & School of Science, Monash University, 47500 Bandar Sunway, Selangor DE, Malaysia
| |
Collapse
|
4
|
Lasso G, Mayer SV, Winkelmann ER, Chu T, Elliot O, Patino-Galindo JA, Park K, Rabadan R, Honig B, Shapira SD. A Structure-Informed Atlas of Human-Virus Interactions. Cell 2019; 178:1526-1541.e16. [PMID: 31474372 PMCID: PMC6736651 DOI: 10.1016/j.cell.2019.08.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/17/2019] [Accepted: 08/02/2019] [Indexed: 12/19/2022]
Abstract
While knowledge of protein-protein interactions (PPIs) is critical for understanding virus-host relationships, limitations on the scalability of high-throughput methods have hampered their identification beyond a number of well-studied viruses. Here, we implement an in silico computational framework (pathogen host interactome prediction using structure similarity [P-HIPSTer]) that employs structural information to predict ∼282,000 pan viral-human PPIs with an experimental validation rate of ∼76%. In addition to rediscovering known biology, P-HIPSTer has yielded a series of new findings: the discovery of shared and unique machinery employed across human-infecting viruses, a likely role for ZIKV-ESR1 interactions in modulating viral replication, the identification of PPIs that discriminate between human papilloma viruses (HPVs) with high and low oncogenic potential, and a structure-enabled history of evolutionary selective pressure imposed on the human proteome. Further, P-HIPSTer enables discovery of previously unappreciated cellular circuits that act on human-infecting viruses and provides insight into experimentally intractable viruses.
Collapse
Affiliation(s)
- Gorka Lasso
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Sandra V Mayer
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Evandro R Winkelmann
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Tim Chu
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Oliver Elliot
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | | | - Kernyu Park
- Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, USA
| | - Barry Honig
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY, USA; Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY, USA.
| | - Sagi D Shapira
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Nilsson K, Wu C, Schwartz S. Role of the DNA Damage Response in Human Papillomavirus RNA Splicing and Polyadenylation. Int J Mol Sci 2018; 19:E1735. [PMID: 29895741 PMCID: PMC6032147 DOI: 10.3390/ijms19061735] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/29/2018] [Accepted: 06/08/2018] [Indexed: 12/16/2022] Open
Abstract
Human papillomaviruses (HPVs) have evolved to use the DNA repair machinery to replicate its DNA genome in differentiated cells. HPV activates the DNA damage response (DDR) in infected cells. Cellular DDR factors are recruited to the HPV DNA genome and position the cellular DNA polymerase on the HPV DNA and progeny genomes are synthesized. Following HPV DNA replication, HPV late gene expression is activated. Recent research has shown that the DDR factors also interact with RNA binding proteins and affects RNA processing. DDR factors activated by DNA damage and that associate with HPV DNA can recruit splicing factors and RNA binding proteins to the HPV DNA and induce HPV late gene expression. This induction is the result of altered alternative polyadenylation and splicing of HPV messenger RNA (mRNA). HPV uses the DDR machinery to replicate its DNA genome and to activate HPV late gene expression at the level of RNA processing.
Collapse
Affiliation(s)
- Kersti Nilsson
- Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden.
| | - Chengjun Wu
- Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden.
| | - Stefan Schwartz
- Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
6
|
Adenosine causes read-through into the late region of the HPV16 genome in a guanosine-dependent manner. Virology 2018; 521:1-19. [PMID: 29864673 DOI: 10.1016/j.virol.2018.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 11/21/2022]
Abstract
Adenosine plays an important role in cell death and differentiation as well as in tumorigenesis and the intra- and extra-cellular levels range from nanomolar to millimolar levels under various physiological or pathophysiological conditions. Here we report that adenosine can activate HPV16 late gene expression in a dose- and time-dependent manner, but only in the presence of guanosine. This activation occurred within hours after addition of the nucleosides and was primarily dependent on the ENT1 nucleoside transporter protein. Induction of HPV16 late gene expression was mainly the result of increased read-through at the early HPV16 polyadenylation signal into the late region of the HPV16 genome, thereby producing HPV16 late L2 mRNAs. The effect of guanosine and adenosine on HPV16 late gene expression was mediated by the increased binding to HPV16 mRNAs and nuclear export of the cellular HuR protein. Our results demonstrate that nucleosides can affect HPV16 gene expression.
Collapse
|
7
|
Nilsson K, Wu C, Kajitani N, Yu H, Tsimtsirakis E, Gong L, Winquist EB, Glahder J, Ekblad L, Wennerberg J, Schwartz S. The DNA damage response activates HPV16 late gene expression at the level of RNA processing. Nucleic Acids Res 2018; 46:5029-5049. [PMID: 29596642 PMCID: PMC6007495 DOI: 10.1093/nar/gky227] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 12/13/2022] Open
Abstract
We show that the alkylating cancer drug melphalan activated the DNA damage response and induced human papillomavirus type 16 (HPV16) late gene expression in an ATM- and Chk1/2-dependent manner. Activation of HPV16 late gene expression included inhibition of the HPV16 early polyadenylation signal that resulted in read-through into the late region of HPV16. This was followed by activation of the exclusively late, HPV16 splice sites SD3632 and SA5639 and production of spliced late L1 mRNAs. Altered HPV16 mRNA processing was paralleled by increased association of phosphorylated BRCA1, BARD1, BCLAF1 and TRAP150 with HPV16 DNA, and increased association of RNA processing factors U2AF65 and hnRNP C with HPV16 mRNAs. These RNA processing factors inhibited HPV16 early polyadenylation and enhanced HPV16 late mRNA splicing, thereby activating HPV16 late gene expression.
Collapse
Affiliation(s)
- Kersti Nilsson
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
| | - Chengjun Wu
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
| | - Naoko Kajitani
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
| | - Haoran Yu
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
| | | | - Lijing Gong
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
- China Academy of Sport and Health Sciences, Beijing Sport University, Xinxi Road 48, Haidian District, 100084 Beijing, China
| | - Ellenor B Winquist
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
| | - Jacob Glahder
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
| | - Lars Ekblad
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Skane University Hospital, 221 85 Lund, Sweden
| | - Johan Wennerberg
- Department of Clinical Sciences Lund, Oto-rhino-laryngology, Head and Neck Surgery, Lund University, Skane University Hospital, 221 85 Lund, Sweden
| | - Stefan Schwartz
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
| |
Collapse
|
8
|
Yu H, Gong L, Wu C, Nilsson K, Li-Wang X, Schwartz S. hnRNP G prevents inclusion on the HPV16 L1 mRNAs of the central exon between splice sites SA3358 and SD3632. J Gen Virol 2018; 99:328-343. [PMID: 29458523 DOI: 10.1099/jgv.0.001019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
HPV16 late L1 mRNAs encode a short central exon that is located between HPV16 3'-splice site SA3358 and HPV16 5'-splice site SD3632. While SA3358 is used to produce both HPV16 early mRNAs encoding the E6 and E7 oncogenes, and late mRNAs encoding E4, L1 and L2, SD3632 is used exclusively to produce late L1 mRNA. We have previously identified an 8-nucleotide regulatory RNA element that is required for inclusion of the exon between SA3358 and SD3632 to produce L1 mRNAs at the expense of mRNAs polyadenylated at the HPV16 early polyadenylation signal pAE. Here we show that this HPV16 8-nucleotide splicing enhancer interacts with hnRNP G. Binding of hnRNP G to this element prevents inclusion of the exon between SA3358 and SD3632 on the HPV16 late L1 mRNAs. We concluded that hnRNP G has a splicing inhibitory role and that hnRNP G can control HPV16 mRNA splicing.
Collapse
Affiliation(s)
- Haoran Yu
- Department of Laboratory Medicine, Lund university, BMC-B13, 223 62 Lund, Sweden
| | - Lijing Gong
- Department of Laboratory Medicine, Lund university, BMC-B13, 223 62 Lund, Sweden.,China Academy of Sport and Health Sciences, Beijing Sport University, Xinxi Road 48, Haidian District, 100084 Beijing, PR China
| | - Chengjun Wu
- Department of Laboratory Medicine, Lund university, BMC-B13, 223 62 Lund, Sweden
| | - Kersti Nilsson
- Department of Laboratory Medicine, Lund university, BMC-B13, 223 62 Lund, Sweden
| | - Xiaoze Li-Wang
- Department of Laboratory Medicine, Lund university, BMC-B13, 223 62 Lund, Sweden
| | - Stefan Schwartz
- Department of Laboratory Medicine, Lund university, BMC-B13, 223 62 Lund, Sweden
| |
Collapse
|
9
|
Mirabello L, Clarke MA, Nelson CW, Dean M, Wentzensen N, Yeager M, Cullen M, Boland JF, Schiffman M, Burk RD. The Intersection of HPV Epidemiology, Genomics and Mechanistic Studies of HPV-Mediated Carcinogenesis. Viruses 2018; 10:v10020080. [PMID: 29438321 PMCID: PMC5850387 DOI: 10.3390/v10020080] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/24/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
Of the ~60 human papillomavirus (HPV) genotypes that infect the cervicovaginal epithelium, only 12–13 “high-risk” types are well-established as causing cervical cancer, with HPV16 accounting for over half of all cases worldwide. While HPV16 is the most important carcinogenic type, variants of HPV16 can differ in their carcinogenicity by 10-fold or more in epidemiologic studies. Strong genotype-phenotype associations embedded in the small 8-kb HPV16 genome motivate molecular studies to understand the underlying molecular mechanisms. Understanding the mechanisms of HPV genomic findings is complicated by the linkage of HPV genome variants. A panel of experts in various disciplines gathered on 21 November 2016 to discuss the interdisciplinary science of HPV oncogenesis. Here, we summarize the discussion of the complexity of the viral–host interaction and highlight important next steps for selected applied basic laboratory studies guided by epidemiological genomic findings.
Collapse
Affiliation(s)
- Lisa Mirabello
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA; (M.A.C.); (C.W.N.); (M.D.); (N.W.); (M.Y.); (M.C.); (J.F.B.); (M.S.)
- Correspondence: (L.M.); (R.D.B.)
| | - Megan A. Clarke
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA; (M.A.C.); (C.W.N.); (M.D.); (N.W.); (M.Y.); (M.C.); (J.F.B.); (M.S.)
| | - Chase W. Nelson
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA; (M.A.C.); (C.W.N.); (M.D.); (N.W.); (M.Y.); (M.C.); (J.F.B.); (M.S.)
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA; (M.A.C.); (C.W.N.); (M.D.); (N.W.); (M.Y.); (M.C.); (J.F.B.); (M.S.)
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA; (M.A.C.); (C.W.N.); (M.D.); (N.W.); (M.Y.); (M.C.); (J.F.B.); (M.S.)
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA; (M.A.C.); (C.W.N.); (M.D.); (N.W.); (M.Y.); (M.C.); (J.F.B.); (M.S.)
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Michael Cullen
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA; (M.A.C.); (C.W.N.); (M.D.); (N.W.); (M.Y.); (M.C.); (J.F.B.); (M.S.)
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Joseph F. Boland
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA; (M.A.C.); (C.W.N.); (M.D.); (N.W.); (M.Y.); (M.C.); (J.F.B.); (M.S.)
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | | | - Mark Schiffman
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA; (M.A.C.); (C.W.N.); (M.D.); (N.W.); (M.Y.); (M.C.); (J.F.B.); (M.S.)
| | - Robert D. Burk
- Departments of Pediatrics, Microbiology and Immunology, Epidemiology and Population Health, and Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence: (L.M.); (R.D.B.)
| |
Collapse
|
10
|
Olmedo-Nieva L, Muñoz-Bello JO, Contreras-Paredes A, Lizano M. The Role of E6 Spliced Isoforms (E6*) in Human Papillomavirus-Induced Carcinogenesis. Viruses 2018; 10:v10010045. [PMID: 29346309 PMCID: PMC5795458 DOI: 10.3390/v10010045] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
Persistent infections with High Risk Human Papillomaviruses (HR-HPVs) are the main cause of cervical cancer development. The E6 and E7 oncoproteins of HR-HPVs are derived from a polycistronic pre-mRNA transcribed from an HPV early promoter. Through alternative splicing, this pre-mRNA produces a variety of E6 spliced transcripts termed E6*. In pre-malignant lesions and HPV-related cancers, different E6/E6* transcriptional patterns have been found, although they have not been clearly associated to cancer development. Moreover, there is a controversy about the participation of E6* proteins in cancer progression. This review addresses the regulation of E6 splicing and the different functions that have been found for E6* proteins, as well as their possible role in HPV-induced carcinogenesis.
Collapse
Affiliation(s)
- Leslie Olmedo-Nieva
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan, 14080 Mexico City, Mexico.
| | - J Omar Muñoz-Bello
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan, 14080 Mexico City, Mexico.
| | - Adriana Contreras-Paredes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan, 14080 Mexico City, Mexico.
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan, 14080 Mexico City, Mexico.
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
| |
Collapse
|
11
|
HNRNPA1, a Splicing Regulator, Is an Effective Target Protein for Cervical Cancer Detection: Comparison With Conventional Tumor Markers. Int J Gynecol Cancer 2018; 27:326-331. [PMID: 27984373 DOI: 10.1097/igc.0000000000000868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1), serine/arginine-rich splicing factor 1 (SRSF1), and SRSF3 are splicing regulators associated with oncogenesis. However, the alterations of SF proteins and their diagnostic values in cervical cancer are unclear. To apply SFs clinically, effective marker selection and characterization of the target organ properties are essential. MATERIALS AND METHODS We concurrently analyzed HNRNPA1, SRSF1, SRSF3, and the conventional tumor markers squamous cell carcinoma antigen (SCCA) and carcinoembryonic antigen (CEA) in cervical tissue samples (n = 127) using semiquantitative immunoblotting. In addition, we compared them with p16 (cyclin-dependent kinase inhibitor 2A [CDKN2A]), which has shown high diagnostic efficacy in immunohistochemical staining studies and has been proposed as a candidate protein for point-of-care screening biochemical tests of cervical neoplasia. RESULTS HNRNPA1, higher molecular weight forms of SRSF1 (SRSF1-HMws), SRSF3, CEA, and p16 levels were higher (P < 0.05) in cervical carcinoma tissue samples than in nontumoral cervical tissue samples. However, the levels of SRSF1-Total (sum of SRSF1-HMws and a lower molecular weight form of SRSF1) and SCCA, a commonly used cervical tumor marker, were not different between carcinoma and nontumoral tissue samples. In paired sample comparisons, HNRNPA1 (94%) showed the highest incidence of up-regulation (carcinoma/nontumor, >1.5) in cervical carcinoma, followed by p16 (84%), SRSF1-HMws (69%), SRSF3 (66%), CEA (66 %), SCCA (32%), and SRSF1-Total (31%). HNRNPA1 (92%) and p16 (91%) presented the two highest diagnostic accuracies for cervical carcinoma, which were superior to those of SRSF3 (75%), SRSF1-HMws (72%), CEA (72%), SCCA (59%), and SRSF1-Total (55%). CONCLUSIONS Our results identified that HNRNPA1 is the best diagnostic marker among the SFs and conventional markers given its excellent diagnostic efficacy for cervical carcinoma, and it has a p16-comparable diagnostic value. We suggest that HNRNPA1 is an additional effective target protein for developing cervical cancer detection tools.
Collapse
|
12
|
Kajitani N, Glahder J, Wu C, Yu H, Nilsson K, Schwartz S. hnRNP L controls HPV16 RNA polyadenylation and splicing in an Akt kinase-dependent manner. Nucleic Acids Res 2017; 45:9654-9678. [PMID: 28934469 PMCID: PMC5766200 DOI: 10.1093/nar/gkx606] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 07/04/2017] [Indexed: 11/14/2022] Open
Abstract
Inhibition of the Akt kinase activates HPV16 late gene expression by reducing HPV16 early polyadenylation and by activating HPV16 late L1 mRNA splicing. We identified ‘hot spots’ for RNA binding proteins at the early polyA signal and at splice sites on HPV16 late mRNAs. We observed that hnRNP L was associated with sequences at all HPV16 late splice sites and at the early polyA signal. Akt kinase inhibition resulted in hnRNP L dephosphorylation and reduced association of hnRNP L with HPV16 mRNAs. This was accompanied by an increased binding of U2AF65 and Sam68 to HPV16 mRNAs. Furthermore, siRNA knock-down of hnRNP L or Akt induced HPV16 gene expression. Treatment of HPV16 immortalized keratinocytes with Akt kinase inhibitor reduced hnRNP L binding to HPV16 mRNAs and induced HPV16 L1 mRNA production. Finally, deletion of the hnRNP L binding sites in HPV16 subgenomic expression plasmids resulted in activation of HPV16 late gene expression. In conclusion, the Akt kinase inhibits HPV16 late gene expression at the level of RNA processing by controlling the RNA-binding protein hnRNP L. We speculate that Akt kinase activity upholds an intracellular milieu that favours HPV16 early gene expression and suppresses HPV16 late gene expression.
Collapse
Affiliation(s)
- Naoko Kajitani
- Department of Laboratory Medicine, Lund University, BMC-B13, 223 62 Lund, Sweden
| | - Jacob Glahder
- Department of Laboratory Medicine, Lund University, BMC-B13, 223 62 Lund, Sweden
| | - Chengjun Wu
- Department of Laboratory Medicine, Lund University, BMC-B13, 223 62 Lund, Sweden
| | - Haoran Yu
- Department of Laboratory Medicine, Lund University, BMC-B13, 223 62 Lund, Sweden
| | - Kersti Nilsson
- Department of Laboratory Medicine, Lund University, BMC-B13, 223 62 Lund, Sweden
| | - Stefan Schwartz
- Department of Laboratory Medicine, Lund University, BMC-B13, 223 62 Lund, Sweden
| |
Collapse
|
13
|
Graham SV. Keratinocyte Differentiation-Dependent Human Papillomavirus Gene Regulation. Viruses 2017; 9:E245. [PMID: 28867768 PMCID: PMC5618011 DOI: 10.3390/v9090245] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/29/2022] Open
Abstract
Human papillomaviruses (HPVs) cause diseases ranging from benign warts to invasive cancers. HPVs infect epithelial cells and their replication cycle is tightly linked with the differentiation process of the infected keratinocyte. The normal replication cycle involves an early and a late phase. The early phase encompasses viral entry and initial genome replication, stimulation of cell division and inhibition of apoptosis in the infected cell. Late events in the HPV life cycle include viral genome amplification, virion formation, and release into the environment from the surface of the epithelium. The main proteins required at the late stage of infection for viral genome amplification include E1, E2, E4 and E5. The late proteins L1 and L2 are structural proteins that form the viral capsid. Regulation of these late events involves both cellular and viral proteins. The late viral mRNAs are expressed from a specific late promoter but final late mRNA levels in the infected cell are controlled by splicing, polyadenylation, nuclear export and RNA stability. Viral late protein expression is also controlled at the level of translation. This review will discuss current knowledge of how HPV late gene expression is regulated.
Collapse
Affiliation(s)
- Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK.
| |
Collapse
|
14
|
Splicing and Polyadenylation of Human Papillomavirus Type 16 mRNAs. Int J Mol Sci 2017; 18:ijms18020366. [PMID: 28208770 PMCID: PMC5343901 DOI: 10.3390/ijms18020366] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/29/2017] [Accepted: 02/03/2017] [Indexed: 12/24/2022] Open
Abstract
The human papillomavirus type 16 (HPV16) life cycle can be divided into an early stage in which the HPV16 genomic DNA is replicated, and a late stage in which the HPV16 structural proteins are synthesized and virions are produced. A strong coupling between the viral life cycle and the differentiation state of the infected cell is highly characteristic of all HPVs. The switch from the HPV16 early gene expression program to the late requires a promoter switch, a polyadenylation signal switch and a shift in alternative splicing. A number of cis-acting RNA elements on the HPV16 mRNAs and cellular and viral factors interacting with these elements are involved in the control of HPV16 gene expression. This review summarizes our knowledge of HPV16 cis-acting RNA elements and cellular and viral trans-acting factors that regulate HPV16 gene expression at the level of splicing and polyadenylation.
Collapse
|
15
|
Graham SV, Faizo AAA. Control of human papillomavirus gene expression by alternative splicing. Virus Res 2016; 231:83-95. [PMID: 27867028 PMCID: PMC5335905 DOI: 10.1016/j.virusres.2016.11.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 11/21/2022]
Abstract
Alternative splicing is a key cellular mechanism controlling HPV gene expression. Many cellular SR proteins and hnRNPs have been identified that bind and control production of viral mRNAs. HPV16 E2 protein controls expression of SR proteins and has splicing-related functions. HPV16 infection through its regulatory effects on splicing factors may significantly alter cellular gene expression and cellular metabolism.
Human papillomaviruses possess circular double stranded DNA genomes of around 8 kb in size from which multiple mRNAs are synthesized during an infectious life cycle. Although at least three viral promoters are used to initiate transcription, viral mRNAs are largely the product of processing of pre-mRNAs by alternative splicing and polyadenylation. The HPV life cycle and viral gene expression are tightly linked to differentiation of the epithelium the virus infects: there is an orchestrated production of viral mRNAs and proteins. In this review we describe viral mRNA expression and the roles of the SR and hnRNP proteins that respectively positively and negatively regulate splicing. We discuss HPV regulation of splicing factors and detail the evidence that the papillomavirus E2 protein has splicing-related activities. We highlight the possibility that HPV-mediated control of splicing in differentiating epithelial cells may be necessary to accomplish the viral replication cycle.
Collapse
Affiliation(s)
- Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research; Institute of Infection, Immunity and Inflammation; College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, Scotland, UK.
| | - Arwa Ali A Faizo
- MRC-University of Glasgow Centre for Virus Research; Institute of Infection, Immunity and Inflammation; College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, Scotland, UK
| |
Collapse
|
16
|
Human Papillomavirus E2 Regulates SRSF3 (SRp20) To Promote Capsid Protein Expression in Infected Differentiated Keratinocytes. J Virol 2016; 90:5047-58. [PMID: 26962216 DOI: 10.1128/jvi.03073-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/29/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED The human papillomavirus (HPV) life cycle is tightly linked to differentiation of the infected epithelial cell, suggesting a sophisticated interplay between host cell metabolism and virus replication. Previously, we demonstrated in differentiated keratinocytes in vitro and in vivo that HPV type 16 (HPV16) infection caused increased levels of the cellular SR splicing factors (SRSFs) SRSF1 (ASF/SF2), SRSF2 (SC35), and SRSF3 (SRp20). Moreover, the viral E2 transcription and replication factor that is expressed at high levels in differentiating keratinocytes could bind and control activity of the SRSF1 gene promoter. Here, we show that the E2 proteins of HPV16 and HPV31 control the expression of SRSFs 1, 2, and 3 in a differentiation-dependent manner. E2 has the greatest transactivation effect on expression of SRSF3. Small interfering RNA depletion experiments in two different models of the HPV16 life cycle (W12E and NIKS16) and one model of the HPV31 life cycle (CIN612-9E) revealed that only SRSF3 contributed significantly to regulation of late events in the virus life cycle. Increased levels of SRSF3 are required for L1 mRNA and capsid protein expression. Capsid protein expression was regulated specifically by SRSF3 and appeared independent of other SRSFs. Taken together, these data suggest a significant role of the HPV E2 protein in regulating late events in the HPV life cycle through transcriptional regulation of SRSF3 expression. IMPORTANCE Human papillomavirus replication is accomplished in concert with differentiation of the infected epithelium. Virus capsid protein expression is confined to the upper epithelial layers so as to avoid immune detection. In this study, we demonstrate that the viral E2 transcription factor activates the promoter of the cellular SRSF3 RNA processing factor. SRSF3 is required for expression of the E4(^)L1 mRNA and so controls expression of the HPV L1 capsid protein. Thus, we reveal a new dimension of virus-host interaction crucial for production of infectious virus. SRSF proteins are known drug targets. Therefore, this study provides an excellent basis for developing strategies to regulate capsid protein production in the infected epithelium and the production of new virions.
Collapse
|